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Preface

This volume contains the proceedings of the 17th International Conference on
Rewriting Techniques and Applications, which was held on August 12–14, 2006
in Seattle, Washington, as part of of the 4th Federated Logic Conference (FLoC).
RTA is the major forum for the presentation of research on all aspects of rewrit-
ing. Previous RTA conferences took place in Dijon (1985), Bordeaux (1987),
Chapel Hill (1989), Como (1991), Montreal (1993), Kaiserslautern (1995), New
Brunswick (1996), Sitges (1997), Tsukuba (1998), Trento (1999), Norwich (2000),
Utrecht (2001), Copenhagen (2002), Valencia (2003), Aachen (2004), and Nara
(2005).

A total of 23 regular papers and 4 system descriptions were selected for pre-
sentation from 52 submissions. Each paper was reviewed by at least 4 members of
the Program Committee, with the help of 115 external referees. The committee
decided to give the Best Paper Award for RTA 2006 to the contribution “Termi-
nation of String Rewriting with Matrix Interpretations” by Dieter Hofbauer and
Johannes Waldmann for their original and powerful application of SAT solving
in proving termination.

I would like to thank all the members of the Program Committee for their dili-
gent, careful, and timely work and thoughtful deliberation, and Andrei Voronkov
for providing the EasyChair system which greatly facilitated the reviewing pro-
cess, the electronic Program Committee meeting, and the preparation of the
program and the proceedings.

In addition to contributed papers, the program contained a FLoC plenary talk
by Randal Bryant and two invited talks by Javier Esparza and Jürgen Giesl. I
would like to thank the invited speakers not only for their presentations, but
also for contributing abstracts or full papers to the proceedings.

RTA also sponsored a number of workshops held during FLoC, on the topics
of Higher-Order Rewriting (HOR), Rule-Based Programming (RULE), Unifi-
cation (UNIF), Reduction Strategies in Rewriting and Programming (WRS),
Termination (WST), and a meeting of the IFIP Working Group 1.6 on Term
Rewriting.

Many people helped to make RTA 2006 a success. I am particularly grateful
to Ashish Tiwari, who took on the dual role of Conference Chair and RTA
Workshop Chair, Ralf Treinen, the Publicity Chair, and Thomas Ball, Gopal
Gupta, Jakob Rehof, and Moshe Vardi from the FLoC Organizing Committee
who did an incredible amount of work in the arrangements for RTA and FLoC.

May 2006 Frank Pfenning
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Taolue Chen
Manuel Clavel
Thomas Colcombet
Evelyne Contejean
Jim Cordy
Solange Coupet-Grimal
Marcel Crabbé
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Formal Verification of Infinite State Systems Using
Boolean Methods�

Randal E. Bryant

School of Computer Science, Carnegie Mellon University, Pittsburgh, PA
Randy.Bryant@cs.cmu.edu

Most successful automated formal verification tools are based on a bit-level model of
computation, where a set of Boolean state variables encodes the system state. Using
powerful inference engines, such as Binary Decision Diagrams (BDDs) and Boolean
satisfiability (SAT) checkers, symbolic model checkers and similar tools can analyze
all possible behaviors of very large, finite-state systems.

For many hardware and software systems, we would like to go beyond bit-level mod-
els to handle systems that are truly infinite state, or that are better modeled as infinite-
state systems. Examples include programs manipulating integer data, concurrency pro-
tocols involving arbitrary numbers of processes, and systems containing buffers where
the sizes are described parametrically.

Historically, much of the effort in verifying such systems involved automated theo-
rem provers, requiring considerable guidance and expertise on the part of the user. We
would like to devise approaches for these more expressive system models that retain
the desirable features of model checking, such as the high degree of automation and the
ability to generate counterexamples.

We have developed UCLID [1], a prototype verifier for infinite-state systems. The
UCLID modeling language extends that of SMV [9], a bit-level model checker, to in-
clude state variables that are integers, as well as functions mapping integers to integers
and integers to Booleans. Functional state variables can be used to define array and
memory structures, including arrays of identical processes, FIFO buffers, and content-
addressable memories.

System operation is defined in UCLID in terms of the initial values and next-state
functions of the state variables. Integer operations include linear arithmetic and rela-
tional operations. Functions can be defined using uninterpreted function symbols, as
well as via a restricted form of lambda expression. The underlying logic is reason-
ably expressive, yet it still permits a decision procedure that translates the formula into
propositional logic and then uses a SAT solver [7].

UCLID supports multiple forms of verification, requiring different levels of sophisti-
cation in the handling of quantifiers. All styles verify that a safety property of the form
∀XP (s) holds for some set of system states s, where X denotes a set of integer index
variables. Index variables can be used to express universal properties for all elements
in an array of identical processes, all entries in a FIFO buffer, etc.

The simplest form of bounded property checking allows the user to determine that
property ∀XP (s) holds for all states reachable within a fixed number of steps k from an

� This research was supported by the Semiconductor Research Corporation, Contract RID
1029.001.

F. Pfenning (Ed.): RTA 2006, LNCS 4098, pp. 1–3, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



2 R.E. Bryant

initial state. Verifying such a property can be done by direct application of the decision
procedure. In practice, the effort required to verify such a property grows exponen-
tially in k, limiting the verification to around 10–20 steps. However, it provides a useful
debugging tool. In our experience, most errors are detected by this approach.

Of course, it is important to verify that properties hold for all reachable states of the
system. Unfortunately, the standard fixed-point methods for bit-level model checking
do not work for infinite-state systems. In many cases, the system will not reach a fixed
point within a bounded number of steps. Even for those that do, checking convergence
is undecidable, and our efforts to implement incomplete methods for this task have had
limited success [2].

To prove that property ∀XP (s) holds for all reachable states s, UCLID supports in-
ductive invariant checking, where the user provides an invariant Q such that Q holds
for all initial states, Q implies P , and any successor for a state satisfying Q must also
satisfy Q. This latter condition requires proving the validity of a formula containing
existentially quantified index variables. Although this problem is undecidable for our
logic, we have successfully implemented an incomplete approach using quantifier in-
stantiation [8].

A more automated technique is to derive an inductive invariant via predicate abstrac-
tion [4]. Predicate abstraction operates much like the fixed-point methods of symbolic
model checking, but using the concretization and abstraction operations of abstract in-
terpretation [3] on each step. We have generalized predicate abstraction to handle the
indexed predicates supported by UCLID [6]. Each step requires quantifier elimination
to eliminate the current state variables, much like the relational product step of sym-
bolic model checking. We implement this step by performing SAT enumeration on the
translated Boolean formula.

As a final level of automation, we can automatically discover a set of relevant pred-
icates for predicate abstraction based on the property P and the next-state expressions
for the state variables [5].

We have successfully verified a number of systems with UCLID, including out-of-
order microprocessors, distributed cache protocols, and distributed synchronization
protocols.

References
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Solving Partial Order Constraints
for LPO Termination

Michael Codish1,�, Vitaly Lagoon2, and Peter J. Stuckey2,3

1 Department of Computer Science, Ben-Gurion University, Israel
2 Department of Computer Science and Software Engineering

The University of Melbourne, Australia
3 NICTA Victoria Laboratory

mcodish@cs.bgu.ac.il, {lagoon, pjs}@cs.mu.oz.au

Abstract. This paper introduces a new kind of propositional encoding
for reasoning about partial orders. The symbols in an unspecified partial
order are viewed as variables which take integer values and are inter-
preted as indices in the order. For a partial order statement on n symbols
each index is represented in �log2 n� propositional variables and partial
order constraints between symbols are modeled on the bit representa-
tions. We illustrate the application of our approach to determine LPO
termination for term rewrite systems. Experimental results are unequivo-
cal, indicating orders of magnitude speedups in comparison with current
implementations for LPO termination. The proposed encoding is general
and relevant to other applications which involve propositional reasoning
about partial orders.

1 Introduction

This paper formalizes a propositional logic over partial orders. Formulæ in
this logic are just like usual propositional formulæ except that propositions
are statements about a partial order on a finite set of symbols. For example,
(f = g) ∧ ((f > h) ∨ (h > g)) is a formula in this logic. We refer to the for-
mulæ of this logic as partial order constraints. There are many applications in
computer science which involve reasoning about (the satisfiability of) partial or-
der constraints. For example, in the contexts of termination analysis, theorem
proving, and planning. The main contribution of this paper is a new kind of
propositional encoding of partial order constraints in propositional logic.

Contemporary propositional encodings, such as the one considered in [13],
model the atoms (primitive order relations such as f = g or f > h on sym-
bols) in a partial order constraint as propositional variables. Then, propositional
statements are added to encode the axioms of partial orders which the atoms
are subject to. For a partial order constraint on n symbols, such encodings typ-
ically introduce O(n2) propositional variables and involve O(n3) propositional
connectives to express the axioms. In contrast we propose to model the symbols
in a partial order constraint as integer values (in binary representation). For n

� Research performed while visiting the University of Melbourne.

F. Pfenning (Ed.): RTA 2006, LNCS 4098, pp. 4–18, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Solving Partial Order Constraints for LPO Termination 5

symbols this requires k = �log2 n� propositional variables for each symbol. The
integer value of a symbol reflects its index in a total order extending the partial
order. Constraints of the form (f = g) or (f > h) are then straightforward to
encode in k-bit arithmetic and involve O(log n) connectives each.

We focus on the application to termination analysis for term rewrite systems
(for a survey see [6]) and in particular on LPO termination [11,5]. Experimen-
tal results are unequivocal, surpassing the performance of current termination
analyzers such as TTT [10,18] and AProVE [8,2] (configured for LPO). The un-
derlying approach is directly applicable to more powerful termination proving
techniques, such as those based on dependency pairs [1], which basically involve
the same kind of constraint solving.

Sections 2 and 3 introduce partial order constraints and their symbol-based
propositional encoding. Section 4 introduces the LPO termination problem and
its relation to partial order constraints. Section 5 describes and evaluates our
implementation for LPO termination which is based on the application of a
state-of-the-art propositional SAT solver [14]. Finally, we present related work
and conclusions.

2 Partial Order Constraints

Informally, a partial order constraint is just like a formula in propositional logic
except that propositions are atoms of the form (f > g) or (f = g). The semantics
of a partial order constraint is a set of models. A model is an assignment of
truth values to atoms which is required to satisfy both parts of the formula: the
“propositional part” and the “partial order part”.

Syntax: Let F be finite non-empty set of symbols and R =
{

>, =
}

consist
of two binary relation symbols on F . Since R is fixed we denote by AtomF the
set of atoms of the form (f R g) where R ∈ R and f, g ∈ F . A partial order
constraint on F is a propositional formula in which the propositions are elements
of AtomF . We sometimes write (f ≥ g) as shorthand for (f > g) ∨ (f = g). We
denote the set of atoms occurring in a partial order constraint ϕ by Atom(ϕ).

Semantics: The symbols in R are interpreted respectively as a strict partial
order and as equality (both on F). Let ϕ be a partial order constraint on F .
The semantics of ϕ is a set of models. Intuitively, a model of ϕ is a set of atoms
from AtomF which satisfies both parts of the formula: the propositional part
and the partial order part. Before presenting a formal definition we illustrate
this intuition by example.

Example 1. Let F = {f, g, h}. The following are partial order constraints:

ϕ1 = (f > g) ∧ ((f > h) ∨ (h > f))
ϕ2 = (f ≥ g) ∧ (g ≥ h) ∧ (h ≥ g)
ϕ3 = (f > g) ∧ ¬((h > g) ∨ (f > h))

The set of atoms μ1 =
{

(f > g), (f > h), (f = f), (g = g), (h = h)
}

is a model
for ϕ1. It satisfies the propositional part: ϕ1 evaluates to true when assigning
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the atoms in μ the value “true” and the others the value “false”. It satisfies
the partial order part: it is a partial order. The set of atoms

{
(h > f), (f > g)

}
is not a model (for any partial order constraint) because it is not closed under
transitivity (nor reflexivity). However, its extension μ2 = {(h > f), (f > g), (h >
g), (f = f), (g = g), (h = h)} is a model for ϕ1. Formula ϕ1 has additional models
which are extensions of μ1 to a total order:

μ3 =
{

(f > g), (g > h), (f > h), (f = f), (g = g), (h = h)
}

,
μ4 =

{
(f > h), (h > g), (f > g), (f = f), (g = g), (h = h)

}
, and

μ5 =
{

(f > g), (g = h), (h = g), (f > h), (f = f), (g = g), (h = h)
}

The formula ϕ2 has two models:{
(f = g), (g = f), (g = h), (h = g), (f = h), (h = f), (f = f), (g = g), (h = h)

}
{

(f > g), (g = h), (h = g), (f > h), (f = f), (g = g), (h = h)
}

Focusing on ϕ3 illustrates that there is an additional implicit condition for an
assignment to satisfy a partial order constraint. We recall that a partial order can
always be extended to a total order. The partial order μ =

{
(f > g)

}
satisfies

the propositional part of ϕ3 and may appear at first sight to satisfy also the
partial order part (it is a partial order). However, no extension of μ to a total
order satisfies the propositional part of ϕ3 and hence μ will not be considered a
model of ϕ3. To solve this, we will restrict models to be total orders.

The following formalizes the proposed semantics for partial order constraints.

Definition 1 (assignment, model). An assignment μ is a mapping from
propositions of AtomF to truth values, and can be identified with the set of
propositions it assigns “true”. Let ϕ be a partial order constraint on F . We say
that an assignment μ is a model for ϕ if: (1) it makes ϕ true as a propositional
formula; (2) it satisfies the axioms for strict partial order and equality; and (3)
it defines a total order on F . More specifically, in (2) and in (3), an assignment
μ is required to satisfy (for all f, g, h ∈ F):

reflexivity: (f = f) ∈ μ
symmetry: (f = g) ∈ μ ⇒ (g = f) ∈ μ
asymmetry: ¬((f > g) ∈ μ ∧ (g > f) ∈ μ)
transitivity: (f > g) ∈ μ ∧ (g > h) ∈ μ ⇒ (f > h) ∈ μ

(f = g) ∈ μ ∧ (g = h) ∈ μ ⇒ (f = h) ∈ μ
identity: (f > g) ∈ μ ∧ (g = h) ∈ μ ⇒ (f > h) ∈ μ

(f = g) ∈ μ ∧ (g > h) ∈ μ ⇒ (f > h) ∈ μ
comparability: (f > g) ∈ μ ∨ (g > f) ∈ μ ∨ (f = g) ∈ μ

Given that we fix the models of a partial order constraint to be total orders, we
have that ¬(f > g) ≡ (g > f) ∨ (g = f) and that ¬(f = g) ≡ (f > g) ∨ (g > f).
Hence we may assume without loss of generality that partial order constraints
are negation free. For example, the formula ϕ3 from Example 1 is equivalent to
ϕ′

3 = (f > g) ∧ (g ≥ h) ∧ (h ≥ f) which is clearly unsatisfiable.
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Satisfiability: In this paper we are concerned with the question of satisfiability
of partial order constraints: given a partial order constraint ϕ does it have a
model? Similarly to the general SAT problem, the satisfiability of partial order
constraints is NP-complete, and the reduction from SAT is straightforward.

Solution-based interpretation: We propose a finite domain integer-based
interpretation of partial order constraints. In this approach the semantics of a
partial order constraint is a set of integer solutions.

Definition 2 (integer assignment and solution). Let ϕ be a partial order
constraint on F and let |F| = n. An integer assignment for ϕ is a mapping
μ : F → {1, . . . , n}. An integer solution of ϕ is an assignment θ which makes ϕ
true under the natural interpretations of > and = on the natural numbers.

Example 2. Consider again the partial order constraints from Example 1. The
assignments mapping 〈f, g, h〉 to 〈3, 2, 2〉, 〈3, 1, 1〉 and 〈1, 1, 1〉 are solutions for
ϕ2. But only the first two are solutions to ϕ1. The formula ϕ3 has no solutions.

Theorem 1. A partial order constraint ϕ is satisfiable if and only if it has an
integer solution.

The theorem is a direct consequence of the following lemmata.

Lemma 1. Let θ be a solution of ϕ. The assignment

μ =
{

(f R g)
∣∣{f, g} ⊆ F , R ∈ R, (θ(f) R θ(g))

}
is a model of ϕ.

Proof. Clearly μ satisfies both the propositional and partial order parts of ϕ since
the integer relation > is a total order. Hence μ is a model for ϕ by definition.

Lemma 2. Let μ be a model of ϕ on F with n symbols. Then there exists a
solution θ of ϕ in

{
1, . . . , n

}
.

Proof. Assume F = {f1, . . . , fn} and let μ be a model of ϕ. By asymmetry,
identity and comparability, for each 1 ≤ i < j ≤ n exactly one of fi > fj or fi =
fj or fj > fi hold. We can linearize the symbols in F : fkn Rn−1 · · ·R2 fk2 R1 fk1

where for each 1 ≤ i < n, Ri ∈ {>, =} and (fki+1 Ri fki) ∈ μ, since μ models
transitivity, symmetry, and identity. We can then construct a solution θ, using
values from 1 to no more than n, where

θ(fk1) = 1

θ(fkj+1) =
{

θ(fkj ) where Rj−1 ≡ (=)
θ(fkj ) + 1 where Rj−1 ≡ (>) for 1 ≤ j < n

Decomposing partial order constraint satisfaction: The atoms in a for-
mula ϕ induce a graph Gϕ on the symbols in F such that ϕ is satisfiable if and
only if the formulae corresponding to the strongly connected components of Gϕ

are all satisfiable. Considering this graph facilitates the decomposition of a test
for satisfiability to a set of smaller instances. This graph captures all possible
cycles in the partial order and hence all potential contradictions. The following
definition is inspired by [13].



8 M. Codish, V. Lagoon, and P.J. Stuckey

ϕ = ((gt > ge) ∨ (− > ge)) ∧ ((ge > gt) ∨ (− > gt)) ∧
(((+ > ∗) ∧ (+ > −)) ∨ (− > ∗)) ∧
(((∗ > +) ∧ (∗ > −)) ∨ (− > +)) ∧ (∗ > +)

�������	∗

��

��

�������	gt

��

�������	−

�� ������

�� ������

�������	+

��

		

�������	ge

��

Fig. 1. A partial order constraint (left) and its domain graph (right). The graph has two
strongly connected components: {gt, ge} and {−, ∗, +}. Arcs between the components
are dashed.

Definition 3 (domain graph). Let ϕ be a (negation free) partial order con-
straint on F . The domain graph Gϕ = (V, E) is a directed graph with vertices
V = F and edges E =

{
(f, g)

∣∣{ (f > g), (f = g), (g = f)
}
∩ Atom(ϕ) �= ∅

}
.

Figure 1 illustrates a partial order constraint (a) and its domain graph (b).

Definition 4 (restricting a partial order constraint). Let ϕ be a partial
order constraint on F and let F ′ ⊆ F . The restriction of ϕ to the symbols in
F ′ is the formula obtained by substituting “true” for any atom (f R g) such
that (f, g) �∈ F ′ × F ′. The SCC-partition of ϕ is the set of graphs obtained by
restricting ϕ to the nodes in each of the strongly connected components of Gϕ.

Example 3. Consider the partial order constraint ϕ and its domain graph Gϕ

depicted as Figure 1. The graph Gϕ has two strongly connected components.
The SCC-partition for ϕ gives:

ϕ1 = ((gt > ge) ∨ true) ∧ ((ge > gt) ∨ true) ≡ true

ϕ2 = (∗ > +) ∧ (((+ > ∗) ∧ (+ > −)) ∨ (− > ∗)) ∧
((((∗ > +) ∧ (∗ > −))) ∨ (− > +))

≡ (∗ > +) ∧ (− > ∗) ∧ (− > +)

Lemma 3. A partial order constraint is satisfiable if and only if each of the
formula in its SCC-partition is satisfiable.

Proof. (idea) You can only get a contradiction if x > x along some path in the
graph. Any such path will be contained in a single SCC.

3 A Symbol-Based Propositional Encoding

This section presents a propositional encoding of partial order constraints. A
partial order constraint ϕ on a set of symbols F is encoded by a propositional
formula ϕ′ such that each model of ϕ corresponds to a model of ϕ′ and in par-
ticular such that ϕ is satisfiable if and only if ϕ′ is. The novelty is to construct
the encoding in terms of the solution-based interpretation of partial order con-
straints. We view the n symbols in F as integer variables taking finite domain
values from the set

{
1, . . . , n

}
. Each symbol is thus modeled using k = �log2 n�
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propositional variables which encode the binary representation of its value. Con-
straints of the form (f > g) or (f = g) on F are interpreted as constraints on
integers and it is straightforward to encode them in k-bit arithmetic.

The symbol-based propositional encoding for partial order constraints is de-
fined as follows. For |F| = n we need k = �log2 n� bits per symbol. We denote
by [[a]] the propositional variable corresponding to an atom a ∈ AtomF and by
[[ϕ]] the propositional formula obtained when replacing atoms by propositional
variables in partial order constraint ϕ.

1. For f ∈ F , the k-bit representation is f = 〈fk, . . . , f1〉 with fk the most
significant bit.

2. A constraint of the form (f = g) is encoded in k-bits by

‖(f = g)‖k =
k∧

i=1

(fi ↔ gi).

A constraint of the form (f > g) is encoded in k-bits by

‖(f > g)‖k =

{
(f1 ∧ ¬g1) k = 1
(fk ∧ ¬gk) ∨ ((fk ↔ gk) ∧ ‖(f > g)‖k−1) k > 1

3. A partial order constraint ϕ is encoded in k bits by replacing each [[a]] in ϕ
by its corresponding k-bit encoding ‖a‖k, which we write as:

‖ϕ‖k = [[ϕ]][[a]]/‖a‖k
(1)

Proposition 1. The symbol-based encoding of partial order constraint ϕ with n
symbols involves O(n log n) propositional variables and O(|ϕ| log n) connectives.

Example 4. Consider the partial order constraint ϕ2 = (∗>+)∧ (−>∗)∧ (−>+)
from Example 3. Each of the three symbols in ϕ2 is represented in 2 bits and
the propositional encoding of ϕ2 is obtained as

ϕ′
2 = ((∗2 ∧ ¬+2) ∨ (∗2 ↔ +2 ∧ ∗1 ∧ ¬+1)) ∧

((−2 ∧ ¬∗2) ∨ (−2 ↔ ∗2 ∧−1 ∧ ¬∗1)) ∧
((−2 ∧ ¬+2) ∨ (−2 ↔ +2 ∧ −1 ∧ ¬+1))

The proof of the following theorem is straightforward.

Theorem 2. A partial order constraint ϕ on symbols F is satisfiable if and only
if its symbol-based propositional encoding encode(ϕ) is.

4 LPO Termination

A term rewrite system is a set of rules of the form � → r where � and r are terms
constructed from given sets of symbols F and variables V , and such that � is not
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−gt(A,B) → ge(B,A)
−ge(A,B) → gt(B,A)
−(A + B) → (−A) ∗ (−B)

−(A ∗ B) → (−A) + (−B)
A ∗ (A + B) → (A ∗ B) + (A ∗ C)
(B + C) ∗ A → (B ∗ A) + (C ∗ A)

Fig. 2. An example term rewrite system: normalizing formulæ with propositional con-
nectives: ∗,+,− (for: and, or, not); and partial orders: gt, ge (for: >,≥)

a variable and r only contains variables also in �. A rule � → r applies to a term
t if a subterm s of t matches � with some substitution σ (namely, s = �σ). The
rule is applied by replacing the subterm s by rσ. Such an application is called
a rewrite step on t. A derivation is a sequence of rewrite steps. A term rewrite
system is said to be terminating if all of its derivations are finite. An example
term rewrite system is depicted as Figure 2.

Termination of term rewrite systems is undecidable. However a term rewrite
system terminates if there is a reduction order � such that � � r for each rule
� → r in the system. There are many methods for defining such orders. Many
of them are based on so-called simplification orders and one such order is the
lexicographic path order (LPO)[11,5].

We assume an algebra of terms constructed over given sets of symbols F
and variables V . Let >F denote a (strict or non-strict) partial order on F (a
so-called precedence) and let ≈F denote the corresponding equivalence relation.
We denote by ∼ the equality of terms up to equivalence of symbols. Observe that
if >F is strict then ≈F and ∼ are the identity of symbols and terms respectively.
Each precedence >F on the symbols induces a lexicographic path order �lpo on
terms. If for each of the rules � → r in a system, � �lpo r then the system is
LPO terminating.

Definition 5 (LPO [11]). The lexicographic path order �lpo on terms induced
by the partial order >F is defined as s = f(s1, . . . , sn) �lpo t if and only if one
of the following holds:

1. t = g(t1, . . . , tm) and s �lpo tj for all 1 ≤ j ≤ m and either
(i) f >F g or (ii) f ≈F g and 〈s1, . . . , sn〉 �lex

lpo 〈t1, . . . , tm〉; or
2. si �lpo t for some 1 ≤ i ≤ n.

Here �lex
lpo is the lexicographic extension of �lpo to tuples of terms and �lpo is

the union of �lpo and ∼.

The LPO termination problem is to determine for a given term rewrite system
with function symbols F , if there exists a partial order >F such that � �lpo r
for each of the rules with the induced lexicographic path order. There are two
variants of the problem: “strict-” and “quasi-LPO termination” depending on if
we require >F to be strict or not. The corresponding decision problems, strict-
and quasi- LPO termination, are decidable and NP complete [12]. In [9], the
authors observe that finding >F such that s �lpo t is tantamount to solving a
constraint obtained by unfolding the definition of s �lpo t with details depending
on whether >F is a strict or non-strict partial order. The strict- and quasi-
LPO termination problems are to decide if conjunctions of these unfoldings are
satisfiable — one conjunct for each rule in the given term rewrite system.
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Example 5. Consider the term rewrite system of Figure 2. Unfolding Definition 5
for strict-LPO termination, we obtain the following:

−(gt(A,B)) >lpo ge(B,A) ⇐⇒ (gt > ge) ∨ (− > ge)

−(ge(A,B)) >lpo gt(B,A) ⇐⇒ (ge > gt) ∨ (− > gt)

−(A + B) >lpo (−(A)) ∗ (−(B)) ⇐⇒ ((+ > ∗) ∧ (+ > −)) ∨ (− > ∗)
−(A ∗ B) >lpo (−(A)) + (−(B)) ⇐⇒ ((∗ > +) ∧ (∗ > −)) ∨ (− > +)

A ∗ (B + C) >lpo (A ∗ B) + (A ∗ C) ⇐⇒ ∗ > +

(B + C) ∗ A >lpo (B ∗ A) + (C ∗ A) ⇐⇒ ∗ > +

The term rewrite system is LPO terminating if and only if the conjunction of
the constraints on the right sides is satisfiable. This conjunction is precisely the
partial order constraint ϕ from Figure 1 which by Lemma 3, is satisfiable if and
only if the formula in its SCC-partition are. Coming back to Example 3, it is
straightforward to observe that they are.

The next example illustrates a term rewrite system which is quasi-LPO termi-
nating but not strict-LPO terminating.

Example 6. Consider the following term rewrite system.

div(X, e) → i(X)
i(div(X, Y )) → div(Y, X)
div(div(X, Y ), Z) → div(Y, div(i(X), Z))

Unfolding Definition 5 for strict-LPO gives

div(X, e) >lpo i(X) ⇐⇒ div > i

i(div(X, Y )) >lpo div(Y, X) ⇐⇒ i > div

div(div(X,Y ), Z) >lpo div(Y, div(i(X), Z)) ⇐⇒ div > i

The conjunction of the constraints on the right sides is not satisfiable indicating
that there does not exist any strict partial order on F such that the corresponding
lexicographic path order decreases on the three rules. The system is however
quasi-LPO terminating. Unfolding Definition 5 for quasi-LPO gives a satisfiable
partial order constraint equivalent to (div ≥ i) ∧ (i ≥ div) which indicates that
taking div ≈ i provides a proof of quasi-LPO termination.

5 Implementation and Experimentation

We have implemented a prototype analyzer, poSAT, for strict- and quasi- LPO
termination based on the encoding proposed in Section 3. The implementation
is a written primarily in SWI-Prolog [19,15] and interfaces the MiniSat solver
[7,14] for solving SAT instances.

We have integrated MiniSat and SWI-Prolog through ≈190 lines of C-code
and ≈140 lines of Prolog code. For details concerning this interface see [3]. SAT
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solvers typically consider propositional formulæ in conjunctive normal form. The
transformation of a propositional formula with m connectives and n literals is
performed using a (linear) Tseitin transformation [17] (for details on our im-
plementation see [3]) and results in a conjunctive normal form with O(m + n)
variables and O(m) clauses.

The rest of poSAT is implemented in ≈800 lines of Prolog code. This includes
a parser (for term rewrite systems), modules to translate strict- and quasi- LPO
termination problems into partial order constraints, the module converting par-
tial order constraints into SAT instances, and finally a head module processing
the command line, running the components, pretty-printing the results etc. The
current implementation does not decompose partial order constraints to their
SCC-components (Lemma 3). The experimental results indicate that the im-
plementation would not benefit from that: (a) Most of the tests are very fast
without this decomposition; and (b) It is typical for hard cases of LPO termina-
tion (see Table 2) to have a large strongly connected component including the
majority of the symbols.

For experimentation we have taken all 751 term rewrite systems from the Ter-
mination Problem Data Base [16] which do not specify a “theory” or a “strategy”.
In the following, the names of term rewrite systems are indicated in typewriter font
and can be found in [16]. We report on the comparison of poSAT for both strict-
and quasi- LPO termination analysis with the TTT analyzer[18].

For the experiments, poSAT runs on a 1.5GHz laptop running GNU/Linux
FC4. The TTT analyzer is applied via its Web interface [18] and runs on a Xeon
2.24GHz dual-CPU platform which is a considerably faster machine than ours. Ex-
periments with AProVE running on our local (laptop) platform give results which
are considerably slower than TTT (on its faster machine). For example, running
AProVE configured for LPO-termination with a 10 minute timeout on the 25 ex-
amples highlighted in Table 2 takes 47 minutes and encounters three timeouts. In
contrastTTT analyzes the same set of examples in about one minute (see Table 2).
Hence for comparison with poSAT we provide the numbers only for TTT.

With regards to precision, as expected, both analyzers give the same results
(with the exception of a single test which TTT cannot handle within the max-
imum timeout allocation). From the 751 example systems, 128 are LPO termi-
nating and 132 are quasi-LPO terminating. For poSAT, run times include the
complete cycle of processing each test: reading and parsing the file, translation
to partial order constraints and then to propositional formula, solving by the
SAT solver and printing the results. The run time of each test is computed as
an average of ten identical runs.

Table 1(a) summarizes the results for strict LPO termination analysis. The
columns contain times (in seconds) for our poSAT analyzer and for TTT con-
figured to run with a timeout of 10 minutes (the maximum allowed by its Web
interface). Note that the times are taken on different machines which makes the
precise comparison impossible. Nevertheless, the results are indicative showing
that poSAT is fast in absolute terms and scales better for hard cases. Notably,
the hardest test of LPO termination for poSAT (HM/t005.trs) completes in
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Table 1. Summary of experimental results: total, average and maximum times (sec)
for 751 tests

poSAT TTT
Total 8.983 647.48

Average 0.012 0.86
Max 0.477 317.63

(a) strict LPO termination

poSAT TTT
Total 8.609 2167.44

Average 0.011 2.89
Max 0.544 600.00

(b) quasi-LPO termination

under a half second, while the hardest test for TTT (various 14.trs) takes
more than 5 minutes.

Table 1(b) presents the results for quasi-LPO termination analysis. For this
variant, poSAT completes the 751 tests in 8.6sec. The same task takes TTT
over 34 minutes with one test (currying/Ste92/hydra.trs) running out of 10
minutes timeout. The next hardest test for TTT is currying/AG01 No 3.13.trs
which completes in 182.6sec (3min). The same two tests take poSAT 0.054sec
and 0.021sec respectively. The hardest quasi-LPO test for poSAT is Zantema/z30
which takes 0.54sec in our analyzer and 5.02sec in TTT.

Once again, the timings are indicative despite the fact that the two analyzers
run on different machines. By comparing the results in Table 1(a) and (b) we
observe that for quasi-LPO, TTT runs about an order of magnitude slower than
for strict LPO. In contrast, poSAT demonstrates similar performance for both
LPO and quasi-LPO.

Table 2 presents a detailed analysis for the 25 most challenging examples
for poSAT chosen by maximum total time for strict- and quasi- LPO analysis.
The two parts of the table present the respective results for strict- and quasi-
LPO termination analyses. The following information is provided: The columns
labeled “Sym” and “CNF” characterize the partial order constraints derived
from the given term rewrite systems. “Sym” indicates the number of symbols
in the complete formula and in the largest component of its SCC-partition (0/0
in this column means that the partial order constraint is trivial i.e., true or
false). “CNF” indicates the numbers of propositional variables and clauses in the
translation of the propositional (symbol-based) encoding to conjunctive normal
form. The columns labeled “poSAT” and “TTT” indicate run times (in seconds)
for the poSAT and TTT solvers.

All of the tests in Table 2 are neither strict- nor quasi-LPO terminating.
This is not surprising for the 25 hardest tests, as proving unsatisfiability is
typically harder than finding a solution for a satisfiable formula. It is interesting
to note that four examples among the hardest 25, result in trivial partial order
constraints. Obviously, the challenge in these examples is not in solving the
constraints but rather in obtaining them by unfolding Definition 5. Interestingly,
our translation and simplification mechanisms are sometimes more powerful than
those of TTT. For instance, currying/AG01 No 3.13 is simplified to false in
poSAT but not in TTT, leading to a long search for TTT. The difference is due
to the fact that in the case of poSAT the generation of a partial order formula
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Table 2. The 25 hardest tests for poSAT

LPO quasi-LPO
Test Sym CNF poSAT TTT Sym CNF poSAT TTT

AProVE AAECC-ring 28/10 642/2369 0.088 0.11 28/25 786/2951 0.093 0.12
Cime mucrl1 0/0 0/1 0.298 2.56 0/0 0/1 0.248 13.88
currying AG01 No 3.13 0/0 0/1 0.127 39.24 0/0 0/1 0.027 184.24
higher-order Bird H* 0/0 0/1 0.089 0.15 0/0 0/1 0.025 1.30
HM t005 0/0 0/1 0.477 11.75 0/0 0/1 0.040 2.13
HM t009 19/11 773/2779 0.167 0.14 19/18 1388/4880 0.175 0.16
Ex1 2 AEL03 C 19/17 630/2301 0.115 0.23 19/19 1286/4877 0.141 88.30
Ex1 2 AEL03 GM 22/17 506/1805 0.058 0.04 22/22 693/2475 0.060 19.39
Ex26 Luc03b C 15/12 384/1307 0.055 0.08 15/15 816/2847 0.079 6.00
Ex2 Luc02a C 15/12 390/1332 0.063 0.08 15/15 838/2939 0.086 6.09
Ex3 3 25 Bor03 C 12/10 285/945 0.050 0.06 12/12 605/2100 0.061 0.72
Ex4 7 37 Bor03 C 13/11 287/962 0.061 0.11 13/13 577/2067 0.072 0.83
Ex5 7 Luc97 C 18/15 614/2181 0.093 0.15 18/18 1341/4871 0.139 92.51
Ex6 15 AEL02 C 23/22 906/3312 0.159 0.37 23/23 1862/6756 0.215 123.47
Ex6 15 AEL02 FR 26/20 599/2146 0.060 0.05 26/26 867/3152 0.065 40.01
Ex6 15 AEL02 GM 29/25 745/2761 0.079 0.07 29/29 1074/3920 0.099 155.26
Ex6 15 AEL02 Z 26/20 587/2105 0.060 0.05 26/26 869/3196 0.061 18.31
Ex7 BLR02 C 14/11 299/1013 0.044 0.07 14/14 627/2289 0.064 1.70
Ex8 BLR02 C 12/10 280/930 0.048 0.07 12/12 546/1906 0.060 0.38
Ex9 BLR02 C 12/9 296/968 0.054 0.06 12/12 608/2071 0.065 0.37
ExAppendixB AEL03 C 20/18 700/2576 0.121 0.29 20/20 1410/5294 0.152 109.39
ExIntrod GM99 C 16/13 423/1428 0.080 0.11 16/16 848/3017 0.088 21.36
ExIntrod Zan97 C 15/12 344/1167 0.051 0.08 15/15 709/2544 0.069 2.02
ExSec11 1 Luc02a C 16/13 439/1490 0.067 0.12 16/16 985/3353 0.098 29.32
Zantema z30 2/2 65/106 0.119 2.91 3/3 12827/18205 0.544 5.02
Total time: 2.683 58.95 2.83 922.30

never introduces trivial sub-formula (“true” or “false”), these are evaluated on-
the-fly.

Another observation based on the results of Table 2 is that the partial or-
der constraints derived from the tests typically have domain graphs with large
strongly-connected components. Almost every test in the table has a “core” com-
ponent including the majority of the symbols. Therefore, it is unlikely that the
performance of poSAT for the presented tests can be improved by using the
SCC-based decomposition of the formula.

As Table 2 shows, the maximum CNF instance solved in our tests includes
12827 propositional variables and 18205 CNF clauses. This is well below the ca-
pacity limits of MiniSat, which is reported to handle benchmarks with hundreds
of thousands of variables and clauses [14].

6 Related Works

The idea of mapping LPO termination problems to a corresponding propositional
formula is first addressed in [13] where the authors assume that partial order
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constraints contain only disjunction and conjunction of atoms of the form (f > g)
(no equality and no negation). This suffices for strict-LPO termination analysis.
We present here a generalization of that approach which can be applied also for
quasi-LPO termination and then compare it with the approach proposed in this
paper.

The basic strategy is the same as in Section 3: to encode a partial order
constraint ϕ on F by an equivalent propositional formula ϕ′ such that each model
of ϕ corresponds to a model of ϕ′ and in particular such that ϕ is satisfiable if and
only if ϕ′ is. The main difference is that the approach in [13] is “atom-based”. The
encoding for a partial order constraint ϕ is obtained by: (a) viewing the atoms in
ϕ as propositional variables, and (b) making the axioms for partial order explicit.
As in Section 3, we let [[a]] denote the propositional variable corresponding to an
atom a ∈ AtomF and [[ϕ]] the propositional formula obtained by replacing each
atom a in partial order constraint ϕ by the propositional variable [[a]]. For a set
of symbols F the following propositional formulæ make the axioms explicit:

– R=
F =

f∈F
[[f = f]]

– A>
F =

f,g∈F
¬([[f > g]] ∧ [[g > f]])

– T=
F =
f, g, h ∈ F

f �= g �= h �= f

[[f = g]] ∧ [[g = h]] → [[f = h]]

– I2
F =
f, g, h ∈ F

f �= g �= h �= f

[[f = g]] ∧ [[g > h]] → [[f > h]]

– S=
F =

f,g∈F
[[f = g]] → [[g = f]]

– T >
F =
f, g, h ∈ F

f �= g �= h �= f

[[f > g]] ∧ [[g > h]] → [[f > h]]

– I1
F =

f, g, h ∈ F
f �= g �= h

[[f > g]] ∧ [[g = h]] → [[f > h]]

– C≥
F =

f, g ∈ F
f �= g �= h �= f

[[f > g]] ∨ [[g > f]] ∨ [[f = g]]

The atom-based propositional encoding of a (negation free) partial order con-
straint ϕ on symbols F which does not involve equality is obtained as encode(ϕ)
= [[ϕ]]∧ T >

F ∧A>
F [13]. In the general case when ϕ may contain also equality the

encoding is obtained as

encode(ϕ) = [[ϕ]] ∧ R=
F ∧ S=

F ∧ T >
F ∧ T =

F ∧ A>
F ∧ I1

F ∧ I2
F ∧ C≥

F (2)

The two variants of atom-based propositional encodings both result in large
propositional formula. For |F| = n they introduce O(n2) propositional variables
and involve O(n3) connectives (e.g., for transitivity).

In [13] Kurihara and Kondo propose two optimizations. They note that for a
given formula ϕ, the domain graph Gϕ is often sparse and hence they propose
to specialize the explicit representation of the axioms for those symbols from
F actually occurring in ϕ. However, in view of Lemma 3 we may assume that
we are testing satisfiability for partial order constraints which have strongly
connected domain graphs. Moreover, as indicated by our experimental evaluation
(see Table 2), the domain graphs for some of the more challenging examples have
strongly connected components with up to 30 symbols.

In a second optimization Kurihara and Kondo observe that the axioms for
transitivity and asymmetry can be replaced by a simpler axiom (they call it A∗)
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introducing a single clause of the form ¬((f1 > f2)∧(f2 > f3)∧· · ·∧(fk−1 > fk)∧
(fk > f1) for each simple cycle (f1 > f2), (f2 > f3), . . . , (fk−1 > fk), (fk > f1) in
Gϕ to assert that that cycle is not present in a model. They claim correctness of
the encoding and report considerable speedups when it is applied. The problem
with this approach is that in general there may be an exponential number of
simple cycles to consider.

Hence, the encoding described in [13] either requires O(n2) propositional vari-
ables and introduces O(n3) connectives or else relies on a potentially exponential
phase of processing the simple loops in the domain graph.

It is insightful to compare the two encodings of a partial order constraint
ϕ given as Equations (1) and (2). The common part in both encodings is the
subformula [[ϕ]] in which atoms are viewed as propositional variables. The dif-
ference is that Equation (2) introduces explicit axioms to relate the atoms in a
partial order where Equation (1) interprets the n symbols as indices represented
in �log2 n�-bits. This is why the symbol-based encoding introduces O(n log n)
propositional variables instead of O(n2) for the atom-based approach. Moreover
the symbol-based encoding does not require the expensive encoding of the ax-
ioms because the encoding as integers ensures that they hold “for free”. Hence
the number of connectives is O(|ϕ| log n) instead of O(n3 + |ϕ|). Obviously for
small n the symbol based encoding can be larger than the atom-based encoding.
However, the search space is determined by the number of variables, where the
O(n log n) of the symbol-based encoding is clearly superior to the O(n2) for the
atom-based approach.

An implementation of the atom-based approach of [13] is described in the
recent report [20] together with an experimental evaluation and comparison with
our symbol-based approach. It shows the symbol-based approach is orders of
magnitude faster on its benchmark set.

Testing for satisfiability of partial order constraints comes up in many other
applications. First of all in the context of term rewrite systems where LPO is
just one example of a simplification order and analyses based on other types
of orders may also be encoded into propositional logic. Moreover, for programs
which cannot be shown to terminate using these kinds of simplification orders,
the dependency pairs approach [1] has proven very successful in generating sets
of constraints such that the existence of a (quasi-)order satisfying them is a
sufficient condition for termination. Our constraint solving technique is directly
applicable and improves considerably the performance of implementations for
these techniques. Initial results are described in [4].

In practice LPO termination tests are often performed in an incremental fash-
ion, adding constraints to orient the rules in a term rewrite system one rule at a
time. Methods that construct a partial order thus seek to incrementally extend
that partial order if possible. In our approach, we construct a linearization of the
partial order and are hence less likely to be able to extend a previous order to sat-
isfy new constraints. However, both approaches make choices which may have to
be undone to satisfy all constraints. For poSAT, the encoding (which often takes
a good proportion of the analysis time) is clearly incremental. Moreover, given
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the raw speed advantages, and the fact that the hardest instances are unsatisfi-
able, where incrementality is not useful, we are confident that in an incremental
context the poSAT is still superior.

7 Conclusion

We have introduced a new kind of propositional encoding for reasoning about
partial orders. Previous works propose to represent the atoms in a formula as
propositional variables and to explicitly encode the axioms for partial order.
Our novel approach is to interpret the symbols in a formula as finite domain
variables corresponding to the indices in the partial order. We illustrate the ap-
plication of our approach for LPO termination analysis for term rewrite systems.
Experimental results are unequivocal indicating orders of magnitude speedups
in comparison with current implementations for LPO termination analysis. The
proposed technique is directly applicable to more powerful termination proving
techniques, such as those based on dependency pairs [1], which basically involve
the same kind of constraint solving.
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Abstract. An automatic and easy to implement transformation of con-
ditional term rewrite systems into computationally equivalent uncondi-
tional term rewrite systems is presented. No special support is needed
from the underlying unconditional rewrite engine. Since unconditional
rewriting is more amenable to parallelization, our transformation is ex-
pected to lead to efficient concurrent implementations of rewriting.

1 Introduction

Conditional rewriting is a crucial paradigm in algebraic specification, since it pro-
vides a natural means for executing equational specifications. Many specification
languages, including CafeOBJ [8], ELAN [4], Maude [6], OBJ [10], ASF/SDF
[21], provide conditional rewrite engines to execute and reason about specifi-
cations. It also plays a foundational role in functional logic programming [11].
Conditional rewriting is, however, rather inconvenient to implement directly. To
reduce a term, a rewrite engine needs to maintain a control context for each con-
ditional rule that is tried. Due to the potential nesting of rule applications, such
a control context may grow arbitrarily. The technique presented in this paper
automatically translates conditional rewrite rules into unconditional rules, by
encoding the necessary control context into data context. The obtained rules can
be then executed on any unconditional rewrite engine, whose single task is to
match-and-apply unconditional rules. Such a simplified engine can be seen as a
rewrite virtual machine, which can be even implemented in hardware, and our
transformation technique can be seen as a compiler. One can also simulate the
proposed transformation as part of the implementation of a conditional engine.

Experiments performed on three fast rewrite engines, Elan[4], Maude[6] and
ASF/SDF [21], show that performance increases can be obtained on current
engines if one uses the proposed transformation as a front-end. However, since
these rewrite engines may be optimized for conditional rewriting, we expect sig-
nificant further increases in performance if one just focuses on the much simpler
problem of developing optimized unconditional rewrite engines and use our tech-
nique. Moreover, one can focus on developing parallel rewrite machines without
worrying about conditions, which obstruct the potential for high parallelism.

On computational equivalence. Let us formalize the informal notion of “compu-
tationally equivalent elimination of conditions”. Consider a conditional term

F. Pfenning (Ed.): RTA 2006, LNCS 4098, pp. 19–34, 2006.
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rewriting system (CTRS) R over signature Σ and an (unconditional) term
rewriting system (TRS) R′ over signature Σ′. Also, assume some mapping ϕ
from Σ-terms to Σ′-terms and some partial mapping ψ from Σ′-terms to Σ-
terms that is an inverse to ϕ (i.e., ψ(ϕ(s)) = s for any Σ-term s). Σ′-terms ϕ(s)
are called initial, while terms t′ with ϕ(s) →∗

R′ t′ are called reachable in R′. The
(partial) mapping ψ only needs to translate reachable Σ′-terms into Σ-terms.
ϕ can be thought of as translating input terms for R into input terms for R′,
while ψ as taking results of rewritings in R′ into corresponding results for R.
In other words, ϕ and ψ can wrap a Σ′ rewrite engine into a Σ rewrite engine.
Typically, ϕ and ψ are straightforward linear translators of syntax.

R′ is complete for R iff any reduction in R has some corresponding reduction
in R′: s →∗

R t implies ϕ(s) →∗
R′ ϕ(t). Completeness is typically easy to prove

but, unfortunately, has a very limited practical use: it only allows to disprove
reachability tasks in R by disproving corresponding tasks in R′. R′ is sound for
R iff any reduction in R′ of an initial term corresponds to some reduction in
R: ϕ(s) →∗

R′ t′ implies s →∗
R ψ(t′). The soundness of R′ allows to compute

partial reachability sets in R: applying ψ to all t′ reached from ϕ(s) in R′, we
get Σ-terms (not necessarily all) reachable from s in R. The soundness and
completeness of R′ gives a procedure to test reachability in the CTRS R using
any reachability analysis procedure for the TRS R′: s →∗

R t iff ϕ(s) →∗
R′ ϕ(t).

Soundness and completeness may seem the ideal properties of a transfor-
mation. Unfortunately, they do not yield the computational equivalence of the
original CTRS to (the wrapping of) the resulting TRS. By computational equiv-
alence of R′ to R we mean the following: if R terminates on a given term s
admitting a unique normal form t, then R′ also terminates on ϕ(s) and for any
of its normal forms t′, we have that ψ(t′) = t. In other words, the unconditional
R′ can be used transparently to perform computations for R. Example 3 shows
that the soundness and completeness of a transformation do not imply computa-
tional equivalence, even if the original CTRS is confluent and terminates! Note
that termination of R is not required. Indeed, termination of the CTRS may be
too restrictive in certain applications, e.g., in functional logic programming [2].

On Termination. Rewriting of a given term in a CTRS may not terminate for two
reasons [19]: the reduction of the condition of a rule does not terminate, or there
are some rules that can be applied infinitely often on the given term. In rewrite
engines, the effect in both situations is the same: the system loops forever or
crashes running out of memory. For this reason, we do not make any distinction
between the two cases, and simply call a Σ-CTRS operationally terminating [13]
on Σ-term s iff it always reduces s to a normal form regardless of the order
rules apply. Note that this notion is different from effective termination [14];
Example 6 shows a system that is confluent and effectively terminating but not
operationally terminating. Operational termination is based on the assumption
that, in general, one cannot expect a rewrite engine to be “smart” enough to
pick the right rewrite sequence to satisfy a condition. Formally, a CTRS R is
operationally terminating on s if for any t, any proof tree attempting to prove
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that s →∗
R t is finite. Operational termination is equivalent to decreasingness for

normal CTRSs (and with quasi-decreasingness for deterministic CTRSs) [13].
We give an automatic transformation technique of CTRSs into TRSs, taking

ground confluent normal CTRSs R into computationally equivalent TRSs R′.
This technique can be extended to more general CTRSs including ones with ex-
tra variables in conditions (see [20]). Experiments show that the resulting TRSs
yield performant computational engines for the original CTRSs. On the the-
oretical side, our main new result is that if R is finite, ground confluent and
operationally terminating on a term s then R′ is ground confluent on reachable
terms and terminating on ϕ(s) (Theorem 6). This effectively gives computa-
tional equivalence of our transformation for (ground) confluent (finite) systems.
To achieve this main result, we prove several other properties: the completeness
of our transformation (Theorem 1); ground confluence (Theorem 2) or left linear-
ity (Theorem 3) of R implies the soundness of R′; if R is left linear, then ground
confluence of R implies ground confluence of R′ on reachable terms (Theorem 4)
and operational termination of R on s implies termination of R′ on ϕ(s) (The-
orem 5). Part of these properties recover the power of previous transformations;
note however that they are not simple instances of those, due to the particular-
ities of our transformation. Additionally, we show that left linearity and ground
confluence of R′ on reachable terms implies ground confluence of R (Proposition
2), and termination of R′ on reachable terms implies operational termination of
R (Proposition 4); these results potentially enable one to use confluence and/or
termination techniques on unconditional TRSs to show confluence and/or op-
erational termination of the original CTRS, but this was not our purpose and
consequently have not experimented with this approach.

Section 2 discusses previous transformations of CTRSs into TRSs. We only
focus on ones intended to be computationally equivalent and discuss their li-
mitations. Section 3 presents our transformation. Section 4 shows it at work
on several examples; some of these examples have been experimented with on
the rewrite engines Elan [4], Maude [6] and ASF/SDF [21], with promising per-
formance results. Section 5 lists theoretical results. All proofs can be found in
the companion report [20], which will be published elsewhere soon. Section 6
concludes the paper.

2 Previous Transformations

Stimulated by the benefits of transforming CTRSs into equivalent TRSs, there
has been much research on this topic. Despite the apparent simplicity of most
transformations, they typically work for restricted CTRSs and their correctness,
when true, is quite involved. We focus on transformations that generate TRSs
intended to be transparently used to reduce terms or test reachability in the
original CTRSs. Significant efforts have been dedicated to transformations pre-
serving only certain properties, e.g., termination or confluence [18]; we do not
discuss these here. We use the following two examples to illustrate the different
transformations and to analyze their limitations.
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Example 1. [14, 18]. The CTRS Rs will be used to test if a transformation is
sound and Rt to test if it preserves termination. Let Rs be the CTRS

A → h(f(a), f(b)) g(d, x, x) → B
h(x, x) → g(x, x, f(k)) f(x) → x if x → e

a → c b → c c → e d → m
a → d b → d c → l k → l

k → m

Let Rt be Rs ∪ {B → A}; then A �→∗
Rt

B and Rt operationally terminates. ��

Example 2. [2]. The two-rule canonical CTRS {f(g(x)) → x if x → 0, g(g(x)) →
g(x)} will be used to test whether a transformation preserves confluence. ��

Bergstra&Klop. The first CTRS-to-TRS transformation appeared in [3]: start
with a rule Ix → x and to each rule ρi : l → r if cl → cr associate rules
ρ′i : l → σi(cl)r and ρ′′i : σi(cr) → I. The transformation is proved to be
complete in [3] and claimed to also be sound. Let us apply this transformation
on Rs in Example 1. Rule f(x) → x if x → e is replaced by f(x) → σ1(x)x and
σ1(e) → I, and rule Ix → x is added. Then:

A → h(f(a), f(b)) → h(σ1(a)a, f(b)) → h(σ1(a)d, f(b)) → h(σ1(c)d, f(b))
→ h(σ1(c)d, σ1(b)b) → h(σ1(c)d, σ1(b)d) → h(σ1(c)d, σ1(c)d)
→ g(σ1(c)d, σ1(c)d, f(k)) → g(σ1(e)d, σ1(c)d, f(k)) → g(Id, σ1(c)d, f(k))
→ g(d, σ1(c)d, f(k)) → g(d, σ1(l)d, f(k)) → g(d, σ1(l)m, f(k))
→ g(d, σ1(l)m, σ1(k)k) → g(d, σ1(l)m, σ1(l)k) → g(d, σ1(l)m, σ1(l)m) → B

So this transformation is not sound. Transforming Rt, we can see that this trans-
formation does not preserve termination, because A →+ A. For the system in Ex-
ample 2, f(g(x)) → x if x → 0 is replaced by f(g(x)) → σ1(x)x and σ1(0) → I,
so f(g(g(0))) → f(g(0)) → σ1(0)0 → I0 → 0 and f(g(g(0))) → σ1(g(0))g(0),
both of them normal forms. Thus the resulting TRS is not confluent. Conse-
quently, this transformation does not produce computationally equivalent TRSs.

Giovanetti&Moiso. The transformation in [9] (suggested in [7]) replaces each rule
ρi : l → r if cl → cr by l → ifi(Var(l), cl) and ifi(Var(l), cr) → r (where Var(l) is
the list of variables of l). However, this transformation is complete and computa-
tionally equivalent only when the original CTRS is safely transformable [9], that
is, has no superposition, is simply terminating, and is non-overlapping on condi-
tions. The “safely transformable” CTRSs are too restrictive; our transformation
yields computationally equivalent TRSs imposing only ground confluence (safely
transformable CTRSs are ground confluent) on the original CTRS.

Hintermeier [12] proposes a technique where an “interpreter” for a CTRS is
specified using unconditional rewrite rules, defining the detailed steps of the
application of a conditional rewrite rule including rewrite-based implementations
of matching and substitution application; this result is rather expected, since
unconditional term rewriting is Turing complete. Also, it has little practical
relevance - this “meta” stepwise simulation leads to dramatic performance loss).

Marchiori’s Unravellings. An abstract notion of transformation, called unravel-
ling, and several concrete instances of it, were introduced by Marchiori in [14];
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these were further studied in [15, 17, 18, 16]. An unraveling is a computable map
U from CTRSs to TRSs over the same signature, except a special operation
Uρ for each rule ρ, such that ↓R ⊆↓U(R) (↓ stands for “join”, i.e., →;←) and
U(T ∪ R) = T ∪ U(R) if T is a TRS. The concrete instance transformations
are similar to that in [9]: each conditional rule ρ : l → r if cl → cr is replaced
by its unravelling, rules l → Uρ(cl,Var(r)) and Uρ(cr,Var(r)) → r. Complete-
ness holds, but soundness does not hold without auxiliary hypotheses [14] (see
Example 1) such as left linearity [14, 18]. Also, (quasi) decreasingness and left
linearity of the CTRS imply termination of the corresponding TRS.

Example 3. A sound and complete transformation does not necessarily yield
computational equivalence even if the original CTRS is canonical. The unravel-
ling of the system in Example 2 is {f(g(x)) → U1(x, x), U1(0, x) → x, g(g(x)) →
g(x)}. The original CTRS is left linear, so the unravelling is sound and complete,
but is not computationally equivalent: f(g(g(0))) reduces to U1(g(0), g(0)), a nor-
mal form with no correspondent normal form in the original CTRS. ��
Unfortunately, no unravelling preserves confluence or termination [14] (i.e., for
any unravelling U , there are confluent and/or terminating CTRSs R such that
U(R) is not a confluent and/or terminating TRS), thus they do not yield compu-
tationally equivalent TRSs. Therefore, it is not surprising that the more recent
transformations discussed next that aim at computational equivalence, including
ours, are not unravellings (they modify the original signature).

Viry. The transformation in [22] (inspired from [1]) inspired all subsequent ap-
proaches. It modifies the signature by adding to each operation as many argu-
ments as conditional rules having it at the top of their lhs. Two unconditional
rules replace each conditional rule, one for initializing the auxiliary arguments
and the other for the actual rewrite step. Formally: let ρσ,i denote the ith rule
whose lhs is topped in σ; add as many arguments to σ as the number of rules ρσ,i;
let cσ,i be the number arity(σ) + i, corresponding to the ith auxiliary argument
added to σ; transform each rule ρσ,i : l → r if cl → cr into

ρ′σ,i : l̃[cσ,i ←⊥] → l̃[cσ,i ← [cl,Var(l)]] and ρ′′σ,i : l∗[cσ,i ← [cr,Var(l)]] → r,

where “⊥” is a special constant stating that the corresponding conditional rule
has not been tried yet on the current position, s lifts a term by setting all
new arguments to ⊥, s̃ lifts a term with fresh variables on the new arguments,
and s∗ replaces all variables in s̃ with fresh variables. Structures [u,−→s ] com-
prise the reduction status of conditions (u) together with corresponding sub-
stitutions (−→s ) when they were started. The substitution is used to correctly
initiate the reduction of the rhs of the original conditional rule. Viry gave
a wrong proof that his transformation sound and complete and that it pre-
serves termination. We believe the completeness indeed holds, but have counter-
examples for the other properties. Let us transform the CTRS Rs from Exam-
ple 1. First, rules h(x, x) → g(x, x, f(k)) and g(d, x, x) → B are replaced by
h(x, y) → g(x, x, f(k)) if eq(x, y) → true and g(d, x, y) → B if eq(x, y) → true
to resolve non-left linearity, where eq(x, x) → true is the only non-left linear
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rule allowed [22]. Then these conditional rules and f(x) → x if x → e and
A → h(f(a), f(b)) are transformed into:

f(x,⊥) → f(x, [x, x]) h(x, y,⊥) → h(x, y, [eq(x, y), x, y]
f(y, [e, x]) → x h(x′, y′, [true, x, y]) → g(x, x, f(k,⊥),⊥)
g(d, x′, y′, [true, x, y]) → B g(d, x, y,⊥) → g(d, x, y, [eq(x, y), x, y])

A → h(f(a,⊥), f(b,⊥),⊥)

The following is then a valid sequence in the generated unconditional TRS:

A → h(f(a, ⊥), f(b, ⊥), ⊥) → h(f(a, [a, a]), f(b, ⊥),⊥) → h(f(d, [a, a]),
f(b, ⊥), ⊥) → h(f(d, [c, a]), f(b, ⊥), ⊥) → h(f(d, [c, c]), f(b, ⊥), ⊥) → h(f(d, [c, c]),
f(b, [b, b]), ⊥) → h(f(d, [c, c]), f(d, [b, b]), ⊥) → h(f(d, [c, c]), f(d, [c, b]), ⊥) →
h(f(d, [c, c]), f(d, [c, c]), ⊥) → h(f(d, [c, c]), f(d, [c, c]), [eq(f(d, [c, c]), f(d, [c, c])),
f(d, [c, c]), f(d, [c, c])]) → h(f(d, [c, c]), f(d, [c, c]), [true, f(d, [c, c]), f(d, [c, c])]) →
g(f(d, [c, c]), f(d, [c, c]), f(k, ⊥),⊥) → g(f(d, [e, c]), f(d, [c, c]), f(k, ⊥),⊥) →
g(f(d, [e, e]), f(d, [c, c]), f(k, ⊥),⊥) → g(d, f(d, [c, c]), f(k, ⊥), ⊥) →
g(d, f(m, [c, c]), f(k, ⊥), ⊥) → g(d, f(m, [l, c]), f(k, ⊥),⊥) → g(d, f(m, [l, l]),
f(k, ⊥),⊥) → g(d, f(m, [l, l]), f(k, [k, k]), ⊥) → g(d, f(m, [l, l]), f(m, [k, k]), ⊥)
→ g(d, f(m, [l, l]), f(m, [l, k]), ⊥) → g(d, f(m, [l, l]), f(m, [l, l]), ⊥) →
g(d, f(m, [l, l]), f(m, [l, l]), [eq(f(m, [l, l]), f(m, [l, l])), f(m, [l, l]), f(m, [l, l])]) →
g(d, f(m, [l, l]), f(m, [l, l]), [true, f(m, [l, l]), f(m, [l, l])]) → B

Hence, Viry’s transformation is not sound. Using Rt instead of Rs, whose cor-
responding TRS just adds rule B → A to that of Rs, we can notice that it
does not preserve termination either. Let us now transform the CTRS in Ex-
ample 2 to {f(g(x),⊥) → f(g(x), [x, x]), f(x, [0, y]) → y, g(g(x)) → g(x)}; note
that R′ is not confluent [2] (with or without Viry’s conditional eagerness [22]):
f(g(g(0)),⊥) can be reduced to both 0 and f(g(0), [g(0), (g(0))]). Therefore, this
transformation does not fulfill the requirements of computational equivalence.

Antoy,Brassel&Hanus proposed in [2] a simple fix to Viry’s technique, namely
to restrict the input CTRSs to constructor-based (i.e., the lhs of each rule is a
term of the form f(t1, . . . , tn), where f is defined and t1, . . . , tn are all construc-
tor terms) and left linear ones. Under these restrictions, they also show that the
substitution needed by Viry’s transformation is not necessary anymore, so they
drop it and prove that the new transformation is sound and complete; moreover,
if the original CTRS is additionally weakly orthogonal, then the resulting TRS
is confluent on reachable terms. It is suggested in [2] that what Viry’s trans-
formation (or their optimized version of it) needs to generate computationally
equivalent TRSs is to reduce its applicability to only constructor-based, weakly
orthogonal and left linear CTRSs. While constructor-baseness and left linearity
are common to functional logic programming and are easy to check automati-
cally, we believe that they are, in general, an unnecessarily strong restriction on
the input CTRS, which may make the translation unusable in many situations
of practical interest (see, e.g., the bubble-sort algorithm in Section 4).

Roşu. The transformation in [19] is defined for join CTRSs and requires the
rewrite engine to support some simple contextual rewriting strategies, namely
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an if( , , ) eager on the condition and an equal? eager on both arguments.
As in Viry’s transformation, additional arguments are added to each opera-
tion σ for each conditional rule ρσ,i, but they only need to keep truth val-
ues. The distinctive feature of this transformation is the introduction of the
{ } operation, which allows the rewriting process to continue after a condi-
tion got stuck provided changes occur in subterms. Each conditional rule ρσ,i :
l → r if cl↓cr is encoded by one unconditional rule ρσ,i : l̃[cσ,i ← true] →
if (equal?({cl}, {cr}), {r}, l̃[cσ,i ← false]). The bracket clears the failed condi-
tions on the path to the top: σ(x1, .., {xi}, .., xarity(σ), y1, .., ym) → {σ(x1, .., xi, ..,
xarity(σ), true, .., true)}. It is shown in [19] that this transformation is sound and
that operational termination is preserved and implies completeness and preserva-
tion of ground confluence, that is, computational equivalence. Left linearity needs
not be assumed. Although most modern rewrite systems support the rewrite
strategies required by the transformation in [19], we argue that imposing re-
strictions on the order of evaluation makes a rewrite engine less friendly w.r.t
parallelism and more complex; in some sense, contextual strategies can be seen
as some sort of conditional rules: apply the rule if the context permits.

Our transformation basically integrates Rosu’s { } operation within Viry’s
transformation, which allows us to also eliminate the need to carry a substitution.
We recently found out1 that a related approach was followed by Brassel in his
master thesis [5], but we can’t relate our results since we were unable to obtain
an English translation of his results.

3 Our Transformation

Like in the last three transformations above, auxiliary arguments are added
to some operators to maintain the control context information. For simplicity,
we here discuss only the transformation of normal CTRSs, that is, ones whose
conditional rules have the form l → r if cl → cr, cr is a constant in normal
form and all variables from cl and r also occur in l (and l is not a variable).
In [20] we discuss extensions of our technique to more complex cases, including
ones with extra variables and matching in conditions. Let R be any Σ-CTRS. A
σ-conditional rule [22] is a conditional rule with σ at the top of its lhs, i.e., one
of the form σ(t1, . . . , tn) → r if cl → cr. Let kσ be the number of σ-conditional
rules and let ρσ,i denote the ith σ-conditional rule in R.

The signature transformation. Let Σ be the signature containing: a fresh con-
stant ⊥; a fresh unary operator { }; for any σ ∈ Σn (i.e., σ ∈ Σ has n arguments),
an operation σ ∈ Σn+kσ (the additional kσ arguments of σ are written to the
right of the other n arguments). An important step in our transformation is
to replace Σ-terms by corresponding Σ-terms. The reason for the additional
arguments is to pass the control context (due to conditional rules) into data
context: the additional i-th argument of σ at some position in a term main-
tains the status of appliance of ρσ,i; if ⊥ then that rule was not tried, otherwise
1 From a private communication with Bernd Brassel.
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the condition is being under evaluation or is already evaluated. Thus, the cor-
responding Σ-term of a Σ-term is obtained by replacing each operator σ by
σ with the kσ additional arguments all ⊥. Formally, let X be an infinite set
of variables and let · : TΣ(X ) → TΣ(X ) be defined inductively as: x = x for
any x ∈ X and σ(t1, . . . , tn) = σ(t1, . . . , tn,⊥, . . . ,⊥) for any σ ∈ Σn and
any t1, . . . , tn ∈ TΣ(X ). Let us define another map, ·̃X : TΣ(X) → TΣ(X ),
this time indexed by a finite set of variables X ⊆ X , as x̃X = x for any

x ∈ X , and as ˜σ(t1, . . . , tn)
X

= σ(t̃1
X

, . . . , t̃n
X

, z1, . . . , zkσ) for any σ ∈ Σn

and t1, . . . , tn ∈ TΣ(X), where z1, . . . , zkσ ∈ X −X are some arbitrary but fixed
different fresh variables that do not occur in X or in t̃1

X
, . . . , t̃n

X
. Therefore,

t̃X transforms the Σ-term t into a Σ-term by replacing each operation σ ∈ Σ
by σ ∈ Σ and adding some distinct fresh variables for the additional arguments,
chosen arbitrarily but deterministically.

The rewrite rules transformation. Given a Σ-CTRS R, let R be the Σ-TRS
obtained as follows. For each σ-conditional rule ρσ,i: l → r if cl → cr over
variables X in R, add to R two rules, namely ρσ,i : l̃X [cσ,i ←⊥] → l̃X [cσ,i ← {cl}]
and ρ′σ,i : l̃X [cσ,i ← {cr}] → {r}, where cσ,i is the number arity(σ) + i corres-
ponding to the ith conditional argument of σ. For each unconditional rule l → r
in R, add rule l̃X → {r} to R. For each σ ∈ Σn and each 1 ≤ i ≤ n, add to R
a rule σ(x1, .., xi−1, {xi}, xi+1, .., xn, z1, .., zkσ)→{σ(x1, .., xi−1, xi, xi+1, .., xn,⊥
, ..,⊥)}, intuitively stating that a condition tried and potentially failed in the past
at some position may hold once an immediate subterm changes; the operation
{ }, symbolizing the change, also needs to be propagated bottom-up, reseting
the other started conditions to ⊥. The applicability information of an operation
can be updated from several of its subterms; to keep this operation idempotent,
we add {{x}} → {x} to R. The size of R is 1+u+2× c+

∑
n≥0 n × |Σn|, where

u is the number of unconditional rewrite rules and c is the number of conditional
rewrite rules in R.

4 Examples and Experiments

We next illustrate our transformation on several examples.

Confluence is preserved. Let us transform the CTRS in Example 2:

f(g(x), ⊥) → f(g(x), {x}) f(g(x), {0}) → {x} g(g(x)) → {g(x)}
g({x}) → {g(x)} f({x}, b) → {f(x, ⊥)} {{x}} → {x}

The problem that appeared in Viry’s transformation is avoided in our trans-
formation by the rules of {·}, which allow the evaluation of a condition to be
restarted at the top of a term once a modification occurs in a subterm. Thus,
given the Σ-term {f(g(g(0)),⊥)}, even if a rewrite engine first tries to evaluate
the condition at the top, a “correct” rewriting sequence is eventually obtained:
{f(g(g(0)), ⊥)} →R {f(g(g(0)), {g(0)})} →R {f({g(0)}, {g(0)})} →R {{f (g(0), ⊥)}},

and now the condition can be tried again and this time will succeed.
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Odd/Even [19]. Let us consider natural numbers with 0 and successor s, con-
stants true and false and the following on purpose inefficient conditional rules
defining odd and even operators on natural numbers (here denoted as o and e):

o(0) → false
e(0) → true

o(s(x)) → true if e(x) → true
e(s(x)) → true if o(x) → true

o(s(x)) → false if e(x) → false
e(s(x)) → false if o(x) → false

In order to check whether a natural number n, i.e., a term consisting of n succes-
sor operations applied to 0, is odd, a conditional rewrite engine may need O(2n)
rewrites in the worst case. Indeed, if n > 0 then either the second or the third
rule of odd can be applied at the first step; however, in order to apply any of those
rules one needs to reduce the even of the predecessor of n, twice. Iteratively, the
evaluation of each even involves the reduction of two odds, and so on. Moreover,
the rewrite engine needs to maintain a control context data-structure, storing
the status of the application of each (nested) rule that is being tried in a reduc-
tion. It is the information stored in this control context that allows the rewriting
engine to backtrack and find an appropriate rewriting sequence. As shown at the
end of this section, some rewrite engines perform quite poorly on this system.
Let us apply it our transformation. Since there are two odd-conditional rules
and two even-conditional rules, each of these operators will be enriched with
two arguments. The new TRS is (for aesthetic reasons we overline only those
operations that change; z1 and z2 are variables):

o(0, z1, z2) → {false}
o(s(x), {false}, z2) → {false}
o(s(x), z1, {true}) → {true}
o(s(x),⊥, z2) → o(s(x), {e(x,⊥, ⊥)}, z2)
o(s(x), z1, ⊥) → o(s(x), z1, {e(x, ⊥,⊥)})

e(0, z1, z2) → {true}
e(s(x), {false}, z2) → {false}
e(s(x), z1, {true}) → {true}
e(s(x), ⊥, z2) → e(s(x), {o(x, ⊥, ⊥)}, z2)
e(s(x), z1, ⊥) → e(s(x), z1, {o(x,⊥, ⊥)})

s({x}) → {s(x)} o({x}, z1, z2) → {o(x, z1, z2)}
{{x}} → {x} e({x}, z1, z2) → {e(x, z1, z2)}

If one wants to test whether a number n, i.e., n consecutive applications of
successor on 0, is odd, one should reduce the term {o(n,⊥,⊥)}.

Bubble sort. The following one-rule CTRS sorts lists of numbers (we assume
appropriate rules for numbers) implementing the bubble sort algorithm:

·(x, ·(y, l)) → ·(y, ·(x, l)) if x < y → true
This CTRS is ground confluent but not constructor-based. Its translation is:

·(x, ·(y, l, c),⊥) → ·(x, ·(y, l, c), {x > y})
·(x, ·(y, l, c), {true}) → {·(y, ·(x, l,⊥),⊥)}

{{l}} → {l}
·(x, {l}, c) → {·(x, l,⊥)}

Experiments. Our major motivation to translate a CTRS into a computationally
equivalent TRS that can run on any unrestricted unconditional rewrite engine
was the potential to devise highly parallelizable rewrite engines. It was there-
fore an unexpected and a pleasant surprise to note that our transformation
can actually bring immediate benefits if implemented as a front-end to existing,
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non-parallel rewrite engines. Note, however, that current rewrite engines are op-
timized for both conditional and unconditional rewriting; an engine optimized
for just unconditional rewriting could probably be even more efficient.

We next give some numbers regarding the speed of the generated TRS. We
used Elan and Maude as interpreters and ASF/SDF as a compiler - our goal
was not to compare rewrite engines (that’s why we did not use same input
data for all engines) but rather to compare how our transformation performs on
each of them. Besides the two examples presented above (Odd/Even and Bub-
ble sort), we tested our transformation on two other CTRSs: Quotient/Reminder
(inspired from [18]) and the evaluation of a program generating all permutations
of n elements and counting them written for a rewriting based interpreter of a
simple programming language with arrays (using both matching in conditions
and rewriting modulo axioms - see [20] for a discussion of when our transforma-
tion is sound for rewriting modulo axioms). We have tested how long it took for
a term to be rewritten to a normal form. In the table below, Cond shows the
results using the original system, Ucond those using the presented transforma-
tion and Ucond* the transformation enhanced with some simple but practical
optimizations described below. Times were obtained on a machine with 2 GHz
Pentium 4 CPU and 1GB RAM.

Odd/Even
Elan - odd(18) Maude - odd(24) ASF/SDF - odd(25)

Cond Uncond Uncond*
85.79s 5.55s ∼0s

Cond Uncond Uncond*
84.97s 17.05s ∼0s

Cond Uncond Uncond*
0.02s 7.46s 0.01s

Bubble Sort
Elan 100 Maude 5000 ASF/SDF 5000

Cond Uncond(*)
28.19s 3.46s

Cond Uncond(*)
72.34s 43.53s

Cond Uncond(*)
81.64s 85.71s

Quotient(Reminder)
Elan 105/6 Maude 107/2 ASF/SDF 106/2

Cond Uncond Uncond*
10.85s 5.82s 5.23s

Cond Uncond Uncond*
75.98s 67.59s 41.61s

Cond Uncond Uncond*
13.96s 15.28s 14.53s

Rew.-based interpreter of a simple PL with arrays - permutation generation
Maude

8 9
Cond Uncond*
18.06s 12.76s

Cond Uncond*
-2 144.56s

ASF/SDF
8 9

Cond Uncond*
5.72s 14.20s

Cond Uncond*
49.56s -2

The optimized transformation always outperformed the original CTRS in our
experiments on rewrite engine interpretors. We cannot say what exactly made it
slower on some tests performed on ASF/SDF - it might be because the compiler
is aimed to be efficiently executed on sequential machines; we actually expect our
transformation to perform significantly better on parallel rewrite engines. Note
that on the odd/even example, ASF/SDF already performs condition elimination
as a stage of its compilation process.

2 The machine ran out of memory while attempting to reduce the term.
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A simple and very practical optimization is as follows: if two or more σ-condi-
tional rules have the same lhs and their conditions also have the same lhs, then
we can add only one auxiliary argument to σ in σ for all of these and only one
rule in the TRS for starting the condition. With this, e.g., the optimized TRS
generated for the odd/even CTRS is:

o(0, z1) → {false}
e(0, z1) → {true}
{{x}} → {x}
s({x}) → {s(x)}

o(s(x), {false}) → {false}
o(s(x), {true}) → {true}
e(s(x), {false}) → {false}
e(s(x), {true}) → {true}

o(s(x),⊥) → o(s(x), {e(x,⊥)})
e(s(x),⊥) → e(s(x), {o(x, ⊥)})
o({x}, z1) → {o(x, z1)}
e({x}, z1) → {e(x, z1)}

Another optimization easy to perform statically is to restrict the number of
additional conditional arguments added to each operation σ to the maximum
number of overlapping rules whose lhs is rooted in σ. The intuition here is
that if two conditional rules are orthogonal, their conditions can’t be started
at the same time for the same term. For orthogonal systems (as our language
definition), for example, this means adding at most one argument per operation.

5 Theoretical Aspects

We use the terminology in [18] and, as mentioned, here only consider normal
CTRSs. Before we formalize the relationship between CTRSs and their uncon-
ditional variants, we define and discuss several classes of Σ-terms that will be
used in the sequel. First, let ·̂ : TΣ(X) → TΣ(X) be a partial map, forgetting
all the auxiliary arguments of operations, defined as: x̂ = x for any variable x,
{̂t′} = t̂′ and ̂σ(t′1, .., t′n, z1, .., zkσ) = σ(t̂′1, ..t̂′n). In particular, t̂ = t. The map ·̂
is partial (not defined for Σ-terms such as, e.g., ⊥). A Σ-term t′ is structural iff
t̂′ is defined, that is, if it is ”resembling” a Σ-term. Note that the lhs and rhs of
any (unconditional) rule in R are structural.

A position α is a string of numbers representing a path in a term seen as a tree.
Let us define two mutually recursive important types of positions in structural
Σ terms. A position α is structural for t′ iff α has no conditional position as a
prefix. A position α is conditional for t′ iff α = α′cσ,i such that α′ is structural
for t′ and t′α′ = σ(−→u ) (recall cσ,i is associated to ρσ,i’s conditions).

A rewriting step s′ →R t′ is structural iff it occurs at a structural position in
s′ and either uses a rule of form ρ′σ,i or one corresponding to an unconditional
rule in R. A ground Σ-term t′ is reachable iff there is some ground Σ-term t
such that {t} →∗

R {t′}. The set of all conditions started for a reachable term
s′, written cond(s′), is defined as

⋃
C({s′|α} ∪ cond(s′|α)) where C is the set of

conditional positions α in s′ such that s′|α �=⊥.

Proposition 1. (1) Any subterm of a structural term on a structural position is
also structural; (2) If t′ is a structural term with variables on structural positions
and θ is a substitution giving structural terms for variables of t′ then θ(t′) is also
structural; (3) Structural terms are closed under R; (4) Any reachable term is
also structural; (5) Reachable terms are closed under R.
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Completeness means that rewriting that can be executed in the original CTRS
can also be simulated on the corresponding TRS. We show that for any Σ-term
s, “everything that can be done on s in R can also be done on {s} in R”.

Theorem 1. If s →k
R t then {s} →R {t} with k structural steps.

Although it may not seem so, {s} →∗
R {t} does not generally imply that s →∗

R t:

Example 4. Consider the transformation for Rs from Example 1:
A → {h(f(a, ⊥), f(b, ⊥))} f({x}, y) → {f(x, ⊥)}
h(x, x) → {g(x, x, f(k, ⊥))} h({x}, y) → {h(x, y)}
g(d, x, x) → {B} h(x, {y}) → {h(x, y)}
f(x, ⊥) → f(x, {x}) g({x}, y, z) → {g(x, y, z)}
f(x, {e}) → {x} g(x,{y}, z) → {g(x, y, z)}
{{x}} → {x} g(x, y, {z}) → {g(x, y, z)}

a → {c}
a → {d}
b → {c}
b → {d}
c → {e}
c → {l}

k → {l}
k → {m}
d → {m}

Then the following rewrite sequence can be obtained in Rs:
{A} →∗

R {h(f(a, ⊥), f(b, ⊥)} →∗
R {h(f({d}, {c}), f(b, ⊥))}

→∗
R {h(f({d}, {c}), f({d}, {c}))} →∗

R {g(f({d}, {c}), f({d}, {c}), f(k, ⊥))}
→∗

R {g(f({d}, {e}), f({d}, {c}), f(k, ⊥))} →∗
R {g(d, f({d}, {c}), f(k, ⊥))}

→∗
R {g(d, f({m}, {l}), f(k, ⊥))} →∗

R {g(d, f({m}, {l}), f({m}, {l}))} →∗
R {B},

but it is not the case that A →∗
Rs

B. ��

Even though Theorem 1 is too weak to give us a procedure in R to test reacha-
bility in R, it still gives us a technique to test whether a term t is not reachable
from a term s in R: if it is not true that {s} →∗

R {t} then it is also not true
that s →∗

R t. Of course, in order for this to be mechanizable, the set of terms
reachable from {s} must be finite. This does not give us much, but it is the most
we can get without additional restrictions on R.

Soundness means that rewrites {s} →∗
R t′ in R correspond to rewrites s →∗

R t̂′

in R. Unfortunately, as shown by Example 4, soundness does not hold without
restricting R. We show that ground confluence or left linearity suffices.

Theorem 2. If R is ground confluent and s′ is reachable such that s′ →∗
R t′ in

k structural steps, then ŝ′ →k t̂′. In particular, our transformation is sound.

The claim above may not hold if the original CTRS is not ground confluent:

Example 5. Consider the following CTRS and its corresponding TRS:

(R)
a → true
a → false
f(x) → true if x → true

(R)
a → {true} a → {false}
f(x, ⊥) → f(x, {x}) f(x, {true}) → {true}
f({x}, y) → {f(x, ⊥)} {{x}} → {x}

The following sequence is valid in R, but it is not the case that f(false) →R true:

{f(a, ⊥)} →R {f(a, {a})} →R {f({false}, {a})} →R {f({false}, {true})} →+
R {true}

In Theorem 2, let s′ = {f({false}, {true})} (reachable) and t′ = {true}. ��
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However, the next result shows that our transformation is also sound when the
original CTRS is left linear instead of ground confluent:

Theorem 3. If R is left linear and {s} →∗
R t′ then s →∗

R t̂′. Moreover, if
{s} →∗

R t′ has k structural steps, then s →k′
R t̂′ with k′ ≥ k.

Thus, our transformation is sound for Example 5. However, Example 4 shows
that soundness may not hold if R is neither ground confluent nor left linear.

Corollary 1. If R is ground confluent or left linear, then our transformation
is sound and complete, i.e., s →∗

R t iff {s} →∗
R {t} for any s, t ∈ TΣ.

This gives us a semi-decision procedure for reachability problems s →∗
R t in a

ground confluent or left linear CTRS: (1) transform R to the TRS R; (2) do a
breadth-first search in R starting with {s}; (3) if {t} is reached then return true.
The breadth-first search may loop forever if there is no solution for the original
problem. However, it will return true iff the original problem has a solution. This
reachability result is operationally important, since searching is very difficult in
CTRSs and it can sometimes lead to defectuous implementations.

Example 6. Consider the following three-rule CTRS: a → c if a → b and a → b
and c → b. A rewrite engine sensitive to the order in which rules are given may
crash when asked to verify a →∗

R c; indeed, Maude does so if the rules are given
in the order above. The reason is that although Maude does breadth-first search
in general, it chooses not to do it within conditions.
This CTRS is transformed to: a(⊥) → a({a(⊥)}), c → {b}, a({b}) → {c},
a(x) → {b}, {{x}} → {x}. Although this TRS does not terminate either, we can
use any rewrite engine which supports breadth-first searching, including Maude,
to verify any reachability problem which has solutions in the original system. ��
If R is left linear, due to soundness and completeness, ground confluence of R
on reachable terms yields ground confluence of R.

Proposition 2. If R is left linear and ground confluent on reachable terms,
then R is ground confluent.

Even though a transformation is sound and complete, one may not necessarily
simulate R through R (see Example 3). We show that if R is ground confluent
and left linear then ·̂ defines a simulation relation between R and R:

Proposition 3. (Simulation) If R is ground confluent and left linear then R
weakly simulates R on reachable terms: for any reachable s′ with ŝ′ →k

R t, there
is a Σ-term t′ with t̂′ = t and s′ →∗

R t′ using exactly k structural steps.

It is worthwhile noticing that the confluence of R does not imply the confluence
of R, as the following (counter-)example shows.

Example 7. Consider the confluent one-rule CTRS R f(x) → x if g(x) → false
and its corresponding TRS R: f(x,⊥) → f(x, {g(x)}), f({x}, y) → {f(x,⊥
)}, f(x, {false}) → {x}, {{x}} → {x}. Then f({false}, {false}) rewrites in one
step to {false}, in normal form, and f({false}, {false}) →R {f(false,⊥)} →R
{f(false, {g(false)})}, also in normal form. Hence R is not confluent. ��
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In fact, for computational equivalence purposes, R does not need to be confluent.
What is needed is its confluence on reachable terms. The next result shows that
(ground) confluence is preserved in the presence of left linearity.

Theorem 4. If R is left linear and ground confluent then R is ground confluent
on reachable terms, or, even stronger, for any reachable terms s′1, s

′
2, if ŝ′1 and

ŝ′2 are joinable in t then s′1 and s′2 are joinable in t′ such that t̂′ = t.

The termination of R on reachable terms implies operational termination of R:

Proposition 4. If R terminates on {s}, then R operationally terminates on s.

The other implication does not hold without additional requirements on R. We
will show that confluence or left linearity of R suffices.

Example 8. Consider the system Rt in Example 1. Since Rt = Rs ∪ {B → A},
its transformed version will be the same as the one in Example 4, except adding
one more rule, B → {A}. Remember that with the system R in Example 4
we have obtained that {A} →∗

R {B}. With the new rule we therefore get that
{A} →+

R {A}, thus the transformed version is not terminating. However, the
original system is decreasing, so it is operationally terminating. ��
Confluence or left linearity of R preserves termination:

Theorem 5. (Termination) If R operationally terminates on s and is either
ground confluent or left linear, then R terminates on {s}.
Finally, we prove that ground confluence yields computational equivalence:

Theorem 6. (Computational equivalence) If R is finite, ground confluent
and operationally terminates on s, then R is ground confluent and terminates
on terms reachable from s. That is, R is computationally equivalent to R.

Then one can simulate reduction in a confluent CTRS R by using the trans-
formed TRS R. Reducing a Σ-term t to its normal form in R can be done as
follows: start reducing {t} in R; if it does not terminate, there exists a way t
might have not terminated in R; if it terminates and fn({t}) is its normal form,

then ̂fn({t}) is the normal form of t in R .
If one wants computational equivalence by means of reduction, one has to

require confluence as a desired property of both the original and the transformed
system, because no search is involved in the process of reaching a normal form.
Instead, if one allows the underlying engine to search for normal forms, such as in
logic programming paradigms, then one can replace confluence by left linearity
(Theorems 3 and 5); this was also the approach taken in [2]. Note, however, that
search is potentially exponential in the size of the reduction.

6 Discussion and Future Work

We presented a technique to eliminate conditional rules by replacing them with
unconditional rules. The generated TRS is computationally equivalent with the
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original CTRS provided that the CTRS is ground confluent. Besides the theo-
retical results, we have also empirically shown that the proposed transformation
may lead to the development of faster conditional rewrite engines. In the case of
constructor-based CTRSs, the operation { } is not needed, so our transforma-
tion becomes the same as the one in [2]; thus, our theoretical results imply that
the transformation in [2] preserves ground confluence, a result not proved in [2]
but approached in [5].

We believe that the results presented here can be easily generalized to con-
ditional rewriting systems with extra variables in conditions (deterministic(D)
CTRSs). In this framework, operational termination is equivalent to quasi-de-
creasingness and left linearity translates to semilinearity [15] of DCTRSs. The
nontrivial proofs of the results in Section 5 (see [20]), were engineered to also
work for this case. We refer the interested reader to [20] for details.

Techniques to compact the generated TRS are worthwhile investigating. Also,
propagation rules for { } can destroy useful partial reductions; can one adapt our
transformation to restart only the conditions that are invalidated when a rewrite
step occurred? We believe that confluence is preserved even in the absence of
left linearity or termination but we have not been able to prove it. None of the
transformations mentioned in this paper can handle arbitrary rewriting modulo
axioms in the source CTRS. This seems to be a highly non-trivial problem in its
entire generality; however some restricted uses of operators modulo axioms can
be handled at no additional complexity (see [20]).
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Abstract. Bubbling, a recently introduced graph transformation for
functional logic computations, is well-suited for the reduction of redexes
with distinct replacements. Unlike backtracking, bubbling preserves op-
erational completeness; unlike copying, it avoids the up-front construc-
tion of large contexts of redexes, an expensive and frequently wasteful
operation. We recall the notion of bubbling and offer the first proof of
its completeness and soundness with respect to rewriting.

1 Introduction

Non-determinism is one of the most appealing features of functional logic pro-
graming. A program is non-deterministic when its execution may evaluate some
expression that has multiple results. To better understand this concept, consider
a program to color a map of the Pacific Northwest so that no pair of adjacent
states shares a color. The following declarations, in Curry [15], define the well-
known topology of the problem:

data State = WA | OR | ID | BC
states = [WA,OR,ID,BC]
adjacent = [(WA,OR),(WA,ID),(WA,BC),(OR,ID),(ID,BC)]

(1)

The colors to be used for coloring the states and a non-deterministic operation,
paint, to pair its argument to a color are defined below. The library operation
“?” non-deterministically selects either of its arguments.

data Color = Red | Green | Blue
paint x = (x, Red ? Green ? Blue)

(2)

The rest of the program follows:

solve | all diffColor adjacent = theMap
where theMap = map paint states

diffColor (x,y) = colorOf x /= colorOf y
lookup ((s,c):t) x = if s==x then c

else lookup t x
colorOf = lookup theMap

(3)

The evaluation of solve solves the problem. In particular, theMap associates
a color to each state and so represents the map, diffColor tells whether the
� Partially supported by the NSF grant CCR-0218224.
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colors associated to two states are different, lookup looks up the color associated
to a state in the map, all and map are well-known library functions for list
manipulation, and the condition of solve ensures that no adjacent states have
been assigned the same color.

Non-determinism reduces the effort of designing and implementing data struc-
tures and algorithms to encode this problem into a program. The simplicity of
the non-deterministic solution inspires confidence in the program’s correctness.
The implementation of non-deterministic functional logic programs has not been
studied as extensively as that of deterministic programs.

This paper addresses both theoretical and practical aspects of the implemen-
tation of non-determinism. Section 2 highlights some deficiencies of typical im-
plementations of non-determinism and sketches our proposed solution. Section 3
discusses the background of our work. Section 4 defines a relation on graphs that
is at the core of our approach. Section 5 proves the correctness of our approach.
Section 6 briefly addresses related work. Section 7 offers our conclusion.

2 Motivation

We regard a functional logic program as a term rewriting system (TRS) [8,9,10,18]
or a graph rewriting system (GRS) [11,21] with the constructor discipline [20].
Source-level constructs such as data declarations, currying, higher-order and
anonymous functions, partial application, nested scopes, etc. can be transformed
by a compilation process into ordinary rewrite rules [15]. The execution of a pro-
gram is the repeated application of narrowing steps to a term until either a con-
structor term is reached, in which case the computation succeeds, or an unnarrow-
able term with some occurrence of a defined operation is reached, in which case
the computation fails. Examples of the latter are an attempt to divide by zero or
to return the first element of an empty list.

The instantiation of free variables in narrowing steps does not play any specific
role in our discussion as well as in the program we presented in the introduction.
In this paper, we are mostly concerned with rewriting. For many problems in
this area, extending results from rewriting to narrowing requires only a moderate
effort. We will sketch the extension of our work to narrowing in the final section.

Our focus is on the interaction of non-determinism and sharing. In a deter-
ministic system, evaluating a shared subexpression twice is merely inefficient;
in a non-deterministic system, it can lead to unsoundness. For instance, in the
map coloring example, the value of theMap is any possible association of a color
to a state. In the program, there are two occurrences of theMap, besides its de-
finition. One occurrence is returned as the output of the program; the other is
constrained to be a correct solution of the problem. Obviously, if the values of
these occurrences were not the same, the output of the program would likely be
wrong.

A TRS with non-deterministic operations is typically non-confluent. Opera-
tionally, there are two main approaches to computations in a non-confluent TRS:
backtracking and copying. While the former is standard terminology, we do not
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know any commonly accepted name for the latter. Copying is more powerful
since steps originating from distinct non-deterministic choices can be interleaved,
which is essential to ensure the completeness of the results. We informally de-
scribe a computation with each approach. Let t[u] be a term in which t[ ] is a
context and u is a subterm that non-deterministically evaluates to x or y.

With backtracking, the computation of t[u] first requires the evaluation of t[x].
If this evaluation fails to produce a constructor term, the computation continues
with the evaluation of t[y]. Otherwise, if and when the evaluation of t[x] succeeds,
the interpreter may give the user the option of evaluating t[y].

With copying, the computation of t[u] consists of the simultaneous (e.g., by
interleaving steps), independent evaluations of t[x] and t[y]. If either evaluation
produces a constructor term, this term is a result of the computation, and the
interpreter may give the user the option of continuing the evaluation of the
other term. If the evaluation of one term fails to produce a constructor term,
the evaluation of the other term continues unaffected.

Both backtracking and copying have been used in the implementation of FL
languages. For example, Pakcs [14] and TOY [19] are based on backtracking,
whereas the FLVM [7] and the interpreter of Tolmach et al. [22] are based on
copying. Unfortunately, both backtracking and copying as described above have
non-negligible drawbacks. Consider the following program, where div denotes
the usual integer division operator and n is some positive integer.

loop = loop
f x = 1+(2+(...+(n ‘div‘ x)...))

(4)

We describe the evaluation of t = f (loop? 1) with backtracking. If the first
choice for the non-deterministic expression is loop, no value of t is ever computed
even though t has a value, since the evaluation of f loop does not terminate. This
is a well-known problem of backtracking referred to as the loss of completeness.

We describe the evaluation of t = f (0 ? 1) with copying. Both f 0 and f 1 are
evaluated. Of course, the evaluation of the first one fails. The problem in this
case is the construction of the term 1+(2+(...+(n ‘div‘ 0)...)). The effort
to construct this term, which becomes arbitrarily large as n grows, is wasted,
since the first step of the computation, which is needed, is a division by zero,
and consequently the computation fails.

Thus, copying may needlessly construct terms and backtracking may fail to
produce results. A recently proposed approach [5], called bubbling, avoids these
drawbacks. The idea is to slowly “move” a choice up its context and evaluate
both its arguments. Bubbling is a compromise between evaluating only one non-
deterministic choice, as in backtracking, and duplicating the entire context of
each non-deterministic choice, as in copying. Bubbling is free from the drawbacks
of backtracking and copying discussed earlier.

The evaluation of f (loop? 1) by bubbling produces (f loop)? (f 1). Con-
trary to backtracking, no unrecoverable choice is made in this step. Both argu-
ments of “?” can be evaluated concurrently, e.g., as in [5]. The evaluation of the
first argument does not terminate; however, this does not prevent obtaining the
value of the second argument.



38 S. Antoy, D.W. Brown, and S.-H. Chiang

Likewise, the evaluation of f (0 ? 1) goes (roughly) through the following in-
termediate terms, where fail is a distinguished symbol denoting any expression
that cannot be evaluated to a constructor term:

f (0 ? 1)
→ 1+(2+(...+(n ‘div‘ (0 ? 1))...))
→ 1+(2+(...+((n ‘div‘ 0) ? (n ‘div‘ 1))...))
→ 1+(2+(...+(fail ? (n ‘div‘ 1))...))
→ 1+(2+(...+(n ‘div‘ 1)...))

(5)

The fail alternative is dropped. Since fail occurs at a position where a cons-
tructor-rooted term is needed, it cannot lead to a successful computation.

In (5), the obvious advantages of bubbling are that no choice is left behind
and no unnecessarily large context is copied. In the second step, we have dis-
tributed the parent of an occurrence of the choice operation over its arguments.
Unfortunately, a “distributive property” of the kind f(x ? y) = f(x) ? f(y) is
unsound in the presence of sharing.

Consider the following operation:

f x = (not x, not x) (6)

and the term t = f (True? False). The evaluation semantics of non-right linear
rewrite rules, such as (6), is called call-time choice [17]. Informally, the non-
deterministic choice for the argument of f is made at the time of f’s application.
Therefore, the instances of x in the right-hand side of (6) should all evaluate to
True or all to False. With an eager strategy, the call-time choice is automatic,
and the only available option. With a lazy strategy, the call-time choice is rel-
atively easy to implement by “sharing” the occurrences of x. That is, there is
only one occurrence of the term bound to x. All the occurrences of x refer to
this term. The term being evaluated is the graph depicted in the left-hand side
of the following figure:

(,)

not not

?

True False

(,)

? ?

notnotnotnot

True False

Fig. 1. The left-hand side depicts a term graph. The right-hand side is obtained from
the left-hand side by bubbling up to the parents the non-deterministic choice. The two
term graphs have a different set of constructor normal forms.

The right-hand side of the above figure shows the result of bubbling up the
non-deterministic choice in a way similar to (5). This term has 4 normal forms.
One is (True,False), which is not obtainable with either backtracking or copy-



On the Correctness of Bubbling 39

ing and is not intended by the call-time choice semantics. Therefore, although
advantageous in some situations, unrestricted bubbling can be unsound.

In the following sections we formalize a sound approach to non-deterministic
computations with shared terms based on the idea of bubbling introduced in this
section. This formalization is the foundation of a recently discovered strategy [5]
that computes both rewriting and bubbling steps.

3 Background

TRSs have been used extensively to model FL programs. This modeling has
been very successful for some problems, e.g., the discovery of efficient narrowing
strategies and the study of their properties; see [4] for a survey. However, a
TRS only approximates a FL program, because it does not adequately capture
the sharing of subexpressions in an expression. As we discussed in the previous
section, and our introductory example shows, sharing is an essential semantic
component of the execution of a program.

GRSs [11,21] model FL programs more accurately than do TRSs. Unfortu-
nately, they are also more complex than TRSs, and some variations exist in
their formalization. In this paper, we follow the systemization of Echahed and
Janodet [11] because the class of GRSs that they consider is a good fit for our
programs. The space alloted to this paper prevents us from recalling relevant
definitions and results of [11]. Luckily, this paper is easily accessible on-line at
http://citeseer.ist.psu.edu/echahed97constructorbased.html.

In this paper, we assume that programs are overlapping inductively sequen-
tial [4,2] term graph rewriting systems, abbreviated GRSs, and computations
are rewriting sequences of admissible term graphs. We recall that a graph is
admissible [11, Def. 18] if none of its defined operations belongs to a cycle.

Our choice of programs is motivated by the expressiveness of this class (e.g., as
shown by the introductory example), by the existence of a strategy that performs
only steps that are needed modulo a non-deterministic choice [2], and by the fact
that computations for the entire constructor based programs can be implemented
by this class via a transformation [3]. Non-deterministic computations in this
class are supported by the single operation defined below.

Definition 1 [Choice operation]. The choice operation, denoted by the infix
operator “?”, is defined by the following rules:

x ? y = x
x ? y = y ��

We assume that this is the only overlapping operation of a GRS. Any other
overlapping can be eliminated, without changing the meaning of a program,
using the choice operation, as discussed in [2] and shown in our introductory
example.

Definition 2 [Limited overlapping]. A limited overlapping inductively sequen-
tial GRS, abbreviated LOIS, is a constructor based GRS, S, such that the
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signature of S contains the choice operation “?” presented in Def. 1 and every
other defined operation of S is inductively sequential. ��
We need an additional definition, which is crucial to our approach.

Definition 3 [Dominance]. A node d dominates a node n in a rooted graph t
if every path from the root of t to n contains d. If d and n are distinct, then d
properly dominates n in t. ��
For example, in the left-hand side graph of Fig. 1, the occurrence of “?” is
properly dominated by the root only. Every other occurrence, except the root,
is properly dominated by its predecessor.

Echahed and Janodet [11] formalize rewriting, including an efficient strategy,
for the inductively sequential term graph rewriting systems. This class is similar
to ours, except for the presence of the choice operation. Following their lead,
we always use “fresh” rules in rewrite steps. This is justified by the following
example:

t = (ind, ind)
ind = coin
coin = 0 ? 1

(7)

The intended semantics is that each occurrence of ind in t is evaluated inde-
pendently of the other (ind is not a variable) and therefore t has four values,
every pair in which each component is either 0 or 1. To compute all the intended
values of t, it is imperative that a rewrite step uses a variant [11, Def. 19] of
a rewrite rule, namely a clone of the rule with fresh nodes (and variables). A
consequence of using variants of rules is that the equality of graphs resulting
from rewrite steps can be assessed only modulo a renaming of their nodes [11,
Def. 15].

4 Bubbling

Computations that perform non-deterministic steps must preserve in some form
the context of a redex when the redex has distinct replacements. Typically, some
portions of the context are reconstructed, as in backtracking, or are duplicated,
as in copying. An overall goal of bubbling is to limit these activities. In the
following, we precisely define which portions of a context of a redex are cloned
in our approach.

Definition 4 [Partial renaming]. Let g = 〈Ng ,Lg,Sg,Rootsg〉 be a term graph
over 〈Σ,N ,X〉, Np a subset of Ng and Nq a set of nodes disjoint from Ng. A
partial renaming of g with respect to Np and Nq is a bijection Θ : N → N such
that:

Θ(n) =
{

n′ where n′ ∈ Nq, if n ∈ Np;
n otherwise.

(8)

Similar to substitutions, we call Np and Nq, the domain and image of Θ, respec-
tively. We overload Θ to graphs as follows: Θ(g) = g′ is a graph over 〈Σ,N ,X〉
such that:
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– Ng′ = Θ(Ng),
– Lg′(m) = Lg(n), iff m = Θ(n),
– m1m2 . . . mk = Sg′(m0) iff n1n2 . . . nk = Sg(n0), where for i = 0, 1, . . . k,

k � 0, mi = Θ(ni),
– Rootsg′ = Rootsg. ��

In simpler words, g′ is equal to g in all aspects except that some nodes in Ng,
more precisely all and only those in Np, are consistently renamed, with a “fresh”
name, in g′. Obviously, the cardinalities of the domain and image of a partial
renaming are the same.

Lemma 1. If g is a graph and g′ is a partial renaming of g with respect to some
Np and Nq, then g and g′ are compatible.

Proof. Immediate from the notion of compatibility [11, Def. 6] and the construc-
tion of g′ in Definition 4. ��
The evaluation of an admissible term graph t0 in a GRS S is a sequence of graphs
t0∼→t1∼→t2 · · · where for every natural number i, ti+1 is obtained from ti either
with a rewrite step of S or with a bubbling step, which is defined below.

Definition 5 [Bubbling]. Let g be a graph and c a node of g such that the
subgraph of g at c is of the form x ? y, i.e., g|c = x ? y. Let d be a proper
dominator of c in g and Np the set of nodes that are on some path from d to c in g,
including d and c, i.e., Np = {n | n1n2 . . . nk ∈ Pg(d, c) and n = ni for some i},
where Pg(d, c) is the set of all paths from d to c in g. Let Θx and Θy be partial
renamings of g with domain Np and disjoint images. Let gq = Θq(g|d[c ← q]),
for q ∈ {x, y}. The bubbling relation on graphs is denoted by “�” and defined by
g � g[d ← gx? gy], where the root node of the replacement of g at d is obviously
fresh. We call c and d the origin and destination, respectively, of the bubbling
step, and we denote the step with “�cd” when this information is relevant. ��
In simpler words, bubbling moves a choice in a graph up to a dominator node. In
executing this move, some portions of the graph, more precisely those between
the end points of the move, must be cloned. An example of bubbling is shown in
Figure 2. In this example, the dominator is the root of the graph, but in general
the destination node can be any proper dominator of the origin. In practice, it is
convenient to bubble a choice only to produce a redex. The strategy introduced
in [5] ensures this desirable property.

The bubbling relation entails 3 graph replacements. By Lemma 1, the graphs
involved in these replacements are all compatible with each other. Therefore, the
bubbling relation is well defined according to [11, Def. 9]. In particular, except
for the nodes being renamed, gx and gy can share nodes between themselves
and/or with g. Any sharing among these (sub)graphs is preserved by bubbling.

Two adjacent bubbling steps can be composed into a “bigger” step.

Theorem 1 (Transitivity of bubbling). Let S be a GRS. For all term graphs
t, u and v over the signature of S and for all c and d nodes of t and d and e
nodes of u, modulo a renaming of nodes, if t �cd u and u �de v then e is a node
of t and t �ce v.
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not not

?

True False

?

(,) (,)

notnotnotnot

True False

Fig. 2. The left-hand side depicts a term graph. The right-hand side is obtained from
the left-hand side by bubbling the non-deterministic choice up to a proper dominator.
The two term graphs have the same set of constructor normal forms.

Proof. If c is a node labeled by a choice operation, cl and cr denotes the left and
right successors of c. Let w be defined by t �ce w and consider the expressions
defining u, v and w:

u = t[d ← (Θdcl
(t|d[c ← t|cl

]) ?Θdcr(t|d[c ← t|cr ]))]
v = u[e ← (Θedl

(u|e[d ← u|dl
]) ?Θedr (u|e[d ← u|dr ]))]

w = t[e ← (Θecl
(t|e[c ← t|cl

]) ?Θecr (t|e[c ← t|cr ]))]
(9)

where Θxy is a renaming whose domain is the set of the nodes in any path
between x and y. Also, we assume that the images of all renamings are disjoint.

We prove that v = w modulo a renaming of nodes. The portion of u at
and above e is the same as in t. Using this condition twice, we only have to
prove Θedl

(t|e[d ← u|dl
]) = Θecl

(t|e[c ← t|cl
]) and the analogous equation

for the right-hand side argument. By construction, u|dl
= Θdcl

(t|d[c ← t|cl
]).

Thus, Θedl
(t|e[d ← u|dl

]) = Θedl
(t|e[d ← Θdcl

(t|d[c ← t|cl
])]). Since no node

is duplicated by renamings, we have that Θedl
(t|e[d ← Θdcl

(t|d[c ← t|cl
])]) =

Θedl
◦ Θdcl

(t|e[d ← t|d[c ← t|cl
]]). Since t|d is modified only at c and c is below

d, t|e[d ← t|d[c ← t|cl
]] = t|e[c ← t|cl

]. Thus, by equational reasoning, v = w
except for the renamings of nodes, and the claim holds. ��

Bubbling creates a natural mapping between two graphs. If t � u, then every
node of u “comes” from a node of t. This mapping, which is instrumental in
proving some of our claim, is formalized below.

Definition 6 [Natural mapping]. Let S be a GRS, t a graph over the signature
of S and t �cd u, for some graph u and nodes c and d of t. We call natural the
mapping μ : Nu → Nt defined as follows. By construction, u = t[d ← t′], for
some term graph t′. Let d′ be the root node of t′. The construction of u involves
two renamings in the sense of Def. 4; let us call them Θx and Θy. We define μ
on n, a node of u, as follows:

μ(n) =

⎧⎪⎪⎨⎪⎪⎩
c if n = d′;
Θ−1

x (n) if n is in the image of Θx;
Θ−1

y (n) if n is in the image of Θy;
n otherwise.

(10)
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Observe that the images of Θx and Θy are disjoint, hence the second and third
cases of (10) are mutually exclusive. ��

The next lemma shows that a rule of “?” applied before a bubbling step at the
origin or after a bubbling step at the destination produces the same outcome.

Lemma 2 (Same rule). Let S be a LOIS and t an admissible term graph over
the signature of S. If t �cd u, t →c,R v and u →d,R w, then v = w modulo a
renaming of nodes.

Proof. R is a rule of “?”. Without loss of generality, we assume that it is the
rule that selects the left argument. By assumption the subgraph of t at c is of
the form x ? y. Hence t = t[c ← x ? y] and t →c,R v = t[c ← x]. By definition of
bubbling, u = t[d ← (Θx(t|d[c ← x]) ?Θy(t|d[c ← y]))], for some renamings Θx

and Θy. Therefore u →d,R w = t[d ← Θx(t|d[c ← x])] = Θx(t[d ← t|d[c ← x]]) =
Θx(t[c ← x]). ��

5 Correctness

In this section we state and prove the correctness of our approach. The notion of
a redex pattern defines the set of nodes below a node n labeled by an operation
f that determines that a rule of f can be applied at n. Recall that a matcher is
a function that maps the nodes of one graph to those of another, preserving the
labeling and successor functions.

Definition 7 [Redex pattern]. Let t be a graph, l → r a rewrite rule, and n a
node of t such that l matches t at n with matcher h. We call redex pattern of
l → r in t at n the set of nodes of t that are images according to h of a node of
l with a constructor label. ��

We are convening that a node n is not in any redex pattern at n. This is just a
convenient convention.

The following example shows that some pairs of bubbling and rewriting steps
do not commute. This is a significant condition that prevents proof techniques
based on parallel moves [16]. Although our GRSs are not orthogonal, some form
of parallel moves is available for LOIS [2]. Consider the term t = snd (1,2? 3),
where snd is the function that returns the second component of a pair and,
obviously, there is no sharing. Bubbling the choice to its parent (see Figure 3)
produces u = snd ((1,2)? (1,3)). The term u cannot be obtained from t by
rewriting. Furthermore, the redex at the root of t has been destroyed by the
bubbling step. The following result offers a sufficient condition, namely an ap-
propriate choice of the destination of a bubbling step, for recovering the commu-
tativity of bubbling and rewriting. As customary, for any relation R, R= denotes
the reflexive closure of R.

Lemma 3 (Parallel Bubbling Moves). Let S be a LOIS and t an admissible
term graph over the signature of S. If t �cd t′, for some graph t′ and nodes c
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snd (1,2 ? 3) �cd





snd ((1,2) ? (1,3))

2 ? 3 �

Fig. 3. Bubbling and rewriting do not
always commute. No parallel moves are
available for this diagram. Note that the
term on the right cannot be reached from
the original term by rewriting.

and d of t, and t →p,R u, for some node p of t and rule R of S, and d is not
in the redex pattern of R at p in t, then there exists u′ such that t′

+→ u′ and
u �=

cd u′ modulo a renaming of nodes.

Proof. Let P = μ−1(p) be the set of nodes of t′ that map to p in t. Observe that
P contains either 1 or 2 nodes. We show that R can be applied to any node in
P and we define u′ as the result of applying R to all the nodes of P . If p = c,
then by definition P = {d}. In this case, R is a rule of “?” and consequently
u = u′ (modulo a renaming of nodes) and the claim immediately holds. If p �= c
and P = {p}, then the reduction in t is independent of the bubbling step. The
redex pattern of R at p in t is either entirely below c, since the label of c is an
operation, or entirely above d, since by hypothesis d is not in the redex pattern
of R at p in t. The redex pattern of R at p is the same in t and t′ and the redex
is equally replaced in t and t′. Hence u �cd u′. If p �= c and P = {p1, p2}, with
p1 �= p2, then the reduction in t is in the portion of t cloned by the bubbling
step. The redex pattern of R at p in t is entirely contained in this portion. The
redex pattern is entirely below d by hypothesis, and cannot include c since the
the label of c is an operation. Thus the redex pattern is entirely cloned in two
disjoint occurrences in t′. By reducing both occurrences, in whatever order, t′

reduces to u′ in two steps and u �cd u′. ��

t �cd

p,R 



t′

+


u �=

cd u′

Fig. 4. Graphical representation of Lemma 3. If the des-
tination of the bubbling step of t is not in the redex pat-
tern of the rewrite step of t, then, for a suitable graph
u′, the diagram commutes.

Definition 8 [Combined step]. We denote with “∼→”, called a combined step, the
union of the bubbling and rewriting relations in a LOIS, i.e., ∼→ =� ∪ →. ��

We now address the completeness of the combined step relation. Since this rela-
tion is an extension of the rewrite relation, a traditional proof of completeness
would be trivial. Instead, we prove a more interesting claim, namely, no re-
sult of a computation is lost by the execution of bubbling steps. Therefore, an
implementation of rewriting is allowed to execute bubbling steps, if it is con-
venient. The completeness of bubbling is not in conflict with the example of
Figure 3. Although a bubbling step may destroy a redex, the redex is not ir-
revocably lost—there always exists a second bubbling step to recover the redex
lost by the first step. In the case of Figure 3, a second bubbling step results in
snd (1,2) ? snd (1,3).
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Theorem 2 (Completeness of bubbling). Let S be a LOIS, t an admissible
term graph and u a constructor graph such that t

∗→ u. If t �cd v for some graph
v and nodes c and d of t, then v

∗∼→ u modulo a renaming of nodes.

Proof. The proof is by induction on the length of t
∗→ u. Base case: If t = u, then

v does not exist, and the claim vacuously holds. Ind. case: There exist some node
p, rule R and graph t1 such that t →p,R t1

∗→ u. We consider two exhaustive
cases on d. If d is not in the redex pattern of R at p in t, then, by Lemma 3,
there exists a graph v1 such that v

+→ v1 and t1 �= v1 modulo a renaming of
nodes. By the induction hypothesis, v1

∗∼→ u modulo a renaming of nodes. If d
is in the redex pattern of R at p in t, then d is neither the root of t nor the
root of v. There exists a dominator e of d in v, witness the root of v, such that
v �de w; by Theorem 1 t �ce w, and e is not in the redex pattern of R at p in t.
By Lemma 3, there exists a graph w1 such that w

+→ w1 and t1 �= w1 modulo a
renaming of nodes. As in the previous case w

∗∼→ u modulo a renaming of nodes.
Since v � w implies v∼→w, v

∗∼→ u modulo a renaming of nodes. ��

We now turn our attention to the soundness of combined steps. This is somewhat
the complement of the completeness. We prove that bubbling non-deterministic
choices does not produce results that would not be obtainable without bubbling.
Of course, a bubbling step of a term graph t creates a term u that is not reachable
from t by rewriting, but any result (constructor normal form) obtainable from
u via combined steps can be reached from t via pure rewriting. We begin by
proving that a single bubbling step with destination the root node is sound.

Lemma 4 (Single copying soundness). Let S be a LOIS and t0 an admis-
sible term graph over the signature of S. If t0 �cd t1

∗→ tn, where c is a node
of t0, d is the root of t0 and tn is a constructor graph, then t0

+→ tn modulo a
renaming of nodes.

Proof. A diagram of the graphs and steps in the following proof are shown in
Fig 5. Since in t1 the label of the root node d is “?” and tn is a constructor
normal form, there must be an index j such that in the step tj → tj+1 a rule Rj

of “?” is applied at d. Without loss of generality, we assume that Rj is the rule
of “?” that selects the left argument and we denote with dl the left successor of
d in ti for i = 1, 2, . . . , j. In different graphs, dl may denote different nodes. We
prove the existence of a sequence t0 → u1

∗→ un, such that for all i = 1, 2, . . . , n,
ti →= ui modulo a renaming of nodes. By induction on i, for all i = 1, 2, . . . , j,
we define ui and we prove that ti|dl

= ui modulo a renaming of nodes. The latter
implies ti →d,Rj ui. Base case: i = 1. The rule Rj can be applied to t0 at c and
we define u1 as the result, i.e., t0 →c,Rj u1. By Lemma 2, t1|dl

= u1 modulo a
renaming of nodes. Ind. case: We assume the claim for i, where 0 < i < j, and
prove it for i + 1. Let ti →p,Ri ti+1. If p is a node of ti|dl

, then since ti|dl
= ui

modulo a renaming of nodes, there exists a node q in ui that renames p. We
define ui →q,Ri ui+1 and the claim holds for i+1. If p is not a node of ti|dl

, then
ti+1|dl

= ti|dl
. We define ui+1 = ui and the claim holds for i + 1 in this case

too. Now, since tj →d,Rj tj+1, we have tj+1 = tj |dl and therefore ui+1 = tj+1
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modulo a renaming of nodes. For every i such that j < i < n, if ti →p,R ti+1, we
define ui →q,R ui+1, where as before q renames p. Clearly, for every i, j < i � n,
ti = ui modulo a renaming of nodes. Thus, t0

+→ tn exists as claimed. ��

t0 �cd

c,Rj

��
��

���
�

t1
p1,R1

��

d,Rj



· · · �� tj
d,Rj

��

d,Rj



tj+1 �� · · · �� tn

u1
q1,R1

=�� · · · =�� uj uj+1 �� · · · �� un

Fig. 5. Diagram of the main graphs and steps involved in the proof of Lemma 4. d is
the root node of t0. Rj is the rule of “?” that selects the left argument. qi renames pi.

We believe that the previous proof could be generalized to any bubbling step.
However, a simpler and more elegant proof is available by taking advantage of
the transitivity and the completeness of bubbling. We show this proof below.

Lemma 5 (Single bubbling soundness). Let S be a LOIS and t0 an admis-
sible term graph over the signature of S. If t0 �cd t1

∗→ tn, where c and d are
nodes of t0 and tn is a constructor graph, then t0

+→ tn modulo a renaming of
nodes.

Proof. Suppose that d is not the root of t0; otherwise the claim is already proved
by Lemma 4. Let e be the root node of t0 and also of t1. Let u1 be defined by
t1 �de u1. By the transitivity of bubbling, Th. 1, t0 �ce u1. By the completeness
of bubbling, Th. 2, there exists a sequence u1

+→ tn modulo a renaming of nodes.
Therefore, t0 �ce u1

∗→ tn. Since e is the root node of t0, by Lemma 4, t0
+→ tn

modulo a renaming of nodes. ��

Theorem 3 (Soundness of bubbling). Let S be a LOIS and t an admissible
term graph over the signature of S. If t

∗∼→ u, for some constructor graph u, then
t

∗→ u modulo a renaming of nodes.

Proof. By induction on the number of bubbling steps in t
∗∼→ u. ��

6 Related Work

Bubbling is introduced in [5] with a rewriting strategy for the overlapping in-
ductively sequential GRSs. This strategy determines, in theory very efficiently,
when to execute ordinary rewrite steps and/or bubbling steps. A bubbling step
is computed only if it promotes a needed (modulo a non-deterministic choice)
rewrite step. Our work proves that the execution of the bubbling steps computed
by this strategy preserves all and only the constructor normal forms reachable
from a term by pure rewriting. The use of bubbling in the strategy eliminates
the incompleteness of backtracking and the inefficiency of copying.

Although strategies for functional logic computations [4] and term graph
rewriting [21] have been extensively investigated, the work on strategies for
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term graph rewriting systems as models of functional logic programs has been
relatively scarce. The line of work closest to ours is [11,12]. A substantial dif-
ference of our work with this line is the class of programs we consider, namely
non-deterministic ones. Non-determinism is a major element of functional logic
programming. Hence, our work fills a major conceptual and practical gap in this
area. The attempt to minimize the cost of non-deterministic steps by limiting
the copying of the context of a redex by bubbling is original.

Other efforts on handling non-determinism in functional and functional logic
computations with shared subexpressions include [17], which introduces the call-
time choice semantics to ensure that shared terms are evaluated to the same
result; [13], which defines a rewriting logic that among other properties provides
the call-time choice; and [1] and [22], which define operational semantics based on
heaps and stores specifically for the interaction of non-determinism and sharing.

These efforts, prompted by implementations, abstract the interactions be-
tween non-determinism and sharing. In practice, all these implementations adopt
strategies, summarized in [4], that have been designed and proved correct for
term rather than graph rewriting or narrowing. Although for a strategy this
difference is small, addressing sharing indirectly through computational data
structures such as heaps and stores rather than directly prevents graph opera-
tions, such as bubbling, which are potentially beneficial.

7 Conclusion and Future Work

Bubbling, with interleaving steps on the arguments of an occurrence of the choice
operation, ensures the soundness and completeness of computations without in-
curring the cost of copying the contexts of redexes with distinct replacements.
Programs in which don’t know non-determinism is appropriately used are likely
to produce some terms that fail to evaluate to constructor normal forms. Hence,
avoiding the construction of the contexts of these terms can improve the effi-
ciency of these programs.

For example, this situation can be seen in our program for coloring a map. In
finding the first solution of the problem, the operation paint is called 10 times.
Since only four calls are needed, six choices of some color for some state eventu-
ally fail. Saving the partial construction of six contexts of paint can potentially
improve the efficiency of execution. We are working on an implementation, within
the FLVM [7], to quantify the expected improvements. The results of this paper
ensure the theoretical correctness of a component of our implementation.

Bubbling steps can be executed any time a choice operation occurs at a non-
root node. The problem of determining when it is appropriate to execute a
bubbling step and the destination of this step is elegantly solved in [5]. A strat-
egy similar in intent to [11] and [2] determines when a bubbling step promotes a
needed (modulo a non-deterministic choice) rewrite step. Thus, bubbling steps
are executed only when they are necessary to keep a computation going. This re-
sult complements quite nicely several optimality properties known for strategies
for functional logic computations [4].
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The focus of continued work on this topic is to extend the theory and the im-
plementation to cover narrowing. Narrowing steps are inherently non-
deterministic and therefore naturally expressed using the choice operation [6].
For example, to narrow not x, where x is a free variable, we bind x to
True ? False—the patterns in the definition of not—and continue the evalu-
ation of the instantiated term. In our framework, this would require a bubbling
step.

Variables are singletons in their contexts. This is a key reason to represent
expressions with graphs. However, in our framework, expressions with choice
operations represent sets of ordinary expressions. Therefore, a variable that has
an ancestor node labeled by a choice operation must be handled with care. For
example, consider the following contrived program:

f x = g x ? h x
g 0 = 0
h - = 1

(11)

The expression f x, where x is free, evaluates to two different terms with two
different bindings. In evaluating the right-hand side of f, before instantiating
x in a narrowing step, x must be “standardized apart” as if evaluating (g u
? h v) where u and v are distinct and free. The situation exemplified in (11)
is characterized by a variable x that belongs to two terms encoded within a
single expression of our framework. The standardization apart of a variable is
accomplished by a graph transformation similar to a bubbling step.
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16. G. Huet and J.-J. Lévy. Computations in orthogonal term rewriting systems. In
J.-L. Lassez and G. Plotkin, editors, Computational logic: essays in honour of Alan
Robinson. MIT Press, Cambridge, MA, 1991.

17. H. Hussmann. Nondeterministic algebraic specifications and nonconfluent rewrit-
ing. Journal of Logic Programming, 12:237–255, 1992.

18. J.W. Klop. Term rewriting systems. In S. Abramsky, D. Gabbay, and T. Maibaum,
editors, Handbook of Logic in Computer Science, volume II. Oxford University
Press, 1992.
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Abstract. In the paper, we introduce a new tree automata framework,
called propositional tree automata, capturing the class of tree languages
that are closed under an equational theory and Boolean operations. This
framework originates in work on developing a sufficient completeness
checker for specifications with rewriting modulo an equational theory.
Propositional tree automata recognize regular equational tree languages.
However, unlike regular equational tree automata, the class of proposi-
tional tree automata is closed under Boolean operations. This extra ex-
pressiveness does not affect the decidability of the membership problem.
This paper also analyzes in detail the emptiness problem for proposi-
tional tree automata with associative theories. Though undecidable in
general, we present a semi-algorithm for checking emptiness based on
machine learning that we have found useful in practice.

1 Introduction

Tree automata techniques have been commonly used in checking consistency of
tree structures. Typical examples include checking sufficient completeness of al-
gebraic specifications [6] and the consistency of semi-structured documents [17].
These applications benefit from the good closure properties and positive decid-
ability results for tree automata. Recently, there are more advanced applications
including protocol verification [2,11], type inference [8,10], querying in data-
bases [27,28] and theorem proving [19].

One limitation of tree automata in these applications is that the regularity
of languages is not preserved when closed with respect to congruences. In other
words, when some algebraic laws such as associativity and commutativity are
taken into account, the congruence closure of a regular tree language may no
longer be regular. In applications, this lack of closure has required users of tree
automata techniques to use complicated and specialized ways of encoding proto-
cols [5]. Many extensions of tree automata have been suggested to address this
problem, including multitree automata by Lugiez [20], two-way alternating tree
automata by Verma [29], and equational tree automata by Ohsaki [25].

Equational tree automata are a natural mathematical extension of tree au-
tomata that recognize tree languages modulo an equational theory. Equational
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tree automata enjoy several nice properties. In particular, they are weakest ex-
tensions to tree automata that are closed under congruences. More precisely,
when the equational theory is induced by only linear equations (i.e equations
whose left- and right-hand sides are linear terms), such automata recognize ex-
actly the congruence closure of regular languages [25, Lemma 2].

However, checking properties of tree structures often additionally requires that
the modeling language be closed under boolean operations and have efficient al-
gorithms to check emptiness and inclusion. For example, when checking sufficient
completeness, the main task is to check if the language of terms with defined func-
tions is contained in the language of reducible terms. Thus, a sufficient complete-
ness checker relies on a modeling language for trees for which checking inclusion
is decidable. Since inclusion tests are most often implemented by complementa-
tion, intersection and a test for emptiness, these properties also are relevant for
this problem. It is known that for regular equational tree automata with only as-
sociativity equations, the inclusion problem is undecidable. Moreover, this class
of languages is not closed under intersection and complementation [24].

Motivated by this inadequacy in equational tree automata, Hendrix et al.
proposed in [13] a further extension of tree automata, called propositional tree
automata. These automata define a class of languages that is immediately closed
under all the boolean operations via a straightforward, effective procedure for
each operation. More importantly, they are the mathematically minimal exten-
sion in that the class of propositional tree automata accept the Boolean closure
of languages recognizable by equational tree automata. The conservativeness of
our extension leads to another desirable property: if the equational tree automata
membership problem is decidable for a theory E , then the membership problem
for the propositional tree automata with E is decidable as well.

In [13], Hendrix et al. showed that the sufficient completeness problem for
unconditional and left-linear membership rewrite systems modulo an equational
theory can be reduced to the emptiness problem of propositional tree automata.
Hence, one of the problems we investigate here is the emptiness problem modulo
A- and AC-theories. Based on results for equational tree automata, we know that
the problem is undecidable for propositional automata modulo A-theories. In this
paper, we present a machine learning based semi-decision procedure, that is also
a complete decision procedure under certain regularity conditions. We have found
this algorithm effective in practice. Our algorithm has been implemented in a
tree automata software library, called CETA [15], that can check the emptiness of
propositional tree automata modulo associativity, commutativity, and identity.
CETA is currently used for a next-generation sufficient completeness checker for
Maude, and has already found a subtle bug in the built-in Maude specifications
that can not be verified using the current checker.

This paper is organized as follows. In the next section, we define proposi-
tional tree automata. We show how this framework is closed under Boolean
operations, and also investigate the recognition power relative to equational tree
automata. In Section 3, we consider the membership decision problem, and ana-
lyze the complexity results with the comparison to equational tree automata. In
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Sections 4 and 5, we explain our approach to the emptiness problem in detail. In
Section 6, we show how our approach can be improved using ideas from machine
learning. Finally, in Section 7, we conclude the paper by addressing the current
software development project.

2 Preliminaries

We assume the reader is familiar with equational logic [6] and tree automata [7].
We use basic notations of rewriting from [4]. An equational theory is a pair
E = (F, E) in which F is a finite set of function symbols, each with an associated
arity, and E is a set of equations over the function symbols in F .

In the paper we are mainly interested in associative and/or commutative
theory (A∪C-theories for short), that is equational theories whose equations in
E are associativity and/or commutativity axioms for some of the binary function
symbols. Given a binary function symbol f ∈ F , f(f(x, y), z) = f(x, f(y, z)) is
an associativity (A) axiom, and f(x, y) = f(y, x) is a commutativity (C) axiom.
We use FA to denote the symbols in F with an associativity axiom in E, and FC
to be the symbols with a commutativity axiom. Since commutativity alone does
not essentially affect the expressive power of the languages [25, Theorem 3], we
assume that each commutative symbol is associative, i.e. FC ⊆ FA. Furthermore
we write AC to denote the set E consisting of both A and C axioms from FA∩FC.

A propositional tree automaton (PTA) A is a tuple (E , Q, φ, Δ), consisting
of the equational theory E = (F, E), a finite set Q of states disjoint from the
symbols in F (i.e. F ∩ Q = ∅), a propositional formula φ over Q, and a finite
set Δ of transition rules whose shapes are in one of the following forms:

(Regular) (Monotone)

f(α1, . . . , αn) → β f(α1, . . . , αn) → f(β1, . . . , βn)

for some f ∈ F with arity(f) = n and p1, . . . , pn, q, q1, . . . , qn ∈ Q. If a PTA only
has regular rules, we say the PTA is regular ; otherwise, it is monotone.

A move relation of A = (E , Q, φ, Δ) is a rewrite relation over the set T (F ∪Q)
of terms with respect to →Δ modulo =E , i.e. s →A t if there is a transition rule
l → α ∈ Δ and a context C ∈ C(F ∪Q) such that s =E C[l] and t =E C[α]. The
reflexive-transitive closure of →A is denoted by →∗

A.
A term t is accepted by A if t ∈ T (F ) and the complete set of states reachable

from t, reachA(t) = {α ∈ Q | t →∗
A α }, is a model of φ. Boolean formulas are

evaluated using their standard interpretations:

P |= α if α ∈ P, P |= φ1 ∨ φ2 if P |= φ1 or P |= φ2, P |= ¬ φ if not(P �|= φ )

As an example, we consider the PTA A with the propositional formula φ =
α ∧ ¬β and the transition rules

a → α b → β f(α) → α f(β) → β f(α) → γ f(β) → γ.

Then a is accepted by A, because reachA(a) = {α } and {α } |= α∧¬β. Simi-
larly, f(a) is accepted as reachA(f(a)) = {α, γ } and {α, γ } |= α∧¬β. However,
b and f(b) are not accepted, because reachA(b) = { β } and { β } �|= α∧¬β, and
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reachA(f(b)) = { β, γ } and { β, γ } �|= α∧¬β. Intuitively, the formula α∧¬β
means that A accepts terms that rewrite to the state α and do not rewrite to β.

Propositional tree automata are closed under Boolean operations: given A =
(E , Q1, φ1, Δ1) and B = (E , Q2, φ2, Δ2), then by assuming Q1 ∩ Q2 = ∅, the
intersection L(A)∩L(B) is accepted by the PTA (E , Q1 ∪Q2, φ1 ∧φ2, Δ1 ∪Δ2).
The complement of L(A) is accepted by A′ = (E , Q1,¬φ1, Δ1), where the formula
φ1 of A has been replaced by ¬φ1. Therefore we have the following property for
propositional tree automata.

Lemma 1. The class of propositional tree automata is effectively closed under
Boolean operations. ��
In the standard tree automata framework, the intersection of two tree automata
may have the product of states, which is |Q1| × |Q2| state symbols, while the
intersection of PTA A and B needs |Q1|+ |Q2| state symbols. In complementing
the PTA A, the set of states is unchanged, so the number of state symbols
is |Q1|, but constructing the complement of a tree automaton may require an
exponential number of state symbols relative to the original.

It is also an easy lemma to show that the class of languages accepted by
propositional tree automata under a certain equational theory is the smallest
class of languages containing languages accepted by standard equational tree
automata with the same equational theory and closed with respect to Boolean
operations over the languages.

Lemma 2. The class of tree languages accepted by PTA with an equational the-
ory E corresponds precisely to the Boolean closure of tree languages accepted by
equational tree automata sharing the equational theory E. ��
One can observe that, given a term t ∈ T (F ) and a propositional tree automaton
A, when t →∗

A α is decidable for any state α of A, reachA(t) is effectively
computable. This leads to the observation:

Lemma 3. The membership problem for equational tree automata under an
equational theory E is decidable if and only if the membership problem for propo-
sitional tree automata with E is decidable. ��

3 Decidability Results

As we showed in the previous section, the decidability of the membership problem
of propositional tree automata depends upon that of equational tree automata
with the usual definition of acceptance in terms of final states. From previous
work [22,24], we have the complexity results (in the next table) for regular and
monotone cases with AC- or A-theory:

regular
A-TA

regular
AC-TA

monotone
A-TA

monotone
AC-TA

complexity of
membership P-time NP-complete PSPACE-compl. PSPACE-compl.
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As an obvious observation, the membership problem for propositional regular
AC-tree automata (abbreviated by Mem-prop-reg-ACTA) seems harder than
the problem for regular AC-tree automata. Here a propositional regular AC-tree
automaton is a regular PTA over AC-theory, and a regular AC-tree automaton
(regular AC-TA for short) corresponds to a regular PTA over AC-theory with a
disjunction φ over atomic states as its propositional formula, i.e. φ = α1∨· · ·∨αn

for some α1, . . . , αn ∈ Q.
As the AC-TA membership problem is NP-complete and the AC-TA non-

membership problem can be converted in linear-time to the PTA membership
problem, the PTA membership problem cannot be in NP unless NP equals coNP.
We can show that Mem-prop-reg-ACTA is in a higher complexity class.

Lemma 4. Mem-prop-reg-ACTA is in ΔP
2 . ��

In the following, we write A �P
T B if there is an algorithm M running polynomial-

time for a problem A which can ask, during its computation, some membership
questions about B, where each query for B is answered in a unit time. The
relation A �P

m B is polynomial-time many-to-one reducibility, and it is defined
as follows: A �P

m B if there exists a polynomial-time function f : Σ∗ → Γ ∗ such
that for each x ∈ Σ∗, x ∈ A if and only if f(x) ∈ B.

Proof of Lemma 4. Let A = (E , Q, φ, Δ) with E = (F, E). We define the
regular AC-tree automaton BA associated to A. By assuming 〈 , 〉 is a fresh
binary symbol, we let BA = (E ′, P, pacc, ΔA) where

E ′ = (F ∪ Q ∪ { 〈 , 〉 }, E)

P = { pα, qα | α ∈ Q } ∪ { pacc }
ΔA = {α → qα | α ∈ Q }

∪ { 〈pα, qα〉 → pacc | α ∈ Q }
∪ { f(pα, pβ) → pγ | f(α, β) → γ ∈ Δ }.

By construction, it is clear that for each t ∈ T (F ) and α ∈ Q, t →∗
A q if and

only if 〈t, q〉 →∗
BA pacc. One should note that BA can be constructed in quadratic-

time to the size of A, and the membership problem for regular AC-tree automata
(abbreviated by Mem-reg-ACTA) is NP-complete.

For the next step, we take the set S = {α ∈ Q | α appears in φ }. The
computation of S can be deterministically done in the size of φ, denoted by |φ|,
which is the number of occurrences of Boolean variables and Boolean connectives
in φ. Then, for every α ∈ S (e.g. in the lexicographic order), we test by using the
oracle L(BA), whether 〈t, α〉 ∈ L(BA). If 〈t, α〉 ∈ L(BA) is true, α is assigned
to 1; otherwise, α is 0. By letting this Boolean assignment to be the mapping
τ : S → {1, 0}, it is easy to see τ(φ) = 1 if and only if reachA(t) |= φ. The output
value of the Boolean circuit is computable in polynomial-time relative to |φ| [9].

The above algorithm runs totally in polynomial-time with respect to the size
of A. Therefore the deterministic algorithm with an oracle set in NP solves the
original membership problem in polynomially bounded time.
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As a corollary of the above proof, Mem-prop-reg-ACTA is

– �P
m-hard for NP (i.e. NP-hard),

– �P
m-hard for coNP (i.e. coNP-hard).

One can observe that given a term t and a regular AC-tree automaton A, the
problem of determining whether A does not accept t is coNP-complete (abbrevi-
ated by Inaccept-reg-ACTA). Because, if L ∈ coNP then (L)c ∈ NP, and thus
there exists a polynomial-time function f from (L)c to Mem-reg-ACTA such
that x ∈ (L)c if and only if f(x) is accepted by a regular AC-tree automaton
(F, Q, α1 ∨ · · · ∨ αn, Δ, E) with α1, . . . , αn ∈ Q. Then the reduction from L to
Mem-prop-reg-ACTA can be done by taking the propositional regular AC-tree
automaton to be (F, Q,¬(α1) ∧ · · · ∧ ¬(αn), Δ, E).

Moreover, Mem-prop-reg-ACTA is �P
T -equivalent to Mem-reg-ACTA, be-

cause �P
m is subsumed in �P

T and �P
T is transitive. Then, ∀A ∈ ΔP

2 : A �P
T

Mem-reg-ACTA, and thus, Mem-prop-reg-ACTA �P
T Mem-reg-ACTA.

In case of monotone PTA over AC-theory, using the same construction as in the
proof of Lemma 4, we can show that: the membership problem for monotone PTA
over AC-theory is in PPSPACE (= PSPACE). Then, using the fact that the mem-
bership problem for monotone TA over AC-theory is PSPACE-complete [22], we
can obtain an even a stronger result that the membership problem for monotone
PTA over AC-theory (indicated by monotone AC-PTA in the table) is PSPACE-
complete.

The previous proof technique can also be applied to the A case. Therefore we
obtain the following table of complexity results for sub-classes of propositional
tree automata:

regular
A-PTA

regular
AC-PTA

monotone
A-PTA

monotone
AC-PTA

complexity of
membership P-time ΔP

2 PSPACE-compl. PSPACE-compl.

4 Emptiness Testing

We now turn our attention to the emptiness problem for PTA — given a PTA
A, does L(A) = ∅? This problem is computationally quite hard. Even in the
free case, testing emptiness of a PTA is EXPTIME-complete. The tree automata
universality problem, i.e. given a tree automaton A over a signature F , does
L(A) = T (F )?, is EXPTIME-complete [7, Theorem 14]. This problem can be
converted in linear time into the PTA emptiness problem of (L(A))c.

In AC case, regular equational tree automata are known to be closed under
Boolean operations [27], and the emptiness problem is decidable [24]. It follows
that the class of regular PTA over AC-theory have a decidable emptiness problem.
In contrast to the above, in the A case (without commutativity axioms), the
emptiness problem is undecidable:



56 J. Hendrix, H. Ohsaki, and M. Viswanathan

Theorem 1. The problem of checking whether L(A) = ∅ for regular PTA with
a single associativity axiom is undecidable.

Proof. Given a regular equational tree automaton B with a single associative
symbol, it was shown in [25] to be undecidable whether L(B) = T (F ). This
problem is equivalent to checking (L(B))c = ∅. By Lemma 2, the language
(L(B))c is recognizable by a PTA with a single associative symbol. ��

Despite the lack of decidability, we nevertheless are interested in developing semi-
decision algorithms that work well in practice. This is motivated by the study
about the sufficient completeness checking of order-sorted equational specifica-
tions, where we have found equational tree automata techniques to be quite
useful [13]. In applications, thus far we have mainly been interested in regular
PTA, so we will restrict our attention to regular PTA for the remainder of this
section.

Our algorithm for checking emptiness computes the set of states reachable
from terms. The idea of this algorithm is similar to the use of subset construc-
tion to complement regular tree automata in [7], but with extensions to handle
associative and commutative symbols. Though having no guarantee to terminate
for all cases, the algorithm finds an accepting term if a language accepted by an
input PTA is non-empty, and it proves the emptiness if the accepting language
is empty and the PTA satisfies certain regularity conditions.

Let ≡A be the equivalence relation over terms where s ≡A t iff. reachA(s) =
reachA(t). For tree automata, the correctness of subset construction typically
relies on the fact that ≡A is a congruence with respect to contexts. i.e. s ≡A t
implies C[s] ≡A C[t] for all contexts C. However, this fact does not hold in the
case when the root of s or t is an A symbol f and the context C has s or t
immediately within a term labeled by f . Due to this complication, our subset
construction algorithm for A and AC symbols maintains additional information.

We first define the information our subset construction algorithm for the A
and AC case will eventually compute.

Definition 1. Given a PTA A = (E , Q, ψ, Δ) over the theory E = (F, E), let
det(A) ⊆ P(Q) × F be the set det(A) = { (reachA(t), root(t)) | t ∈ TF }.

One should remark that det(A) is finite, however it is not always computable.
Observe that L(A) �= ∅ iff. there is a pair (P, f) ∈ det(A) such that P |= ψ. The
undecidability of the emptiness problem of L(A) thus implies the membership
question (P, f) ∈ det(A) is not decidable either.

For the remainder of this section, let A be a PTA with an A∪C-theory. In
this case, we can obtain det(A) by an iterative computation starting from the
empty set dA(0) � ∅. We then expand dA(0) to dA(1), dA(2), . . . in the inference
rules (defined later) until completion. Each set dA(i) is a subset of det(A). The
mapping dA is simplified to d if A is obvious in the context.

Before describing the inference rules, we must give a few more definitions.
We first extend reachA to allow sets of states Pi ⊆ Q as constants appearing
in terms. Precisely, the reachable states reachA(f(P1, . . . , Pn)) for a term with
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sets as constants is the union of the reachable states for each term in T (F ∪Q)
formed by choosing an element in each state, i.e.

reachA(f(P1, . . . , Pn)) = {β ∈ Q | (∃αi ∈Pi : 1≤ i≤n) f(α1, . . . , αn) →∗
A β} .

For each associative symbol f ∈ FA, and set d(i), we define a context-free gram-
mar Gf,d(i). Intuitively, the rules in the grammar are obtained from the PTA,
and simulate the PTA over flattened terms of the form f(P1, . . . , Pn). Each set
Pi ⊂ Q is reachable by a term whose root symbol is not f .

Definition 2. Given a regular PTA A = (E , Q, φ, Δ) with f ∈ FA and set d(i),
we define the flattened grammar for f , Gf,d(i)(__) = (Σf,d(i), Q,__, R), where

– Σf,d(i) = {P | ∃(P, g) ∈ d(i) : g �= f },
– R = { γ := αβ | f(α, β) → γ ∈ Δ } ∪ { γ := P | P ∈ Σf,d(i) ∧ γ ∈ P }.

In the paper, we write L(G(α)) to denote the language generated from α if G is (a
mapping to) a grammar with a non-terminal symbol α. The Parikh image [26] of
the language L(G(α)) is denoted by S(G(α)). Namely, S(G(α)) = {#(w) | w ∈
L(G(α)) }, where # : Σ∗ → N|Σ| maps each string in Σ∗ to the vector counting
the number of occurrences of each terminal symbol. For a subset P (⊆ Q) of
non-terminals, let L(G(P )) equal the strings appearing in the languages L(G(α))
generated by non-terminals α ∈ P and not in the languages L(G(β)) generated
by the non-terminals β ∈ (Q−P ). We define S(G(P )) denote the corresponding
construction from the Parikh images, i.e.,

L(G(P )) =
α∈P

L(G(α)) −
β∈(Q−P )

L(G(β)) S(G(P )) =
α∈P

S(G(α)) −
β∈(Q−P )

S(G(β))

As context-free grammars are not closed under intersection and complemen-
tation, L(G(P )) is not necessarily context-free, and checking emptiness is unde-
cidable. On the other hand, S(G(P )) is a semi-linear set [26], because semi-linear
sets are closed under Boolean operations, and moreover, have a dedidable empti-
ness problem.

In our algorithm, we start with d(0) = ∅, and then compute d(i + 1) from
d(i) using the inference rules below. Each step adds a pair in det(A) not in d(i).

(1) f �∈ FA ∪ FC :
(P1, f1), . . . , (Pn, fn) ∈ d(i)

d(i + 1) = d(i) # { ( reachA(f(P1, . . . , Pn)), f ) }

(2) f ∈ FA − FC :
P ⊆ Q Σ2+

f,d(i) ∩ L(Gf,d(i)(P )) �= ∅

d(i + 1) = d(i) # { (P, f ) }

(3) f ∈ FA ∩ FC :
P ⊆ Q N>1 ∩ S(Gf,d(i)(P )) �= ∅

d(i + 1) = d(i) # { (P, f ) }
In the first rule, we non-deterministically choose elements (P1, f1), . . . , (Pn, fn)
from d(i). These elements need not be distinct. In the second and third rules,
we write Σ2+

f,d(i) for the strings over Σf,d(i) containing at least two letters, and
N>1 for vectors over natural numbers whose elements sum up to at least 2. We
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use the disjoint union operator # to denote that the newly added elements must
be distinct from the other elements in d(i). It is relatively straightforward to
show that by starting with d(0) and applying the rules for each operator until
completion, we eventually have det(A). The proof is in our extended technical
report [14].

Theorem 2. Let A = (E , Q, φ, Δ) be a regular PTA with E = (F, E) contain-
ing only associativity and commutativity axioms (A∪C-theory). Every chain
d(0), d(1), . . . obtained by applying the rules (1)–(3) until completion satisfies
the following properties:
– the length k of the chain is |det(A)|, and
– d(k) = det(A).

The undecidability of regular PTA with associative symbols crops up in testing
the emptiness of Σ2+

f,d(i) ∩ L(Gf,d(i)(P )). The focus of the next section concerns
how to solve this emptiness constraint. It is worth observing that this subset
construction based approach can be generalized for the monotone case as well,
but in this case, the grammar Gf,d(i) must be made context-sensitive with an
additional rule αβ := γδ for each monotone rule f(γ, δ) → f(α, β) ∈ Δ.

5 Solving Language Equations for Associativity

Since at present the emptiness testing with monotone rules for associative sym-
bols is beyond the goal of our project, we have developed an approach that
is likely to work well in practice for the regular case with associative symbols.
Our approach rests on an interactive semi-algorithm for each associative sym-
bol f ∈ FA which has access to the mapping d(i) as it is being generated and
performs two actions simultaneously: (1) recursively enumerates pairs (P, f) not
in d(i) for which Σ2+

f,d(i) ∩ L(Gf,d(i)(P )) is non-empty; and (2) applies machine
learning techniques to attempt construction of a family {Mα }α∈Q of determin-
istic finite automata for which L(Mα) = L(Gf,det(A)(α)) for all α ∈ Q. If the
first action succeeds, the semi-algorithm constructs the next d(i + 1) from d(i).
If the second action succeeds, we can decide for each subset of P states, the con-
dition Σ2+

f,d(i) ∩ L(Gf,det(A)(P )) = ∅ in the rule (2). We then can either obtain
d(i + 1) or prove that the conditional rule for f can no longer be applied.

A naïve approach to the first action is quite simple. We recursively enu-
merate the strings in Σ2+

f,d(i) in order of increasing length to form the infi-
nite sequence w1, w2, . . . , and parse each string wi to get the complete set
of states Pi = {α ∈ Q | w ∈ L(Gf,d(i)(α)) }. If (Pi, f) �∈ d(i), then let
d(i+1) = { (Pi, f) }∪d(i). Handling the second action is more complicated. First,
observe that we can enumerate the set of finite automata in order of increasing
length. Because recursively enumerable sets are closed under finite products, we
can even enumerate finite families of automata {Mα }α∈Q. The difficult part
then lies in checking whether L(Mα) = L(Gf,d(i)(α)) for all α ∈ Q. It is well
known that given a single finite automaton M and context-free grammar G,
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it is undecidable whether L(M) = L(G) [16, Theorem 8.12(3)]. However, this
result is just for a single automaton, and does not imply the undecidability of
our problem. In fact, given a context-free grammar G = (Σ, Q, α0, R) in Chom-
sky normal form, and a family of automata {Mα }α∈Q, the question whether
L(Mα) = L(G(α)) for all α ∈ Q is decidable.

The decidability of this problem is a direct consequence of Theorem 2.3 in [3].
Before explaining that result, however, it is necessary to shift our perspective of
context-free grammars from viewing them as collections of production rules to
viewing them as systems of language equations.

Definition 3. Let G = (Σ, Q, α0, R) be a context-free grammar. The system
of equations generated by G is the family of equations {α = Pα }α∈Q in which
for each non-terminal α ∈ Q, Pα is the formula Pα = w1 | · · · | wn where
α = w1, . . . , α = wn are the production rules in R whose left-hand side equals α.

Given a system of equations with non-terminals Q and terminals Σ, a substitu-
tion is a mapping θ : Q → P(Σ∗) associating each state α ∈ Q to a language
θ(α) ⊆ Σ∗. A substitution θ can be applied to a language formula P , yielding a
language Pθ ⊆ Σ∗ which is defined using the axioms:

Pθ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
{ a } if P = a for some a ∈ Σ,

θ(α) if P = α for some α ∈ Q,

Sθ ∪ Tθ if P = (S |T ),
{ st | s ∈ Sθ ∧ t ∈ Tθ } if P = (S . T ).

We may assume associativity of | and . in the above definition. Here S . T
denotes the concatenation of S and T . A substitution θ : Q → P(Σ∗) is a
solution to the system of equations {α = Pα }α∈Q if and only if θ(α) = Pαθ
for all α ∈ Q. It is known that each system of equations generated by G has
a least solution, namely θL : α $→ L(G(α)), and θL(α) ⊆ ψ(α) for all solutions
ψ : Q → P(Σ∗) and α ∈ Q. For grammars in Chomsky normal form, we can use
the following theorem to help check whether an arbitrary solution is the least
solution. Note that this is an easy consequence of Theorem 2.3 in [3].

Theorem 3. If G is a context-free grammar in Chomsky normal form, there is
a unique solution θ to the system of equations generated by G in which ε �∈ θ(α)
for any α ∈ Q. ��

In the theorem ε denotes the empty string. The solution θ in the previous theorem
is the least solution, since G does not contain a production rule of the form
α := β, and so ε �∈ L(G(α)) for any α ∈ Q.

Given a context-free grammar in Chomsky normal form G and a family of
finite automata {Mα }α∈Q, we can use Theorem 3 to check whether L(Mα) =
L(G(α)) for all α ∈ Q.

Theorem 4. Let G be a context-free grammar in Chomsky normal form with
non-terminals Q. If L(G(α)) is regular for all α ∈ Q, there is a constructable
set of finite automata {Mα }α∈Q for which L(Mα) = L(G(α)).
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Proof. We recursively enumerate the families of finite automata {Mα }α∈Q and
check if L(Mα) = L(G(α)) for each α ∈ Q. If we let ψ : Q → P(Σ∗) be the
substitution α $→ L(Mα), then the problem of checking whether L(Mα) =
L(G(α)) for all α ∈ Q reduces to deciding whether ψ is the unique solution
satisfying Theorem 3. For each equation α = Pα, we can construct the automaton
MPα with L(MPα) = Pαψ due to the effective closure of regular languages under
union and concatenation. Moreover, one can check whether L(Mα) = L(MPα)
for each α ∈ Q using the standard approaches for testing the equivalence of finite
automata. So clearly we can check whether ψ is a solution. But it is also trivial
to check whether ε �∈ L(Mα) for each α ∈ Q. Thus it is decidable whether ψ
satisfies the conditions in Theorem 3. If it does then ψ(α) must equal L(G(α))
for each α ∈ Q. ��

The key problem discussed in the section is determining whether the language
L(G(α)) is regular for each non-terminal α ∈ Q. One would expect this problem
to be undecidable. Surprisingly, despite searching several texts, we could not find
a decidability result for this problem. If L(G(α)) is regular for each non-terminal
α, Theorem 4 shows that we can always show that by generating an equivalent
family of finite automata. The other case is not so clear. Undecidability results
for context-free languages such as Greibach’s theorem [16, Sec. 8.7] do not ap-
ply since they concern single context-free languages and this property concerns
every non-terminal in a grammar. Theorem 4’s result itself relied heavily upon
the assumption that every non-terminal generates a regular language. The same
approach does not work to construct a finite automata corresponding to a sin-
gle non-terminal in G due to the undecidability of the equivalence problem for
context-free grammars and regular languages.

6 Angluin’s Algorithm

Though technically sound, if one were to implement the semi-algorithm using
the naïve approach outlined above, the efficiency would likely be less than de-
sired. Enumerating finite automata in order of increasing size takes exponential
time relative to the size of the automaton. Each family of finite automata would
need to be checked for equivalence, and this also takes exponential time. Unfor-
tunately, we don’t see a way to improve the exponential time required to check
equivalence, but by applying techniques from learning theory, we decrease the
number of equivalence queries we make so that if the algorithm eventually suc-
ceeds, we will have only required a polynomial number of queries relative to the
size of the accepting family of automata eventually found.

A well-known algorithm in machine learning is Angluin’s algorithm [1] for
learning regular languages with oracles. For an arbitrary language L, this al-
gorithm attempts to construct a finite automaton M such that L(M) = L by
asking questions to two oracles: a membership oracle that answers whether a
string u ∈ Σ∗ is in L; an equivalence oracle that answers whether L(M) = L
and if not, provides a counterexample string u ∈ Σ∗ in the symmetric difference
of L and L(M), i.e. u ∈ L⊕L(M) with L⊕L(M) = (L−L(M))∪ (L(M)−L).
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Angluin’s algorithm will terminate only if L is regular. However, given the ap-
propriate oracles, one can attempt to apply it with any language, even languages
not known to be regular. Due to space limitation of the paper, we roughly sketch
below how Angluin’s algorithm works. Readers are recommended to consult [18]
for further details.

First we recall the definition of Nerode’s right congruence: given a language
L ⊆ Σ∗, the equivalence relation ∼L over Σ∗ is the relation such that for u, v ∈
Σ∗, u ∼L v if and only if for all w ∈ Σ∗, uw ∈ L ⇐⇒ vw ∈ L. It is known that
a language L is regular if and only if the number of equivalence classes |Σ∗/∼L| is
finite. Angluin’s algorithm maintains a data structure that stores two constructs:
(1) a finite set S ⊆ Σ∗ of strings, each belonging to a distinct equivalence class in
Σ∗/∼L, and (2) a finite set D ⊆ Σ∗ of distinguishing strings which in conjunction
with the membership oracle, allows the algorithm to classify an arbitrary string
into one of the known equivalence classes.

Initially, S = { ε } and D = ∅. Using the membership oracle in conjunction
with S and D, the algorithm constructs a deterministic finite automaton M such
that L(M) = L when S = Σ∗/∼L. The algorithm then queries the equivalence
oracle which either succeeds and we are done, or returns a counterexample which
can be analyzed to reveal at least one additional equivalence class representative
in Σ∗/∼L that is not in S. If L is regular, eventually the algorithm will learn all
of the equivalence classes in Σ∗/∼L. If L is not regular, Σ∗/∼L must be infinite
and so the algorithm will not terminate.

Given a finite family of regular languages {Lα }α∈Q, Angluin’s algorithm
can be easily generalized to simultaneously learn a finite family of automata
{Mα }α∈Q such that L(Mα) = Lα for all α ∈ Q. In this version, there must
be a membership oracle for each language Lα, and an equivalence oracle which
given a family {Mα }α∈Q, returns true if Lq = L(Mα) for all α ∈ Q, or a pair
(α, u) where α ∈ Q, and u is a counterexample in Lα ⊕L(Mα). The generalized
algorithm will terminate when Lα is regular for each α ∈ Q.

In the context of this paper, we use Angluin’s algorithm in conjunction with
the flattened grammar Gf,d(i) with terminals Σf,d(i) and non-terminals Q. The
algorithm attempts to construct of a family of finite automata M = {Mα }α∈Q

for which L(Mα) = L(Gf,d(i)(α)). If the process succeeds, we can easily deter-
mine whether Σ2+∩L(Gf,d(i)(P )) = ∅ for each pair (P, f) �∈ d(i) using standard
techniques for finite automata. If we discover that Σ2+ ∩L(Gf,d(i)(P )) �= ∅, we
set d(i + 1) = d(i) # { (P, f) } and repeat the process for d(i + 1).

To apply Angluin’s algorithm, we need to provide the membership and equiv-
alence oracles needed for a context-free grammar G with non-terminals Q and
terminals Σ. The membership oracle for each non-terminal α ∈ Q is implemented
by a context-free language parser that parses a string u ∈ Σ∗ and returns true
if u ∈ L(G(α)). Given the family {Mα }α∈Q, our equivalence oracle forms the
mapping θ : α $→ L(Mα) and checks if it is the solution to the equations gener-
ated by G satisfying Theorem 3. If θ is not the solution, the equivalence oracle
must analyze the mapping to return a counterexample. The algorithm we use is
presented in Fig. 1.Correctness of the oracle is shown in the following theorem:
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Theorem 5. Given a family of context-free grammars {G(α) }α∈Q in Chomsky
normal form with non-terminals Q and terminals Σ, and a family {Mα }α∈Q

of finite automata over Σ, the algorithm check_equiv in Fig. 1

– returns true if L(G(α)) = L(Mα) for all α ∈ Q; and otherwise,
– returns a pair (β, w) such that w ∈ L(G(β)) ⊕ L(Mβ).

Proof sketch. Termination of this procedure is straightforward, and it is easy
to verify that when a pair is returned at a return statement, it is indeed a
counterexample. The non-trivial part of this theorem is that if the outer loop
terminates without returning a counterexample, check_equiv returns true and
L(G(α)) = L(Mα) is guaranteed. We obtain this property by showing that if
L(Mα) �= L(G(α)) for some α ∈ Q and the outer loop is executed, the body of
the loop is guaranteed to return a pair. ��

When equipped with context-free language parsers as membership oracles and
chec_equiv as an equivalence oracle, Angluin’s algorithm accomplishes the same
goal as the simple enumeration-based algorithm used to prove Theorem 4. How-
ever, this approach reduces the complexity from double to single exponential
time. In searching for a solution, the enumeration algorithm used in Theorem 4
checks equivalence of every family of finite automata in order of increasing size.
The total number of equivalence checks will be exponential relative to the size of

Procedure check_equiv

Input G(__ ) = (Σ, Q, __ , P ) : a context-free grammar
{Mα}α∈Q : a family of finite automata over Σ

Output true or (α, u) for some α ∈ Q and u ∈ Σ∗

let θ be the substitution α �→ L(Mα);
for each α ∈ Q do

if ε ∈ L(Mα) then return (α, ε) ;

if L(Mα) �= Pαθ then
choose u ∈ L(Mα) ⊕ Pαθ

if u ∈ L(Mα) ⊕ L(G(α)) then return (α, u)
else

for each α := βγ ∈ P and u = st do
if s ∈ L(Mβ) ⊕ L(G(β)) then return (β, s) ;
if t ∈ L(Mγ) ⊕ L(G(γ)) then return (γ, t)

od ;
od ;
return true

Fig. 1. Checking language equivalence
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the final output. Since each equivalence check itself takes exponential time, the
enumeration algorithm takes double exponential time relative to the size of the
final output. In contrast, Angluin’s algorithm makes a number of oracle queries
that is polynomial [1] to the size of the final output. The equivalence oracle itself
takes exponential time, and so the total time of the new algorithm is a single
exponential relative to the size of the final output.

7 Concluding Remarks

The tree automata techniques developed in this paper are not only for theoretical
use. The emptiness checking procedure explained in the previous two sections has
been implemented in the CETA library [15]. This software provides the function
for emptiness checking with not only associativity and commutativity axioms,
but identity axioms as well. The identity axiom for a function symbol f with a
unit symbol c is the equations of the forms f(c, x) = x and f(x, c) = x. In CETA,
identity axioms in a propositional tree automaton are converted into the rewrite
rules f(c, x) → x and f(x, c) → x in conjunction with a specialized Knuth-
Bendix style completion procedure modulo associativity and commutativity that
preserves the set of reachable states for each term.

Though still a prototype, CETA has been integrated to work with the reach-
ability analysis tool ACTAS [23], as well as the next generation sufficient com-
pleteness tool for Maude. In future project we plan to apply the new ACTAS for
the tree automata based verification of infinite state systems including network
protocols. In the Maude sufficient completeness tool, we use CETA by posing the
sufficient completeness problem of an equational specification as a PTA empti-
ness problem. Sufficient completeness is a property of equational specifications
that guarantees that enough equations have been specified so that defined op-
erations are fully specified on all relevant data. We already experienced that
CETA is useful in this context, as it allowed the checker to find a subtle bug
in Maude involving lists formed from an associative operator, and also to ver-
ify the correctness of the bug-fix by proving that the language accepted by the
corresponding tree automaton is empty, where the automaton often contains a
theory with associativity.
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Abstract. Confluence criteria for non-terminating rewrite systems are
known to be rare and notoriously difficult to obtain. Here we prove a
new result in this direction. Our main result is a generalized version
of Newman’s Lemma for left-linear term rewriting systems that does
not need a full termination assumption. We discuss its relationships to
previous confluence criteria, its restrictions, examples of application as
well as open problems. The whole approach is developed in the (more
general) framework of context-sensitive rewriting which thus turns out
to be useful also for ordinary (context-free) rewriting.

1 Introduction and Overview

Besides termination, confluence is the most fundamental property of virtually
any kind of rewrite systems (cf. e.g. [1], [2]). Newman’s Lemma [19] is well-known
to be the major tool for checking confluence of rewrite systems. It states that
local confluence implies confluence for terminating reduction relations. However,
without termination Newman’s Lemma is not applicable, i.e., local confluence
may be insufficient for guaranteeing confluence. In general, confluence proofs
without termination are much harder. For the case of not necessarily terminating
term rewriting systems (TRSs), a couple of rather restrictive criteria - mostly
via strong confluence properties – are known, both for abstract rewrite systems
(cf. e.g. [11], [13], [2]) as well as for TRSs (cf. e.g. [26], [11], [27], [29], [8], [23],
[24], [21]). Known related decidability results include [7], [6]. Also structural
and modularity properties and considerations may help in certain cases to prove
confluence of non-terminating systems (cf. e.g. [25], [28], [14], [20]). The latter
type of criteria is based on a divide-and-conquer approach, where certain sub-
TRSs are shown to be confluent which in turn implies, under certain combination
conditions, confluence of the whole system.

In term rewriting it is well-known that local confluence of (finite) terminating
TRSs is decidable since it amounts to joinability of all critical pairs (Critical
Pair Lemma, [11]). Hence, for (finite) terminating TRSs Newman’s Lemma
combined with the Critical Pair Lemma yields a decision procedure for con-
fluence.
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The approach for proving confluence of (non-terminating) TRSs that we are
going to present here is novel and differs methodologically from virtually all of
these previous approaches in the sense that we do not consider sub-TRSs but
rather certain sub-relations of the rewrite relation that are not generated by
sub-TRSs.

The basic idea of our approach is as follows: Given a (non-terminating) TRS
R with induced rewrite relation →R, we first try to identify an appropriate
terminating sub-relation →′ ⊆ →R (that is not induced by a sub-TRS of R),
to prove its confluence via Newman’s Lemma, and then to deduce confluence of
the entire TRS R, i.e., of →R, under some additional conditions.

The setting we are working in is context-sensitive term rewriting (CSR), a
framework that properly extends ordinary (context-free) term rewriting by in-
troducing context-sensitivity restrictions in the rewrite relation (cf. e.g. [17]).
The necessary technical background will be provided below. CSR has turned
out to be very useful for obtaining better computational properties of equational
and rewrite specifications, e.g., for increased efficiency, a better termination be-
haviour, and an effective handling of infinite data structures (cf. e.g. [15,16,17]).
Given the fact that termination is sometimes very difficult to prove and that non-
termination is in many cases inherently unavoidable, CSR often provides ways
for such examples to get a (restricted) terminating context-sensitive rewrite rela-
tion, while still preserving the desired computational power (e.g., for computing
normal forms). Our confluence criterion will be based on such a context-sensitive
view of a given ordinary TRS R.

Let us give two simple motivating examples illustrating the problem with
proving confluence.

Example 1. Consider the following TRS R, which is a slightly modified variant
of [4, Ex. (27)], and the essential part of its reduction graph:

(1) g(a) → f(g(a))
(2) g(b) → c
(3) a → b
(4) f(x) → h(x, x)
(5) h(x, y) → c

g(a) � f(g(a))

h(g(a), g(a))
�

g(b)
�

� c
�

Example 2. This example involves the generation of (all) natural numbers (via
the constant nats and using a recursive increment operation inc) with some list
destructors h(ea)d, t(ai)l and : as (infix) list constructor. The TRS R and the
essential part of its reduction graph are as follows:

(1) nats → 0 : inc(nats)
(2) inc(x : y) → s(x) : inc(y)
(3) hd(x : y) → x
(4) tl(x : y) → y
(5) inc(tl(nats)) → tl(inc(nats))
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inc(tl(nats)) � tl(inc(nats))

inc(tl(0 : inc(nats)))
�

tl(inc(0 : inc(nats)))
�

inc(inc(nats))
�

� tl(s(0) : inc(inc(nats)))
�

In both examples the rewrite system R has the following properties: It is left-
linear, non-terminating and locally confluent. But as far as we know there are
no known confluence criteria in the literature that would allow us to directly
infer confluence in these examples. In particular, since both systems are non-
terminating, Newman’s Lemma is not applicable, i.e., a test for joinability of
critical pairs is not sufficient. The systems are not orthogonal, since there exist
critical pairs (in Ex. 1 rule (3) overlaps into (1), and in Ex. 2 rule (1) overlaps
into (5)). Even though these critical pairs are joinable (cf. the reduction graphs),
none of the critical pair based confluence criteria for left-linear rewrite systems
in [11,8,23,24,21] is applicable here. Also, decidability results of [7], [6] are not
applicable.1 Yet, both systems are indeed confluent as we shall prove later on
with our new criterion.

2 Preliminaries

We assume familiarity with the basic theory, terminology and notations in term
rewriting (cf. e.g. [1], [2]). For the sake of readability some important notions
and notations are recalled here.

Given a set A, P(A) denotes the set of all subsets of A. Given a binary
relation →, on a set A, we denote the transitive closure of → by →+, and
its reflexive and transitive closure by →∗. The inverse →−1 of → defined by
{(b, a) | (a, b) ∈ → is also denoted by ←. An element a ∈ A is an →-normal
form, if there exists no b such that a → b; NF(→) is the set of →-normal
forms. We say that b is a →-normal form of a, if a →∗ b ∈ NF(→). We say
that → is terminating iff there is no infinite sequence a1 → a2 → a3 · · · . → is
locally confluent iff ← · → ⊆ →∗ · ∗←, and confluent (or Church-Rosser) iff
←∗ · →∗ ⊆ →∗ · ←∗. Terms are constructed as usual over some countable set V
of variables and a signature F of functions symbols equipped with a fixed arity
given by ar : F → N. The set of all terms over F and V is denoted by T (F ,V).
A term is linear if it has no multiple occurrences of a single variable. Terms
are viewed as labelled trees in the usual way. Positions p, q, . . . in terms are

1 With the decreasing diagrams method of [22], [2, Section 14.2], however, it is possible
to prove confluence of the linear system of Example 2 above, by finding an appropri-
ate well-founded labelling for rewrite steps. Yet, this powerful and general method
does not directly yield easily applicable confluence criteria, but requires careful and
smart design choices to become applicable. For Example 1, (practical) applicability
of this method remains unclear, due to non-right-linearity.
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represented by sequences of positive natural numbers. Given positions p, q, we
denote their concatenation by p.q. Positions are ordered by the standard prefix
ordering ≤. Two positions p and q are parallel (or disjoint), denoted p ‖ q, if
neither p ≤ q nor q ≤ p. The set of all positions of a term t is Pos(t), the set
of all its variable positions and of all its non-variable positions by VPos(t) and
FPos(t), respectively. We denote the ‘empty’ root position by ε. The subterm
of t at position p is denoted by t|p and t[s]p is the term t with the subterm
at position p replaced by s. We shall also make free use of (term) contexts as
usual. The symbol labelling the root of t is denoted as root(t). For the set of all
variables occurring in a term s we write Var(s).

A rewrite rule is an ordered pair (l, r), written l → r, with l, r ∈ T (F ,V), l �∈ V
and Var(r) ⊆ Var(l). A term rewriting system (TRS) is a pair R = (F , R)
where F is a signature and R is a set of rewrite rules over T (F ,V). We will often
omit the signature when it is implicitly given by the set of rules, and identify
R and R. A TRS R is left-linear if for all l → r ∈ R, l is linear. The rewrite
relation induced by a TRS R is defined by s →R t if s|p = lσ, t = s[rσ] for
some l → r ∈ R, some p ∈ Pos(s) and some substitution σ. Instead of s →R t
we also write s → t if R is clear from the context, and s →R,p t or s →p t to
indicate the position of the redex contraction. Critical pairs and critical peaks
of rewrite rules and systems are defined as usual. A TRS R is terminating,
confluent, locally confluent, etc. if → has the respective property.

Next we need some additional notions and notations for context-sensitive
rewriting. Given a signature F , a mapping μ : F → P(N) is a replacement map
(or F -map) if for all f ∈ F , μ(f) ⊆ {1, . . . , ar(f)} ([15]). The set Posμ(t) of
(μ-)replacing or active positions of t ∈ T (F ,V) is given by Posμ(t) = {ε}, if t ∈ V
or t ∈ F with ar(f) = 0, and Posμ(t) = {ε}∪

⋃
i∈μ(root(t)){i.q | q ∈ Posμ(t|i)},

otherwise. The set Posμ(t) of non-(μ-)replacing or inactive positions of t ∈
T (F ,V) is just the complement of the former, i.e., Posμ(t) = Pos(t) \ Posμ(t).
Replacement maps are ordered by ', with μ ' μ′ if for all f ∈ F , μ(f) ⊆ μ′(f).
Thus, μ ' μ′ means that μ considers less positions than μ′ (for reduction).
If μ ' μ′, we also say that μ is more restrictive than μ′. A context-sensitive
rewrite system (CSRS) is a pair (R, μ) (also denoted by Rμ), where R is a
TRS and μ is a replacement map (over the signature of R). In context-sensitive
rewriting (CSR [15]), only replacing redexes are contracted. s μ-rewrites to t,
denoted by s →R,μ t or just s →μ t, if s →R,p t and p ∈ Posμ(t). Note
that this means that →R,μ t is stable under substitutions, but in general not
under contexts, i.e., the monotonicity property (of →R) is lost. Slightly abusing
notation, we denote rewriting at non-replacing positions by →μ, i.e., s →μ t

if s →p t for some p ∈ Posμ(s). Observe that in general →μ ∪ →μ need not
be a disjoint union. A simple example illustrating this is the TRS consisting of
the two rules f(x) → f(b), a → b with μ(f) = ∅. Here we have both f(a) →μ

f(b) and f(a) →μ f(b). A CSRS Rμ is terminating, confluent, locally confluent
etc. if →μ has the respective property. Finally, for a given CSRS Rμ, we will
need certain replacement maps that are not very restrictive. More precisely, all
positions of non-variable subterms in the left-hand sides of the rules should be
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replacing (this will guarantee in particular that rewrite steps that are involved
in critical overlaps of R are also Rμ-steps). The canonical replacement map
μcan
R : F → P(N) is defined by i ∈ μcan

R (f) ⇐⇒ ∃l → r ∈ R, p ∈ FPos(l) :
root(l|p) = f, p.i ∈ FPos(l). The set CMR of replacement maps (for R) that
are at most as restrictive as μcan

R is given by CMR = {μ ∈ MR | μcan
R ' μ}.

The most liberal replacement map (for R) μ	 is the greatest element of MR,
i.e., with μ	(f) = {1, . . . , ar(f)} for all f ∈ F .

3 Weakening the Termination Assumption in Newman’s
Lemma for Left-Linear Rewrite Systems

Suppose R is a locally confluent non-terminating TRS. In order to try to prove
confluence of R, we will impose context-sensitivity restrictions on R, i.e., a
replacement map μ such that →R,μ (hopefully) becomes terminating and such
that confluence of →R,μ implies confluence of →R (hence of R).

3.1 Confluence Via Context-Sensitive Confluence

For reasons that will become clear later on (cf. Lemmas 3, 4, 5) we need as
general assumptions, besides termination of →R,μ, that R is left-linear, and
that μ is at most as restrictive as the canonical replacement map μcan

R .

Remark 1. To see why requiring μ ∈ CMR makes sense, consider the rewrite
system R consisting of the rules c → b, b → c and h(b) → a, together with
μ(h) = ∅. Here we have one critical overlap h(c) ← h(b) → a (which is joinable
via h(c) → h(b) → a). However, we cannot deduce this using only → −μ-
reduction (in Rmu this critical peak does not even exist, since h(c) ← h(b) is
not a → −μ-step; moreover, for joinability we need the h(c) → h(b) which is
also not a → −μ-step).

– R is left-linear. (1)
– μ ∈ CMR. (2)
– Rμ is terminating. (3)

A first question is whether, for any such Rμ, its context-free version R is al-
ready (necessarily) confluent if R is locally confluent? Actually, when looking
at examples in the literature, especially in papers on CSR, we have not found
a single counterexample to this tempting conjecture. However, it turns out that
conditions (1)–(3), together with local confluence of R, are not yet sufficient for
concluding confluence of R. A simple counterexample is the following modified
and extended version of the basic counterexample to the equivalence of local
confluence and confluence (cf. [10]).

Example 3. Suppose the TRS R is given as follows, again with the relevant part
of its reduction graph on the right.
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(1) b → a
(2) b → c
(3) c → h(b)
(4) c → d
(5) a → h(a)
(6) d → h(d)

b � c

a
�

h(b) ��
h(c) d

�

h(a)
� �

h(h(b)) �
�

h(h(c)) h(d)
��

. . .
�� . . . . . .� . . . . . . . . . . . .

��

Clearly, R is not confluent, since for instance for a ← b → c → d there is no
common successor of a and d. However, R is obviously locally confluent. The two
critical peaks a ← b → c and h(b) ← c → d are joinable via a → h(a) ← h(b) ← c
and h(b) → h(c) → h(d) ← c, respectively. Moreover, choosing μ with μ(h) = ∅
we have μ = μcan

R ∈ CMR. For this choice of μ, →R,μ is easily seen (and proved)
to be terminating. However, what goes wrong in this example is the fact that
→μ is not (locally) confluent. To see this, consider again the critical peaks. For
a ←μ b →μ c, reduction of a and c to a common successor is not possible by
→μ-steps only: a →μ h(a) ←μ h(b) ←μ c. Similarly, for h(b) ←μ c →μ d we
only get h(b) →μ h(c) →μ h(d) ←μ d. In other words, although → (hence R) is
locally confluent, →μ is not. Thus we cannot argue using Newman’s Lemma for
→μ.

Example 3 and Remark 1 suggest that in order to be able to use Newman’s
Lemma for the context-sensitive restriction →μ of → (in proofs of confluence of
→), we have to additionally require the following property of Rμ.

– Every critical peak t1 ← s → t2 of R is joinable with →μ-steps. (4)

For locally diverging μ-steps (i.e., of the form t1 ←μ s →μ t2) that correspond
to a variable overlap we also have to ensure →μ-joinability.2 Actually, for proof-
technical reasons we need a stronger property. To describe this formally, we first
need some additional terminology.

Definition 1 (level of subterms). Given Rμ and a term t, the level of a
subterm t|p of t (and of p), denoted by level(t, p) is the number of all non-
replacing positions q = q′.i on the path in t from ε to p with i �∈ μ(root(t|q′ )).
Formally:

level(t, p) =

⎧⎨⎩ 0, if p = ε
level(ti, p′), if p = i.p′, t = f(t1, . . . , tn), i ∈ μ(f)

1 + level(ti, p′), if p = i.p′, t = f(t1, . . . , tn), i �∈ μ(f)

If x ∈ V ar(t) (for an arbitrary term t), we define – slightly abusing notation
– level(t, x) = max{level(t, p) | t|p = x} if x ∈ V ar(t), and level (t, x) = 0 if
x �∈ V ar(t).
2 E.g., consider f(x) → g(x) and a → b with μ(f) = {1}, μ(g) = ∅. Then we have

f(b) ←μ f(a) →μ g(a), which is →-joinable via f(b) → g(b) ← g(a), but not →μ-
joinable, because the latter step is not a →μ-step.
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Intuitively, level (t, p) describes ‘the degree of how forbidden’ it is to reduce the
subterm t|p of t.

Definition 2 (level-decreasingness). Given Rμ, a rule l → r ∈ R is said
to be level-decreasing, if for every variable x ∈ V ar(l) we have level(l, x) ≥
level(r, x). Rμ is level-decreasing if every rule of Rμ is level-decreasing.

Note that ground TRSs are trivially level-decreasing.
Our last condition for the announced confluence criterion now reads as follows.

– Rμ is level-decreasing. (5)

Definition 3 (level of reduction steps). Given Rμ we define binary relations
→μ,i and →μ,≤i, for all i ≥ 0 as follows:

s →μ,i t ⇐⇒ s →R,p t, level (s, p) = i .

s →μ,≤i t ⇐⇒ s →μ,k t for some k ≤ i .

For the sake of readability, if μ is clear from the context, we also write →i and
→≤i instead of →μ,i and →μ,≤i, respectively.

From the definitions of →μ and →k it is obvious that →μ =
⋃

k≥1 →k holds.
Clearly, s →k t (s →≤k t) means that t can be obtained from s by contracting
some redex at level k (at some level ≤ k). And s →μ t says that we can get t
from s by contracting a redex s|p of s at some non-replacing position p of s (i.e.,
such that the level of s|p of s is equal to some k ≥ 1).

Example 4 (Example 3 continued). Adding levels to reduction steps, we have
here e.g. a ←0 b →0 c and a →0 h(a) ←1 h(b) ←0 c as well as h(b) ←0 c →0 d
and h(b) →1 h(c) →1 h(d) ←0 d.

Proposition 1. Given Rμ the following properties hold:

(a) →k ⊆ →≤k ⊆ →≤k+1 for all k ≥ 0.
(b) →μ = →0, →μ =

⋃
k≥1 →k.

(c) → =
⋃

k≥0 →≤k =
⋃

k≥0 →k = →μ ∪ →μ.

Proof. Straightforward by the respective definitions.

Lemma 1 (confluence criterion for →μ, cf. [15]). Let Rμ be a CSRS sat-
isfying (1), (3), (4) and (5). Then →μ is confluent.

Proof. Local confluence of →μ can be easily directly shown by considering all
cases of local divergences and exploiting properties (1), (4) and (5) which to-
gether with Newman’s Lemma yields confluence because of (3). In particular,
our conditions (1) and (5) imply the property that →μ has left-homogeneous
replacing variables (cf. [15, Def. 5]) which guarantees that variable overlaps in
Rμ are uncritical.3

3 Actually, condition (5) could still be weakened a bit here by requiring only that
level-decreasingness need only hold for rules with variables of level 0 in left-hand
sides. However, Lemma 1 is anyway a special case of [15, Theorem 5] and we will
not use the above slight generalization later on.
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Lemma 2 (extraction lemma). Given Rμ, suppose s →≤k+1 t at some level
≥ 1. Then s has the form s = C[s1, . . . , sn]p1,...,pn where the pi’s are all minimal
non-replacing positions in s, and t = C[t1, . . . , tn]p1,...,pn , with si →≤k ti for
some i ∈ {1, . . . , n} and sj = tj for all j ∈ {1, . . . , n} \ {i}.

Proof. Straightforward by definition of →≤i.

The next result gives conditions under which reduction sequences can be re-
arranged such that →0-steps are done first.4

Lemma 3 (exchange lemma). Let Rμ be given with (1), (2) and (5), i.e.,
such that R is left-linear, μ ∈ CMR and Rμ is level-decreasing. Then the fol-
lowing rearrangement property holds for every k ≥ 0:5 →≤k · →0 ⊆ →0 · →∗

≤k .

Proof. First we observe that for k = 0 the inclusion holds trivially. Thus suppose
k ≥ 1. Furthermore let s →k′ t at position p with 0 ≤ k′ ≤ k and t →0 u at
position q. Again, if k′ = 0, the inclusion holds trivially, hence we may assume
k′ ≥ 1. Now, p and q must be distinct (otherwise we have a contradiction,
because a position cannot be both replacing and non-replacing). We distinguish
the following cases.

(a) p ‖ q: Then the two steps commute and we get s →0 s[u|q]q →k′ s[u|q][t|p]p =
u.

(b) p < q: This is impossible, since s →k′ t at p with k′ ≥ 1 implies p ∈ Posμ(s)
and p ∈ Posμ(t), hence also q ∈ Posμ(t) (because of p < q). But on the
other hand, due to t →0 u at position q, we have q ∈ Posμ(t), hence a
contradiction.

(c) p > q: In this case we have s = s[lσ]p →k′ s[rσ]p = t = t[l′τ ]q →0 t[r′τ ]q = u
(for some l → r, l′ → r′ ∈ R and substitutions σ, τ). If we can show that
position p in t is below the pattern of l′ in t[l′τ ]q we are done, because then we
have – by left-linearity of R – s = s[l′τ ′]q →k′ t = t[l′τ ]q →0 t[r′τ ]q = u (for
some rewrite rule l′ → r′ ∈ R and some substitution τ ′) which commutes
via s = s[l′τ ′]q →0 s[r′τ ′]q →∗

≤k′ s[r′τ ]q = t[r′τ ]q = u. Note that for the
reduction s[r′τ ′]q →∗

≤k′ s[r′τ ]q in the variable parts of the right-hand side
r′ of l′ → r′, more precisely for the bound k on the level of the reduction
steps) we need assumption (5). Now suppose p in t were in the pattern of l′.
This would imply by (2) that p ∈ Posμ(t) and p ∈ Posμ(s), hence k′ = 0.
But this is a contradiction to our assumption k′ ≥ 1 from above. Hence we
are done.

The next commutation result will be needed to prove a kind of backward preser-
vation of →μ-normal forms along non-replacing reduction steps (cf. Lemma 5).
4 This is similar to standardization in left-linear TRSs (cf. e.g. [2]), except for the fact

that we need additional information about the individual steps.
5 Actually, from the proof it is clear that we even have the stronger statement →≤k

· →0 ⊆ →0 · −−‖−→≤k where −−‖−→≤k denotes a parallel reduction step with each
contraction being at a level at most k. However, we don’t need this stronger version
later on.
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Lemma 4 (commutation lemma). Let Rμ be given with (1), (2) and (5), i.e.,
such that R is left-linear, μ is at most as restrictive as μcan

R and Rμ is level-
decreasing. Then the following commutation property holds for every k ≥ 1:6

Proof. Suppose t ←k s →0 u at positions p and q, respectively. Hence, t =
s[t|p]p ←k s[s|p]p = s = s[s|q]q →0 s[u|q]q = u. We proceed by case analysis.

(a) p ≤ q: Due to k ≥ 1 we have p ∈ Posμ(s) and thus also q ∈ Posμ(s).
However, s →0 u at q implies q ∈ Posμ(s), hence a contradiction.

(b) p ‖ q: In this case the reductions commute as usual: t = s[t|p]p →0 s[t|p][u|q]q
←k s[u|q]q = u where the left step is at position q and the right one at p.

(c) p > q: Because of assumption (2), μ ∈ CMR, and since k ≥ 1, this case
corresponds to a variable overlap. Moreover, due to assumption (1), left-
linearity of R, we have t = s[lσ′]q ←k s = s[lσ]q →0 s[rσ]q = u for some
l → r ∈ R and substitutions σ, σ′. Hence, t and u are joinable via t =
s[lσ′] →0 s[rσ′] ←∗

≤k s[rσ]q = u. Note that the (parallel) reduction u =
s[rσ]q →∗ s[rσ′] is of level at most k because of assumption (5), i.e., level-
decreasingness of R.

The next lemma states conditions under which reduction of some term to a
→μ-normal form implies that the original term is already a →μ-normal form.

Lemma 5 (a condition for backward invariance of →μ-normal forms).
Let Rμ be given with (1), (2) and (5), i.e., such that R is left-linear and level-
decreasing, and μ ∈ CMR. Then s →∗

μ t ∈ NF(→μ) implies s ∈ NF(→μ).

Proof. We prove the statement for one step, i.e., s →μ t ∈ NF(→μ) implies
s ∈ NF(→μ). The result then follows by transitivity (that is by induction on
the number of steps in s →∗

μ t). Suppose, for a proof by contradiction, that
s �∈ NF(→μ). Hence, there exists some s′ with s →0 s′. Moreover, s →μ t means
s →k1 t for some k1 ≥ 1. By Commutation Lemma 4 this implies that there
exists some t′ with s′ →∗

≤k1
t′ ←0 t. But this is a contradiction to t ∈ NF(→μ).7

3.2 Main Results

Now we are ready to prove the main results of the paper. The first one is a ‘level
confluence’ criterion for CSRSs.

Theorem 1 (level confluence criterion / technical key lemma). Let Rμ

be given satisfying (1)-(5). Then →≤k is confluent for every k ≥ 0.

Proof. We prove confluence of →≤k for all k by induction on k.

(o) Base case k = 0: Confluence of →≤0 = →0 = →μ follows from Lemma 1.

6 Again, from the proof it follows that even the stronger property ←≤k · →0 ⊆ →0

· ←‖−− ≤k holds.
7 Note that the assumptions (1), (2), (5) in the lemma are needed to enable applica-

bility of Lemma 4.
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(i) Induction step “k =⇒ k + 1”: Consider an arbitrary →≤k+1-divergence
t′1 ←∗

≤k+1 s →∗
≤k+1 t′2. Due to assumption (3) we may →μ-normalize t′1

and t′2 yielding D1 : s →∗
≤k+1 t′1 →∗

0 t1 ∈ NF(→μ) and D2 : s →∗
≤k+1

t′2 →∗
0 t2 ∈ NF(→μ). Now, by repeated application of Exchange Lemma 3

and termination of →μ we can rearrange these derivations into D′
1 : s →∗

0
s1 →∗

≤k+1 t1 ∈ NF(→μ) and D′
2 : s →∗

0 s2 →∗
≤k+1 t2 ∈ NF(→μ), where

the →≤k+1-reduction steps are all non-replacing, i.e., of level ≥ 1. From
Lemma 5 we infer that s1, s2 ∈ NF(→μ). Together with confluence of →0 (see
base case) this implies s1 = s2. Hence the divergence diagram collapses to
t1 ←∗

≤k+1 s1 = s2 →≤k+1 t2. Now, let s′ = s1 = s2. Repeated applications of
the Extraction Lemma 2 yield s′ = C[u1, . . . , um] →∗

≤k+1 C[w1, . . . , wm] = t2
and s′ = C[u1, . . . , um] →∗

≤k+1 C[v1, . . . , vm] = t1 for some context C[. . .]
such that vi ←∗

≤k ui →∗
≤k wi for 1 ≤ i ≤ m. Applying the induction hy-

pothesis (for k) to all i, 1 ≤ i ≤ m, we conclude that there exist ui for
all i with v1 →∗

≤k ui ←∗
≤k wi. Putting back these reductions in the non-

extracted version, we get t1 = C[v1, . . . , vm] →∗
≤k+1 C[u1, . . . um] ←≤k+1

C[w1, . . . , wm] = t2. Hence, s′ = C[u1, . . . um] is a common →≤k+1-reduct of
both t1 and t2 as desired, and we are done.

As a consequence of this level confluence criterion we thus obtain our main result,
a generalized version of Newman’s Lemma for left-linear TRSs.8

Theorem 2 (main result). Let R be a TRS and μ be a replacement map on
the signature of R such that (1)-(5) are satisfied, i.e., such that R is left-linear,
μ ∈ CMR, Rμ is terminating and level-decreasing and all critical pairs of R are
Rμ-joinable. Then R is confluent.

Proof. Due to Proposition 1(c) this is an immediate corollary of Theorem 1.

Note that Newman’s Lemma (for left-linear TRSs) is obtained from Theorem
2 as a special case, namely by taking – for some given R – μ to be the most
liberal replacement map μ = μ	. This choice of μ clearly implies (2) and (5),
and also that → = →μ, hence termination of → is equivalent to termination
of →μ. Actually, Theorem 2 properly generalizes Newman’s Lemma (for left-
linear TRSs) since there are cases (cf. e.g. Examples 1, 2) where the former is
applicable, but not the latter because the system (as a TRS) is not terminating.

3.3 Examples and Comparison

Let us first reconsider our Examples 3, 1 and 2. In Example 3, R with μ as
specified satisfies all preconditions of Theorem 2 except (4). Hence the latter
is not (and should not be) applicable. In Example 1, choosing μcan

R , i.e., with
μ(f) = μ(h) = ∅, conditions (1)-(5) are all satisfied as is easily verified. In
particular, termination of Rμ is not difficult to prove by some of the methods
proposed in the literature (cf. e.g. [3], [9], [5], [18]). Observe that, when choosing
some μ ∈ CMR, in order to ensure termination of Rμ we must obviously have

8 more precisely, for the abstract reduction systems induced by left-linear TRSs.
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μ(f) = ∅ (because otherwise this entails non-termination of Rμ). Hence, for h
the only choice is μ(h) = ∅. Otherwise, (5) would be violated.

In Example 2, choosing μ = μcan
R (hence μ(:) = μ(s) = μ(hd) = ∅, μ(inc) =

μ(tl) = {1}) it is easy to verify that (1)-(5) do indeed hold. Hence, confluence of
the TRS follows by Theorem 2.

When applying Theorem 2, there is a certain flexibility in the sense that the
parameter μ may be chosen differently. We require μ ∈ CMR, but not necessarily
μ = μcan

R as in the above examples. In fact, in certain cases the canonical μcan
R

need not be a good choice, whereas a more liberal μ can work, cf. conditions
(3)-(5).

Example 5 (Example 1 modified). Consider R consisting of the rules (1) {g(a) →
f(g(a)), (2′) g(b) → c(a), (3) a → b, (4) f(x) → h(x) and (5′) h(x) → c(b). Here,
choosing μcan

R we cannot apply Theorem 2 to infer confluence, since property (4)
is violated. However, choosing μ ∈ CMR with μ(g) = μ(c) = {1} and μ(i) = ∅ for
all other function symbols i, Theorem 2 is applicable and shows indeed confluence
of R.

Comparing our new confluence criterion of Theorem 2 with other known criteria
(or decision procedures, respectively) for (possibly non-terminating) TRSs, cf.
in particular those of [26], [11], [8], [23], [24], [21], [7], [6] it turns out to be
incomparable w.r.t. all of them. This is easy to show by exhibiting examples
where our criterion is applicable whereas the other ones are not, and vice versa.
This incomparability is not really surprising, because all other confluence criteria
above do not rely on a (partial) termination assumption, whereas our criterion
crucially does.

3.4 Discussion

Let us first discuss the preconditions for applying Theorem 2, namely, (1)-(5),
the effectiveness of using it for confluence proofs, and the inherent limitations of
this confluence criterion. Then we will see how these latter limitations naturally
lead to some interesting open problems.

Recall that applicability of Theorem 2 requires the following properties:

– R is left-linear. (1)
– μ ∈ CMR. (2)
– Rμ is terminating. (3)
– Every critical peak t1 ← s → t2 of R is joinable with →μ-steps. (4)
– Rμ is level-decreasing. (5)

Note that checking (1), (2) (and (4) provided (3) holds) is easy. Furthermore, in
(2), there are only finitely many possibilities for choosing some μ ∈ CMR (for
finite R), hence the search for an appropriate μ ∈ CMR can also be automated.
Proving termination of Rμ, i.e., (3), is of course undecidable in general, but
nowadays numerous powerful methods and tools exist for such context-sensitive
termination proofs, cf. e.g. [5], [18]. Thus, the applicability of the confluence
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criterion of Theorem 2 is effectively decidable, provided that (3) holds, for some
μ ∈ CMR.

Having a closer look at the preconditions, termination of →μ (3) is crucial
to get a Newman style confluence criterion. The conditions (1) left-linearity of
R, and (2) μ ∈ CMR, are essential for several important lemmas (especially
Lemmas 3, 4 and 5) used in the proof of the main Theorem 2. Condition (4),
at least in combination with (2), seems to be unavoidable to infer confluence of
→μ using (1). The only condition which appears to be less clear and intuitive is
level-decreasingness of →μ (5). Besides termination of →μ, this condition is the
most restrictive application condition in practical examples. It would be nice if it
could be dropped or weakened. Currently we do not know any counterexample
to the modified (generalized) statement of Theorem 2 where condition (5) is
dropped. On the other hand, the proof of Theorem 2 (via the “level confluence”
criterion of Theorem 1) as well as Lemmas 3 and 4 heavily rely on this condition.
Hence we have the following

Open Problem 1 (necessity of level-decreasingness?). Does the state-
ment of Theorem 2 also hold if precondition (5) is omitted? In other words,
is any TRS R s.t

– R is left-linear,
– μ ∈ CMR,
– Rμ is terminating, and
– every critical pair of R is Rμ-joinable

necessarily confluent?

A positive solution to this open problem would be particularly nice, since there
are numerous examples (cf. e.g. the literature on CSR) where level-decreasing-
ness is not satisfied. A basic one is the following (cf. e.g.[17]).

Example 6. Consider the R given by

from(x) → x : from(s(x))
sel(0, y : z) → y

sel(s(x), y : z) → sel(x, z)

where from models a kind of parameterized version of generating infinite lists of
natural numbers (cf. Example 2 for a non-parameterized version), and sel serves
for extracting elements from a list. This system is clearly non-terminating as a
TRS, but becomes terminating as Rμ with e.g. μ = μcan

R (hence, with μ(:) =
{1}). Conditions (1)-(4) of Theorem 2 are easily verified, but (5) is violated,
since the first rule is not level-decreasing. Hence Theorem 2 cannot be applied,
although R is indeed confluent, simply because it is orthogonal ([26]).

Another issue that is related to (the preconditions and the statement of) Theo-
rem 2 is the following which we will only touch (cf. e.g. [2] for more details and
background). Let us reconsider the introductory counterexample 3 that we used



78 B. Gramlich and S. Lucas

to motivate the requirement that all critical pairs should be →μ-joinable. In the
example this was not the case, and R was not confluent, because a and d with
a ← b → c → d did not have a common reduct. But, interestingly, it turns out
that, when switching from finitary rewriting and confluence to infinitary rewrit-
ing and confluence (cf. e.g. [4], [12], [16], [2]), then Example 3 behaves nicely, in
the sense that R is infinitary confluent (ω-confluent). Intuitively this is easy to
see since the infinitary normal forms of both a and d are hω, hence the system
is indeed ω-confluent. A tempting conjecture in this direction which we state as
open problem is the following.

Open Problem 2 (criterion for ω-confluence?). Is any left-linear, non-
collapsing, locally confluent TRS R, with μ ∈ CMR and →R,μ terminating,
necessarily ω-confluent?

Orthogonal systems are known to be ω-confluent (for strongly converging reduc-
tions) provided they are non-collapsing (cf. [12], [2]). The typical counterexample
showing that the non-collapsingness in this result cannot be dropped is as follows
([12]): Let R consist of the rules a(x) → x, b(x) → x and c → a(b(c)). Then we
get the reductions

c → a(b(c)) → a(c) → a(a(b(c))) → a(a(c)) →ω aω

c → a(b(c)) → b(c) → b(a(b(c))) → b(b(c)) →ω bω ,

hence aω ←ω c →ω bω, but there is no term t with aω →≤ω t ←≤ω bω. Now, R
is clearly non-terminating, but Rμ is also non-terminating for any μ here. This
phenomenon also applies to other collapsing counterexamples (to ω-confluence)
in [12]. If instead of the above system we consider R consisting of a(x) → x,
b(x) → x and c → d(a(b(c))), then Rμ becomes obviously terminating e.g. for
μ ∈ CMR with μ(a) = μ(b) = {1}, μ(d) = ∅. However, for (da)ω ←ω c →ω (db)ω

we can now find a common reduct (in infinitary rewriting): (da)ω →ω dω ←ω

(db)ω. Hence, in the above Open Problem 2 it could even make sense to generalize
the statement by omitting the non-collapsing requirement.

If the answer to the above open problem were “yes”, then this would be a
nice way to prove ω-confluence. To the best of our knowledge it would also be
the first confluence criterion for non-orthogonal infinitary rewrite systems.

4 Conclusion

To conclude, we have presented a new confluence criterion for (possibly non-
terminating) left-linear TRSs which properly generalizes Newman’s Lemma (for
left-linear TRSs). The criterion is We think that not only the result itself is
interesting, but also the proof technique employed that uses the more general
framework of context-sensitive rewriting to finally derive a result about ordinary
(context-free) rewriting. Methodologically, the approach strongly differs from
related confluence criteria. It is neither based on critical pair criteria nor on
modularity properties, but rather on a combination of Newman’s Lemma (for a
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terminating sub-relation of the rewrite relation, that is not induced by a sub-
TRS) with a level-based approach that exploits rearrangement and commutation
properties.

Acknowledgements. We would like to thank the anonymous referees for var-
ious useful comments and hints.
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H. Kirchner, ed., Proc. 21st CAAP, Linköping, Sweden, LNCS 1059, pages 211–225.
Springer, April 1996.

9. B. Gramlich and S. Lucas. Modular termination of context-sensitive rewriting.
In C. Kirchner, ed., Proc. 4th PPDP, Pittsburgh, PA, USA, pages 50–61, October
2002. ACM Press.

10. J.R. Hindley. An abstract Church–Rosser theorem, part ii: Applications. Journal
of Symbolic Logic, 39:1–21, 1974.

11. G. Huet. Confluent reductions: Abstract properties and applications to term rewrit-
ing systems. Journal of the ACM, 27(4):797–821, October 1980.

12. R. Kennaway, J. W. Klop, R. Sleep, and F.-J de Vries. Transfinite reductions in
orthogonal term rewriting systems. Information and Computation, 119(1):18–38,
May 1995.

13. J. W. Klop. Term rewriting systems. In S. Abramsky, D. Gabbay, and T. Maibaum,
eds., Handbook of Logic in Computer Science, volume 2, chapter 1, pages 2–117.
Clarendon Press, Oxford, 1992.

14. J. W. Klop, A. Middeldorp, Y. Toyama, and R. de Vrijer. Modularity of confluence:
A simplified proof. Information Processing Letters, 49:101–109, 1994.

15. S. Lucas. Context-sensitive computations in functional and functional logic pro-
grams. Journal of Functional and Logic Programming, 1998(1):1–61, January 1998.

16. S. Lucas. Transfinite rewriting semantics for term rewriting systems. In A. Middel-
dorp, ed., Proc. 12th RTA, Utrecht, The Netherlands, LNCS 2051, pages 216–230,
May 2001, Springer.



80 B. Gramlich and S. Lucas

17. S. Lucas. Context-sensitive rewriting strategies. Information and Computation,
178(1):294–343, 2002.

18. S. Lucas. Polynomials over the reals in proofs of termination: From theory to prac-
tice. RAIRO Theoretical Informatics and Applications, 39(3):547-586, July 2005.

19. M. H. A. Newman. On theories with a combinatorial definition of equivalence.
Annals of Mathematics, 43(2):223–242, 1942.

20. E. Ohlebusch. Modular properties of composable term rewriting systems. Journal
of Symbolic Computation, 20(1):1–42, July 1995.

21. S. Okui. Simultaneous critical pairs and Church-Rosser property. In T. Nipkow,
ed., Proc. 9th RTA, Tsukuba, Japan, LNCS 1379, pages 2–16, 1998. Springer.

22. V. van Oostrom. Confluence by decreasing diagrams. Theoretical Computer Sci-
ence, 126(2):259–280, April 1994.

23. V. van Oostrom. Developing developments. Theoretical Computer Science,
175(1):159–181, March 1997.

24. M. Oyamaguchi and Y. Ohta. A new parallel closed condition for Church–Rosser
of left-linear term rewriting systems. In H. Comon, ed., Proc. 8th RTA, Sitges,
Spain), LNCS 1232, pages 187–201, June 1997. Springer.

25. J.C. Raoult and J. Vuillemin. Operational and semantic equivalence between re-
cursive programs. Journal of the ACM, 27(4):772–796, October 1980.

26. B. K. Rosen. Tree-manipulating systems and Church-Rosser theorems. Journal of
the ACM, 20:160–187, 1973.

27. Y. Toyama. On the Church–Rosser property of term rewriting systems. ECL
Technical Report 17672, NTT, December 1981. In Japanese.

28. Y. Toyama. On the Church-Rosser property for the direct sum of term rewriting
systems. Journal of the ACM, 34(1):128–143, 1987.

29. Y. Toyama and M. Oyamaguchi. Church–Rosser property and unique normal
form property of non-duplicating term rewriting systems. In N. Dershowitz and
N. Lindenstrauss, eds., Proc. 4th CTRS, LNCS 968, pages 316–331. Springer, 1995.



Unions of Equational Monadic Theories�

Piotr Hoffman

Institute of Informatics, Warsaw University, Poland
piotrek@mimuw.edu.pl

Abstract. We investigate the decidability of unions of decidable equa-
tional theories. We focus on monadic theories, i.e., theories over signatures
with unary symbols only. This allows us to make use of the equivalence be-
tween monoid amalgams and unions of monadic theories. We show that if
the intersection theory is unitary, then the decidability of the union is guar-
anteed by the decidability of tensor products. We prove that if the inter-
section theory is a group or a group with zero, then the union is decidable.
Finally, we show that even if the intersection theory is a 3-element monoid
and is unitary, the union may be undecidable, but that it will always be de-
cidable if the intersection is 2-element unitary. We also show that unions
of regular theories, i.e., theories recognizable by finite automata, can be
undecidable. However, we prove that they are decidable if the intersection
theory is unitary.

1 Introduction

We consider the following question:

If S and T are decidable equational theories, then under what assump-
tions is the union theory S ∪ T decidable as well?

The practical importance of this question is clear: our ability to combine decision
procedures for S and T into a decision procedure for the union depends on it.

It is obvious that for the union S ∪ T to be decidable, something more is
needed than just S and T being decidable themselves. Let ΣS be the signature
of S and ΣT the signature of T , and let ΣU = ΣS ∩ ΣT be their intersection.
As usual, we assume that any equation over ΣU is a consequence of S iff it is
a consequence of T . This means that an intersection theory U over ΣU exists
which is conservatively extended by S and by T .

Since 1974 it is known [1] that if ΣU is empty, i.e., if S and T are built over
disjoint signatures, then decidability of S and T implies the decidability of S∪T .
A few years ago it has been proved that if effective U-bases of S and T exist,
then the decidability of S and T implies the decidability of S ∪ T [2,3].1

Following the ideas of [4], in our work we focus on monadic theories, that
is, on theories over signatures in which all function symbols are unary (in fact,
account is also taken of constants). This admittedly strong restriction makes the

� This work has been partially supported by EU project SENSORIA (no. 016004).
1 These results are succintly presented in Sect. 3.
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research problem simpler, but far from trivial. It is therefore a perfect vehicle for
testing ideas that may be later applied to theories in which symbols of arbitrary
arities appear. As for theorems stating the undecidability of certain unions, there
is of course no need to generalize them to non-monadic theories.

Three categories of results are presented in the paper. These are: results on
unitary theories and links between unions and tensor products (Sect. 3), results
on the decidability of unions built over group and group-like theories (Sect. 4),
and results on the undecidability of certain unions (Sect. 5).

We start with Sect. 2, in which basic notions are defined. In Sect. 3 we first
recall known results on theories over effective bases (Th. 1). We then show that
if the intersection theory is unitary and the tensor products are decidable, then
so is the union (Th. 2). In particular, unions of regular theories, that is, of theo-
ries recognizable by finite automata, are decidable if their intersection is unitary
(Cor. 2). In Sect. 4 we show that a union of theories whose intersection is a group
is decidable under certain liberal assumptions (Th. 3, Cor. 3); a similar result is
proved for groups with zero (Th. 4). We start Sect. 5 by recalling [4] that a union
of theories with unitary intersection may be undecidable (Th. 5). We then show
that this is true even if one of those theories is regular with only 4 equivalence
classes and the intersection is the theory of two boolean constants (Th. 6). We
also prove that our example is minimal, i.e., if the intersection is unitary and reg-
ular with less than 3 equivalence classes, then the union is decidable (Prop. 3).
Finally, we present a construction due to Sapir [5] which proves that even the
union of two regular theories may be undecidable (Th. 7). We conclude by a dis-
cussion of the forms of assumptions that might guarantee decidability of theory
unions and of possible generalizations of the obtained decidability results.

2 Unions of Theories and Amalgams of Monoids

In this paper we deal only with monadic theories. A monadic signature is a finite
set ΣS of unary function symbols. A monadic theory S is a set of equations of
the form t1(x) = t2(x), where t1, t2 are terms over ΣS . In fact, signatures in
which constants appear can be encoded as monadic signatures by adding, for all
symbols f and all constants c, equations c(f(x)) = c(x). Thus, our considerations
are applicable to signatures with both nullary and unary symbols.

Any monadic theory S over ΣS naturally defines a monoid S and a homo-
morphism hS : Σ∗

S → S from the free monoid over the alphabet ΣS onto S. The
monoid S is simply the quotient of the free monoid Σ∗

S by an equivalence rela-
tion such that words w1, w2 over ΣS are considered equivalent iff the terms they
represent are equal in S, and hS is the canonical homomorphism. The neutral
element 1 of S represents the equivalence class of the variable “x”. The word w
is said to represent the element hS(w) ∈ S, and we will write w instead of hS(w).
When speaking about any monoid S, we will tacitly assume that it is generated
by a finite set ΣS and that a canonical homomorphism hS : Σ∗

S → S is given.
A construction converse to the one presented above also exists [4], taking any
monoid S and homomorphism hS from Σ∗

S onto S to a monadic theory over ΣS .
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The above equivalence between monadic theories and monoids allows us to
speak about theories in the language of monoids. Any notion concerning monadic
theories has its counterpart in the world of monoids, and vice versa.

A finite presentation of a monoid S is a finite set of equations w = w′ (w, w′ ∈
Σ∗

S) such that S is the quotient of Σ∗
S by those equations. These equations are

called the defining relations of S. A monadic theory S directly corresponds to a
set of defining relations, so if S is finite, then the monoid S is finitely presented.

The word problem is said to be decidable in a monoid S if one can, given
words w, w′ over ΣS , decide whether w = w′ in S (that is, formally, whether
hS(w) = hS(w′)). The corresponding problem for theories is deciding whether
an equation t1(x) = t2(x) is a consequence of a theory S.

The word problem is said to be regular in S if the language of words e ∈
(ΣS ∪ {=})∗ of the form “w1 = w2” such that w1 = w2 holds in S is regular.
Regularity has a simple characterization in terms of monoids:

Lemma 1. The word problem is regular in a monoid S iff S is finite. ��

In the world of theories, the regularity of a theory means that a finite automa-
ton exists which for any term t computes an index i(t) such that t1 = t2 is a
consequence of the theory iff i(t1) = i(t2).

Assume theories U , S and T over signatures ΣU ⊆ ΣS , ΣT are given such
that S and T are conservative extensions of U . This requirement means that
any equation over ΣU is a consequence of U iff it is a consequence of S, and also
iff it is a consequence of T . We are interested in the theory S ∪T over ΣS ∪ΣT .

The corresponding notions in the world of monoids are amalgam and amal-
gamated product.

A monoid amalgam [U ⊆ S, T ] is a triple of monoids such that S∩T = U . The
monoid U is called the core of the amalgam. The amalgam is finitely presented
if U , S and T are. We assume that ΣS and ΣT extend ΣU .

For any monoid amalgam one can consider the pushout μ : S → P , ν : T → P
in the category of monoids of the span of inclusions i : U → S and j : U → T .
This is called the amalgamated product. The amalgamated product can be defined
as follows. Consider a (one-step) relation ⇔ on (S ∪ T )+ defined by the rewrite
rules s · s′ ⇔ ss′ and t · t′ ⇔ tt′ for all s, s′ ∈ S and t, t′ ∈ T . 2 Let P be the
quotient of (S ∪ T )+ by the reflexive-transitive closure ⇔∗, and let μ : S → P
be defined by μ(s) = [s]⇔∗ and ν : T → P by ν(t) = [t]⇔∗ , for all s ∈ S and
t ∈ T . Then P, μ, ν form an amalgamated product of the amalgam [U ⊆ S, T ].

An equation w = w′ on words w, w′ over ΣS ∪ ΣT holds in the amalgam if
hP (w) = hP (w′). The word problem in the amalgam is the problem of deciding
whether w = w′ in the amalgam, for given w, w′ ∈ (ΣS ∪ ΣT )∗. We have:

Lemma 2. For any words w, w′ over ΣS ∪ ΣT , w = w′ in the amalgam iff
w · 1 ⇔∗ w′ · 1. ��
2 For words over S ∪ T we use the symbol “·” to represent concatenation, so that

s · s′ is a two-letter word, while ss′ is a one-letter word. For other free monoids
concatenation is just represented by juxtaposition.
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Note that the unit “1” above is introduced in case w or w′ are empty.
A monoid amalgam [U ⊆ S, T ] precisely corresponds to a pair of theories S and

T conservatively extending a theory U . The union S ∪ T precisely corresponds
to the amalgamated product P . In particular:

Proposition 1. If S and T conservatively extend U , then an equation t1 = t2
is a consequence of S ∪ T iff the corresponding word equation w1 = w2 holds in
the amalgam [U ⊆ S, T ]. ��

Therefore we may, instead of the original problem of theory unions, consider the
following problem:

If [U ⊆ S, T ] is an amalgam of monoids with decidable word problems,
then under what assumptions is the word problem in the amalgam de-
cidable as well?

3 Unitary and Tensor-Defined Amalgams

The relationship between the core U of an amalgam [U ⊆ S, T ] and the monoids
S and T has a major influence on the difficulty of the amalgam’s word problem.
One notion that describes this relationship and which we will use intensively is
that of a unitary submonoid. A submonoid U of S is unitary in S, if, for all
u ∈ U and s ∈ S, su ∈ U or us ∈ U imply s ∈ U .

The unitariness of U in S means that if we take an element of S \ U and
multiply it, on either side, by elements of U , then this product will always fall in
S \U . Note however, that it may well happen that the product of two elements
of S \ U falls in U . On the level of theories, unitariness means that if a certain
term t over ΣS is “new”, that is it is not equal to any term over ΣU modulo the
theory S, then its composition with an “old” term, that is one over ΣU , will be
“new” as well. Again, note that it may still happen that the composition of two
“new” terms is “old”, that is that it can be proved equal to a term over ΣU .

We will also need notions describing computational aspects of the relationship
between the core U and S or T : if U is a submonoid of S, then U -membership is
decidable in S if verifying whether w ∈ U in S is decidable for all w ∈ Σ∗

S, and it
is computable if additionally a word w′ ∈ Σ∗

U may then be computed such that
w = w′ in S. Thus, on the level of theories, decidability of U -membership means
that it is decidable whether a given term over ΣS is “old”, that is whether it is
equal to some term over ΣU ; computability then means that the term over ΣU

is also computable. We have:

Lemma 3. If S has a decidable word problem, U is a submonoid of S, and
U -membership is decidable, then U -membership is computable.

Proof. If w ∈ Σ∗
S and w ∈ U , then it suffices to enumerate all w′ ∈ Σ∗

U and for
each in turn check w = w′ in S, which is decidable. ��

An amalgam [U ⊆ S, T ] with amalgamated product P, μ, ν is said to be weakly
embeddable if μ and ν are injective (that is, if S and T embed in P ). It is said



Unions of Equational Monadic Theories 85

to be embeddable if additionally for all s ∈ S, t ∈ T , we have that μ(s) = ν(t)
implies s = t ∈ U (that is, if S ∪ T embeds in P ). On the level of theories,
weak embeddability means that both S and T are conservatively extended by
the union S∪T ; in other words, two terms over ΣS (ΣT , resp.) are equal modulo
S ∪ T iff they are equal modulo S (T , resp.). Embeddability adds to this the
requirement that S and T are jointly conservatively extended by S ∪T ; in other
words, if two terms, t1 over ΣS and t2 over ΣT , are equal modulo S ∪ T , then
there must be a term t over ΣU such that t1 = t modulo S and t = t2 modulo T .
The importance of embeddability for describing unions of monadic theories has
been discussed in detail in [4]. The results [2,3] on decidability of unions require
the amalgams to be embeddable (see Lem. 4 point 3 below). We now succintly
present those results.

If U is a submonoid of S, then a U -base of S is a set G ⊆ S such that all
elements s ∈ S have a unique decomposition as s = gu, where g ∈ G, u ∈ U .
The base is effective if g and u (or rather their representations, i.e., words over
ΣS and ΣU ) may be computed. A U -cobase is defined analogously. We have:

Lemma 4. The following implications hold:

1. If S has a U -base and U -cobase, then U is unitary in S.
2. If G is a U -base of S, then G ∩ U = {1}.
3. If S and T have U -bases, then [U ⊆ S, T ] is embeddable.
4. If S has a decidable word problem, then any U -base G of S such that G-

membership is decidable in S is effective.
5. If S has a decidable word problem and an effective U -base, then U -member-

ship is decidable in S.

Proof. Claims 1 and 2 have been proved in [4]. Claim 3 has been proved in [2]
(Prop. 4.14 and Lem. 4.18). Claim 4 holds because one may simply enumerate
all pairs (w, w′) ∈ Σ∗

S ×Σ∗
U and check whether w ∈ G and ww′ = s in S. Claim

5 holds because given w ∈ Σ∗
S one may compute g ∈ G and u ∈ U such that

gu = w and then check whether g = 1 in S. ��

The following theorem is a translation of the main result of Baader/Tinelli and
Fiorentini/Ghilardi into the language of monoids. Note however that their result
is not restricted to monadic theories. A simple proof may be found in [4]:

Theorem 1. For any amalgam [U ⊆ S, T ], if:

– S and T have decidable word problems,
– there exist effective U -bases (or U -cobases) of S and T ,

then the amalgam has a decidable word problem. ��

We now turn to a notion stronger than embeddability, namely tensor-
definedeness.

A stripe is a word from (S ∪ T )+ which consists either of just one letter (in
particular, it may be a letter from U), or of interleaved elements of S \ U and
T \ U . It is natural to try to check whether an equality w = w′ holds in the
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amalgam by reducing w to a stripe W and w′ to a stripe W ′ and then checking
whether W = W ′. Indeed, any word can be reduced to a stripe (though this
stripe need not be unique):

Lemma 5. For any amalgam [U ⊆ S, T ], if U -membership is decidable in S
and T , and if S and T have decidable word problems, then for any word w ∈
(ΣS ∪ ΣT )∗ a stripe W can be computed such that w = W in the amalgam. ��

However, checking whether two stripes are equal in the amalgam need not be
trivial. In general, it is not true that if two stripes W and W ′ are equal in the
amalgam, then they must be of the same length and that then the ith letters of
W and W ′ must be equal in S or, resp., T . For example, if U is the free monoid
on one generator a, S extends U with a generator b satisfying ab = ba = 1,
and T extends U with a generator c satisfying ac = ca = 1, then W = b(cc)
has length 2 and W ′ = bcb has length 3, but W = b(cc) = bc1c = bc(ba)c =
bcb(ac) = bcb1 = bcb = W ′ in the amalgam.

The word problem is n-decidable in the amalgam if the problem of checking
W = W ′ in the amalgam is decidable for all stripes W, W ′ ∈ (S ∪ T )+ of length
≤ n.

The notion of n-tensor S⊗U T ⊗U . . . is intended to reflect the idea of proving
equivalence by using words in which no more than n separate “blocks” from S
exist. Formally, this tensor is defined as follows. Let ∼n be the least symmetric
relation on interleaved words of length n, i.e., on words w = x1 · . . . · xn such
that x1 ∈ S, x2 ∈ T , x3 ∈ S, etc., satisfying the conditions:

w · su · t · w′ ∼n w · s · ut · w′

for all s ∈ S, t ∈ T , u ∈ U and w ∈ (S · T )k, w′ ∈ (S · T )l (for n = 2k + 2l + 2)
or w′ ∈ (S · T )l · S (for n = 2k + 2l + 3), and

w · tu · s · w′ ∼n w · t · us · w′

for all s ∈ S, t ∈ T , u ∈ U and w ∈ (S ·T )k ·S, w′ ∈ T ·(S ·T )l (for n = 2k+2l+4)
or w′ ∈ (T ·S)l (for n = 2k + 2l + 3). The n-tensor ∼∗

n is the reflexive-transitive
closure of ∼n. The n-tensor T⊗U S⊗U . . . is defined analogously and also denoted
by ∼∗

n. The n-tensor is decidable if one can decide whether w ∼∗
n w′ for given

interleaved words w, w′ ∈ (S ∪ T )n, the letters of which are given as words over
ΣS and ΣT .

The amalgam is tensor-defined if for any stripes W and W ′ we have W = W ′

in the amalgam iff W and W ′ are of the same length, say n, and W ∼∗
n W ′.

Thus, a tensor-defined amalgam is one in which the checking the equality of two
stripes does not require one to use interleaved words longer than the longer of
the two stripes. This is a form of bound on the space requirements for proving
equality in the amalgam. By Lem. 5, a stripe equivalent to a given word may be
easily computed, and therefore the word problem in tensor-defined amalgams is
reduced to the problem of deciding the tensors.
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The easy proof of the following lemma may be found on the author’s webpage3:

Lemma 6. The following implications hold for any amalgam [U ⊆ S, T ] of
monoids with decidable word problems:

1. If U -membership is decidable in S and T , then the word problem in the
amalgam is decidable iff it is n-decidable for all n.

2. If U -membership is decidable in S and the amalgam is embeddable, then it
has a 1-decidable word problem.

3. If the amalgam is tensor-defined, then for any n > 0, if for all k ≤ n both
its k-tensors are decidable, then it has an n-decidable word problem. ��

This leads us to the following corollary, which essentially says that tensor-defined
unions of theories that are recognized by finite automata are decidable (though
they need not be recognizable by finite automata themselves):

Corollary 1. If an amalgam [U ⊆ S, T ] of finite monoids is tensor-defined, then
it has a decidable word problem.

Proof. In an amalgam of finite monoids, all n-tensors are finite relations and are
therefore decidable. So is U -membership. Since the amalgam is tensor-defined,
by points 1 and 3 of Lem. 6 it has a decidable word problem. ��

The notion of tensor-definedeness of an amalgam is abstract and it may be diffi-
cult to verify whether an amalgam is or is not tensor-defined. Fortunately, the fol-
lowing proposition gives us a powerful method for showing tensor-definedeness.

Proposition 2. The following implications hold for any amalgam [U ⊆ S, T ]:

1. If for all defining relations w = w′ of S either w, w′ ∈ Σ∗
U , or w, w′ ∈

Σ∗
S \ Σ∗

U , then U is unitary in S.
2. If U is unitary in S and T , then the amalgam is tensor-defined.
3. If the amalgam is tensor-defined, then it is embeddable.

Proof. In the proof of point 2, for any words w ⇔∗ w′, we show, by induction
on the length of the proof of this equivalence, that if w reduces to a stripe W
and w′ to a stripe W ′, then W and W ′ must be of the same length, say k, and
W ∼∗

k W ′ holds. This proof is quite cumbersome, and may be found, together
with the easy proofs of points 1 and 3, on the author’s webpage. ��

From the above proposition, we can infer the following corollaries:

Theorem 2. If [U ⊆ S, T ] is an amalgam such that:

– U -membership is decidable in S and T ,
– U is unitary in S and T ,
– the tensors of the amalgam are decidable,

then the amalgam has a decidable word problem.
3 In the appendix of the paper at
http://www.mimuw.edu.pl/~piotrek/RTA2006-full.ps.gz



88 P. Hoffman

Proof. By Prop. 2, the amalgam is tensor-defined. By point 3 of Lem. 6, it thus
has an n-decidable word problem for all n. By point 1 of the same lemma, it
then has a decidable word problem. ��

Corollary 2. If [U ⊆ S, T ] is an amalgam such that:

– U is unitary in S and T ,
– S and T are finite,

then the amalgam has a decidable word problem. ��

4 Amalgams with Group-Like Cores

Results presented in Sect. 5 show that even for very simple monoids S and T the
amalgam [U ⊆ S, T ] can have an undecidable word problem. Thus forcing U to be
“small” will not make the amalgam decidable. However, it turns out that if U has
a sufficiently “complete” structure, then the amalgam will have a decidable word
problem for arbitary (decidable) S and T . This is quite remarkable and suggests
that in the quest for decidability one should, instead of ensuring that the commu-
nication between S and T via U is difficult, rather try to ensure that any multi-step
communication between them can be reduced to single-step communication.

If U is a submonoid of S, then right U -quotients may be computed in S if
for any s, s′ ∈ S the set of all u ∈ U satisfying s = s′u is finite and may be
computed (strictly speaking the s, s′ are represented by words in Σ∗

S and the u
by words in Σ∗

U ). On the level of theories, the computability of right quotients
means that for any two terms t and t′ over ΣS the set of terms tU over ΣU

satisfying t(x) = tU (t′(x)) modulo S contains only finitely many terms which
are pairwise not equal modulo U , and, moreover, that this set is computable.

Theorem 3. If [U ⊆ S, T ] is an amalgam such that:

– S and T have decidable word problems,
– U is a group,
– right U -quotients are computable in S and in T ,

then the amalgam has a decidable word problem.

Proof. Because U is a group, U is unitary in S and T . For if su ∈ U for s ∈ S and
u ∈ U , then s = (su)u−1 ∈ Uu−1 ⊆ U . A similar argument works for us and for
T . Hence, by Prop. 2, the amalgam is tensor-defined. Note that U -membership
is decidable in S and T , since for any w ∈ Σ∗

S or w ∈ Σ∗
T we can check whether

there exists u ∈ U such that w = 1u; but this holds iff w ∈ U . By points 1 and 3
of Lem. 6, it thus suffices to show that the m-tensor is decidable for all m ≥ 1.

Consider any interleaved word W = s1 · t1 · . . . · sn · tn of length m and assume
m = 2n. We claim that any word W ′ equivalent to W in the tensor is of the form

(s1u1) · (u−1
1 t1u2) · (u−1

2 s2u3) · . . . · (u−1
2n−1tn)

for some u1, . . . , u2n−1 ∈ U .
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Suppose to the contrary. Let k be the least number of steps used to prove
that W and W ′ are equivalent in the tensor. Of course k > 0. Assume W ′ is
obtained from some W0 in one step and W0 from W in k − 1 steps. For W and
W0 the claim holds, that is, W0 = (s1u1) · (u−1

1 t1u2) · (u−1
2 s2u3) · . . . · (u−1

2n−1tn).
The step from W0 to W ′ is either of the form . . . · su · t · . . . ∼2n . . . · s · ut · . . .,
where su = u−1

2i−2siu2i−1 and t = u−1
2i−1tiu2i, or . . . · s · ut · . . . ∼2n . . . · su · t · . . .,

where s = u−1
2i−2siu2i−1 and ut = u−1

2i−1tiu2i, or of analogical forms with the
roles of s and t swapped. In the former case we have s = u−1

2i−2si(u2i−1u
−1)

and ut = uu−1
2i−1tiu2i = (u2i−1u

−1)−1tiu2i. In the latter case we have su =
u−1

2i−2ti(u2i−1u) and t = u−1u−1
2i−1tiu2i = (u2i−1u)−1tiu2i. This proves the claim.

Analogical claims hold for m = 2n + 1 and for the second tensor.
Now, all we have to do in order to decide whether

s1 · t1 · s2 · . . . ∼∗
m s′1 · t′1 · s′2 · . . .

is check whether there exist u1, u2, . . . ∈ U such that

s′1 = s1u1

t′1 = u−1
1 t1u2

s′2 = u−1
2 s2u3

...

By assumption, we can compute a finite set of all possible choices for u1, that
is, all u1 ∈ U satisfying s′1 = s1u1. If this set is empty, then the above system of
equations is unsatisfiable. Otherwise for each choice in turn we repeat the whole
procedure for the (shorter) list of equations

u1t
′
1 = t1u2

s′2 = u−1
2 s2u3

...

with unknowns u2, u3, . . . ∈ U . ��

Of course, a dual version of the above theorem holds for left U -quotients.
In certain cases, the assumption that right U -quotients are computable can

easily be done away with. This is the case if U is finite, since one then can simply
enumerate all elements of u ∈ U and check which of them satisfy s = s′u. Thus:

Corollary 3. If [U ⊆ S, T ] is a monoid amalgam such that:

– S and T have decidable word problems,
– U is a finite group,

then the amalgam has a decidable word problem. ��
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This corollary is especially remarkable, since it guarantees the decidability of
[U ⊆ S, T ] solely based on the form of U .

The assumption that U is a group is satisfied in many standard cases. Con-
sider a signature with three unary symbols pred, succ and neg, satisfying the
equations:

pred(succ(x)) = x neg(succ(x)) = pred(neg(x))
succ(pred(x)) = x neg(pred(x)) = succ(neg(x))
neg(neg(x)) = x

The monoid U defined by these equations is indeed a group, since all the gener-
ators can be inverted. Thus, if right quotients are computable in S and T , any
amalgam with U as core will have a decidable word problem if S and T do.

Note however that if we add 0 to the above group, that is, if we add an unary
symbol 0 and the equations:

0(succ(x)) = 0(pred(x)) = 0(neg(x)) = 0(0(x)) = 0(x) = neg(0(x))

then the monoid Unat defined by these equations is no longer a group.4 Rather, it
is the group U with a right zero 0 adjoined, which aditionally satisfies 0 neg = 0.
Therefore Th. 3 cannot be applied here. The same is true for the monoid Ubool
defined by equations

f(f(x)) = f(t(x)) = f(x) t(f(x)) = t(t(x)) = t(x)

over the generators f and t. The monoid Ubool contains an identity and two right
zeros, and is not a group.

Unfortunately, it is not in general true that an amalgam of decidable monoids
in which the core is a group with adjoined zero or right zeros must have a
decidable word problem. In fact, in the next section we prove that there exists
a monoid T with decidable word problem, such that the word problem of the
amalgam [Ubool ⊆ Ubool ∪ {0}, T ] is undecidable!

However, a slight generalization of Th. 3 to groups with zero is possible. A
group with zero is a monoid of the form G ∪ {0}, where G is a group and 0 is a
zero, that is, 0g = g0 = 00 = 0 for all g ∈ G. As is proved below, the assumption
that 0s �= 0 and s0 �= 0 for all s ∈ S \ U guarantees that U is unitary in S.

Theorem 4. If [U ⊆ S, T ] is a monoid amalgam such that:

– S and T have decidable word problems,
– U is a group with zero (which we denote by 0),
– 0s �= 0 and s0 �= 0 for all s ∈ S \ U , and a similar property holds for T ,
– right U -quotients are computable in S and in T ,

then the amalgam has a decidable word problem.

Proof. The monoid U is unitary in S and T . For if su ∈ U for some s ∈ S,
u ∈ U , then either u �= 0, and then s = (su)u−1 ∈ Uu−1 ⊆ U , or u = 0, and
then we would have s0 ∈ U . But then 0 = (s0)0 = s(00) = s0, which implies
4 The idea of this example is taken from [2].
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s ∈ U . Thus, for the same reasons as in the proof of Th. 3, it suffices to prove
that for all m ≥ 1 the m-tensor is decidable. Note that the element 0 may be
computed, since one can enumerate all words w ∈ Σ∗

U , and check for which of
them wσ = σw = w holds for all σ ∈ ΣU . For any interleaved word W = s1 ·t1 ·. . .
of length m = 2n, let Z(W ) be the word s1x1 · x1t1y1 · y1s2x2 · . . ., where:

– xi = 0 if there is some 1 ≤ j ≤ i such that sj0 = sj , 0tj0 = 0tj, sj+10 =
sj+1, . . . , 0ti−10 = 0ti−1, si0 = si or 1 ≤ j < i such that tj0 = tj , sj+10 =
sj+1, . . . , 0ti−10 = 0ti−1, si0 = si,

– xi = 0 if there is some i < j ≤ n such that 0sj = sj , 0tj−10 = tj−10, 0sj−10 =
sj−10, . . . , 0ti0 = ti0 or i ≤ j ≤ n such that 0tj = tj , 0sj0 = sj0, 0tj−10 =
tj−10, 0sj−10 = sj−10, . . . , 0ti0 = ti0,

– otherwise xi = 1,
– yi is defined analogously.

We have W ∼∗
m Z(W ). Moreover, W1 ∼∗

m W2 iff Z(W1) ∼∗
m Z(W2), since the

first relation implies Z(W1) ∼∗
m W1 ∼∗

m W2 ∼∗
m Z(W2) and vice versa.

Now consider the least symmetric relation ≈m on interleaved words of length
m such that:

w · su · t · w′ ≈m w · s · ut · w′

for all s ∈ S, t ∈ T and u ∈ U such that su0 �= su and 0t �= t and all w ∈ (S ·T )k,
w′ ∈ (S · T )l (for n = k + l + 1), and:

w · tu · s · w′ ≈m w · t · us · w′

for all s ∈ S, t ∈ T and u ∈ U such that tu0 �= tu and 0s �= s and all w ∈
(S · T )k · S, w′ ∈ T · (S · T )l (for n = k + l + 2).

It can be proved that W1 ∼∗
m W2 iff Z(W1) ≈∗

m Z(W2) and that similar
results hold for the other tensor and for m = 2n + 1; it can also be proved that
≈∗

m is decidable (for a proof of these claims see the author’s webpage). Now, if
we are to check whether W1 ∼∗

m W2, then all we have to do is compute Z(W1)
and Z(W2) and then check whether Z(W1) ≈∗

m Z(W2), which is decidable. ��

5 Undecidability Results

In this section we prove results that explain why it is so hard to come up with
methods for joining decision procedures even in the simple case of monadic
theories. We show that even for amalgams of very simple monoids the word
problem can be undecidable.

We start by recalling a fact proven in [4]. The proof itself is recast in terms
of 2-counter machines. This will allow us to show the similarities between the
proofs of Th. 5, 6 and 7. Recall that a 2-counter machine consists of a finite set
of instructions of three forms:

– “increment counter 1 (resp. 2) and jump to instruction i”,
– “if counter 1 (resp. 2) is non-zero, decrement it and jump to instruction i; if

it is zero, jump to instruction j”,
– “stop”, which is always the last instruction.
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Any 2-counter machine starts at instruction 1 with counter 1 set to n and counter
2 set to 0. The input n is considered accepted if “stop” is executed with both
counters 0. 2-counter machines are Turing-complete [6]. By a state of M a triple
(i, n, m) is understood, where i is the current instruction and n and m are the
values of the counters. The transition relation of the machine is denoted by →∗.

Theorem 5 ([4]). A finitely presented amalgam [U ⊆ S, T ] exists such that:

– S and T have decidable word problems,
– U is unitary in S and T ,
– U is the free monoid (N, +),
– S has a U -cobase,

and the amalgam has an undecidable word problem.

Proof. Let M be an N -instruction 2-counter machine. Let U = �∗, S be gener-
ated by � and # satisfying the equation # = #� and let T be generated by �,
A, B, a, b and q1, . . . , qN , satisfying the equations:

1. ab = ba, aB = Ba, bA = Ab, AB = BA,
2. �qi = qja (resp. �qi = qjb) if instruction i of M increments counter 1 (resp.

2) and jumps to instruction j,
3. qia = �qj (resp. qib = �qj) and qiA = qkA (resp. qiB = qkB) if instruction

i of M decrements counter 1 (resp. 2) if it is non-zero and then jumps to
instruction j, and otherwise jumps to instruction k.

The generators a and b represent single units on counters 1 and 2, while A and
B represent the “end” or “zero” on counters 1 and 2. Note that we do not have
relations aA = Aa or bB = Bb, which guarantees that if A or B are read, then
the counter must indeed be zero.

Obviously, U and S have decidable word problems. So does T , since for any
word w of length k over ΣT there is at most (5 + N)k words equivalent to w.
This is due to the fact that the defining relations of T preserve word length. By
point 1 of Prop. 2, U is unitary in S and T . Finally, the U -cobase of S is #∗.

We claim that #qi1a
n1bm1AB = #qi2a

n2bm2AB in the amalgam iff there is
a state (i, n, m) such that (i1, n1, m1) →∗ (i, n, m) and (i2, n2, m2) →∗ (i, n, m)
in the machine M . This claim may be proved by induction on the number of
defining relations of types 2 and 3 applied to derive the equality in the amalgam.

From the above claim we may infer that #q1a
kAB = #qNAB holds in

the amalgam iff there is a state (i, n, m) such that (1, k, 0) →∗ (i, n, m) and
(N, 0, 0) →∗ (i, n, m) in the machine M . But instruction N of the machine
M is “stop”, and so (N, 0, 0) →∗ (i, n, m) iff i = N and n = m = 0. Thus
#q1a

kAB = #qNAB in the amalgam iff (1, k, 0) →∗ (N, 0, 0), which in turn
holds iff the machine M accepts the number k. ��

The amalgam produced above is, by Prop. 2, tensor-defined and embeddable.
Actually, a much stronger result can be shown if one does not insist on S having
a U -base or cobase. A monoid U is right zero if uu′ = u′ for all u, u′ ∈ U , u′ �= 1.
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Theorem 6. Let U be the 3-element right zero monoid and let S be the 4-
element monoid obtained by adjoining a zero to U . There exists a finitely pre-
sented monoid T satisfying S ∩ T = U and such that:

– T has a decidable word problem,
– U is unitary in S and T ,

and the amalgam [U ⊆ S, T ] has an undecidable word problem.

Proof. Let M be an N -instruction 2-counter machine. Let U = {1, t, f} with t
and f right zeros, that is, with ut = t and uf = f for all u ∈ U . Let S = U ∪{0}
be U with a zero adjoined, that is, with s0 = 0s = 0 for all s ∈ S. Let T extend
U with generators A, B, a, b and q1, . . . , qN , satisfying the equations:

1. ab = ba, aB = Ba, bA = Ab, AB = BA,
2. tqi = fqja (resp. tqi = fqjb) if instruction i of M increments counter 1 (resp.

2) and jumps to instruction j,
3. tqia = fqj (resp. tqib = fqj) and tqiA = fqkA (resp. tqiB = fqkB) if

instruction i of M decrements counter 1 (resp. 2) if it is non-zero and jumps
to instruction j, and otherwise jumps to instruction k.

The monoid T has a decidable word problem, because for any word w over ΣT ,
there is only a finite number of words w′ over ΣT such that w = w′ in T . Indeed,
relations listed under point 1 just rearrange certain letters, and relations listed
under points 2 and 3 cannot lead to new equivalent words if applied more than
twice. As before, U is unitary in S and T by Prop. 2.

Similarily to the proof of the previous theorem, we claim that 0qi1a
n1bm1AB =

0qi2a
n2bm2AB in the amalgam iff there is a state (i, n, m) such that (i1, n1, m1) →∗

(i, n, m) and (i2, n2, m2) →∗ (i, n, m) in the machine M ; this can be proved by in-
duction on the number of defining relations of types 2 and 3 which have to be
applied to derive 0qi1a

n1bm1AB = 0qi2a
n2bm2AB. As before, this claim implies

that 0q1a
kAB = 0qNAB holds in the amalgam iff the machine M accepts the

number k, which is undecidable. ��

One can actually show that U and S in the above theorem are minimal:

Proposition 3. If [U ⊆ S, T ] is an amalgam such that:

– S and T have decidable word problems,
– U is unitary in S and T ,
– U has less than 3 elements,

then the amalgam has a decidable word problem.

Proof. If U has 1 element, then the amalgam is certainly decidable. If U has 2
elements, then either U is the 2-element group, or it is the trivial group with an
adjoined zero. In the first case, the amalgam is decidable by Cor. 3. So assume
that U is the trivial group with adjoined zero, that is, U = {1, 0}.

Since U is unitary in S, we cannot have 0s = 0 or s0 = 0 for any s ∈ S \ U ,
and a similar property holds for T . Also, all right U -quotients are computable,
since U is finite. Thus by Th. 4 the amalgam has a decidable word problem. ��



94 P. Hoffman

As was the case for the amalgam constructed in Th. 5, the amalgam of Th. 6 is
tensor-defined and embeddable. If the first of these properties is to be preserved
and the amalgam is to have an undecidable word problem, then T must be
infinite (see Cor. 1). However, if we do not insist on the amalgam being tensor-
defined, then it is possible to construct an amalgam of finite monoids which
itself has an undecidable word problem. We present an outline of the proof of
Sapir [5] (Th. 1.1 and remark after Lem. 4.4). Our outline is much shorter than
the original, and very similar to the proofs of Th. 5 and 6.

Theorem 7. An amalgam [U ⊆ S, T ] exists such that:

– S and T are finite,
– the amalgam is embeddable,

and the amalgam has an undecidable word problem.

Proof. Let M be an N -instruction 2-counter machine. Let U be generated by 0,
and by α1

i and α2
i for any instruction i incrementing counter 1, β1

i and β2
i for

i incrementing counter 2, ℵi, ℵ>
i and ℵ=

i for instruction i testing counter 1 on
zero, and �i, �> and �= for instruction i testing counter 2 on zero. Moreover,
let uu′ = 0 for all u, u′ among the above generators.

Let S be additionally generated by a, b, q1, . . . , qN and Q1, . . . , QN−1. Let T
be additionally generated by a′, b′, A and B. Let both be defined by the following
relations (in addition to those defining U):

1. qi = aα1
i Qi in S, and α1

i = a′α2
i in T , and α2

i Qi = qj in S, if instruction i
increments counter 1 and jumps to instruction j,

2. qi = Qiβ
1
i b in S, and β1

i = β2
i b′ in T , and Qiβ

2
i = qj in S, if instruction i

increments counter 2 and jumps to instruction j,
3. qi = ℵiQi in S and:

(a) a′ℵi = ℵ>
i in T and aℵ>

i Qi = qj in S,
(b) Aℵi = Aℵ=

i in T and ℵ=
i Qi = qk in S,

if instruction i decrements counter 1 if it is non-zero and then jumps to
instruction j, and otherwise jumps to instruction k,

4. qi = Qi�i in S and:
(a) �ib

′ = �>
i in T and Qi�

>
i b = qj in S,

(b) �iB = �=
i B in T and Qi�

=
i = qk in S,

if instruction i decrements counter 2 if it is non-zero and then jumps to
instruction j, and otherwise jumps to instruction k,

5. ss′ = 0 in S and tt′ = 0 in T for all products of generators s, s′ of U and S or
t, t′ of U and T , except for those that appear in one of the above relations.

Both S and T extend U , since no two generators of U can be equated by applying
the above relations. Also, both are finite. Finally, it can easily be verified that
the amalgam is embeddable.

As before, one can prove that A(aa′)n1qi1(b′b)m1B = A(aa′)n2qi2(b′b)m2B in
the amalgam iff there is a state (i, n, m) of the machine M such that (i1, n1, m1)
→∗ (i, n, m) and (i2, n2, m2) →∗ (i, n, m). This implies that A(aa′)kq1B =
AqNB iff (1, k, 0) →∗ (N, 0, 0) in M , that is, iff k is accepted by M . ��
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6 Conclusions

Results such as Th. 2, 3, 4 or 6 show that the approach via monoid amalgams,
proposed in [4] where the weaker Th. 5 was proved, works in practice. Still, even
in the realm of monadic theories, a great number of problems concerning the
decidability of unions remains open. For example, unitariness is sufficient for the
amalgam to be tensor-defined, but is certainly not necessary; a sufficient and
necessary notion is not yet known. The decidability of n-tensors and the notion
of n-decidability remain unexplored (though see [7]). Decidability of amalgams
with “small” cores has been explored in this paper only in the unitary case.
Decidability of amalgams with “complete” cores has been dealt with for groups
and groups with zero; but certainly there are other classes of cores that are
“complete” enough for amalgams over them to have decidable word problems.

Moreover, in none of the criteria employed in the context of combining the-
ories (effective bases, unitariness, amalgams with group-like cores) does the re-
lationship between the theories S and T appear directly; the only exception is
tensor-definedeness. All the other criteria say something about S, about T , and
about the intersection U , but nothing about the relationship between S and T .
If we want to show the decidability of complex unions of theories, then it seems
inevitable that our criteria refer directly to this relationship.

Of course, work is also, and maybe foremost, needed on applying the ideas
developed for monadic theories to theories with symbols of arbitrary arities.
It should then be possible to rather easily generalize the obtained results to
many-sorted equational logic: most results of this paper can be reformulated in
a many-sorted framework without any difficulty.

Finally, in the context of combining theories a number of interesting automata-
theoretic questions arise. As we have seen, a union of regular theories may be
undecidable. One is thus tempted to ask: When is it decidable (regular, auto-
matic)? What about unions of automatic theories? What is the situation for
relations other than equality? All these questions may also be posed for non-
monadic theories, thus leading to problems for tree-automata.
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Abstract. In [12], Toyama proved that the union of two confluent term-rewriting
systems that share absolutely no function symbols or constants is likewise con-
fluent, a property called modularity. The proof of this beautiful modularity result,
technically based on slicing terms into an homogeneous cap and a so called alien,
possibly heterogeneous substitution, was later substantially simplified in [5,11].

In this paper we present a further simplification of the proof of Toyama’s re-
sult for confluence, which shows that the crux of the problem lies in two different
properties: a cleaning lemma, whose goal is to anticipate the application of col-
lapsing reductions; a modularity property of ordered completion, that allows to
pairwise match the caps and alien substitutions of two equivalent terms.

We then show that Toyama’s modularity result scales up to rewriting modulo
equations in all considered cases.

1 Introduction

Let R and S be two rewrite systems over disjoint signatures. Our goal is to prove that
confluence is a modular property of their disjoint union, that is that R ∪ S inherits the
confluence properties of R and S, a result known as Toyama’s theorem. In the case
of rewriting modulo an equationnal theory also considered in this paper, confluence
must be generalized as a Church-Rosser property. Toyama apparently anticipated this
generalization by using the word Church-Rosser in his title.

A first contribution of this paper is a new comprehensive proof of Toyama’s theorem,
obtained by reducing modularity of the confluence property to modularity of ordered
completion, the latter being a simple property of disjoint unions. It is organized around
the notion of stable equalizers, which are heterogeneous terms in which collapsing re-
ductions have been anticipated with respect to the rewrite system R∞ ∪ S∞ obtained
by (modular) ordered completion of R∪S. Confluence of R∞∪S∞ implies that equiv-
alent terms have the same stable equalizers, made of a homogeneous cap which cannot
collapse, and an alien stable substitution. This makes it possible to prove Toyama’s
theorem by induction on the structure of stable equalizers.

A second contribution is a study of modularity of the Church-Rosser property when
rewriting with a set of rules R modulo a set of equations E. We prove that all rewrite
relations introduced in the litterature, class rewriting, plain rewriting modulo, rewrit-
ing modulo, normal rewriting and normalized rewriting enjoy a modular Church-Roser
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property. We indeed show a more general generic result which covers all these cases.
The proof is again obtained by applying selected results of the previous contribution to
the rewrite system R∪E→ ∪E←, obtained by orienting the equations in E both ways,
which results in a confluent system when the original rewrite relation is conluent.

We introduce terms in Section 2, and recall the basic notions of caps and aliens in
Section 3. The new proof of Toyama’s theorem is carried out in Section 4. Modularity
of rewriting modulo is adressed in Section 5. Concluding remarks come in Section 6.
We assume familiarity with the basic concepts and notations of term rewriting systems
and refer to [1,11] for supplementary definitions and examples.

2 Preliminaries

Given a signature F of function symbols, and a set X of variables, T (F ,X ) denotes
the set of terms built up from F and X .

Terms are identified with finite labelled trees as usual. Positions are strings of positive
integers, identifying the empty string Λ with the root position. We use Pos(t) (resp.
FPos(t)) to denote the set of positions (resp. non-variable positions) of t, t(p) for the
symbol at position p in t, t|p for the subterm of t at position p, and t[u]p for the result of
replacing t|p with u at position p in t. We may sometimes omit the position p, writing
t[u] for simplicity. Var(t) is the set of variables occuring in t.

Substitutions are sets of pairs (x, t) where x is a variable and t is a term. The domain
of a substitution σ is the set Dom(σ) = {x ∈ X | σ(x) �= x}. A substitution of finite
domain {x1, . . . , xn} is written as in σ = {x1 $→ t1, . . . , xn $→ tn}. A substitution is
ground if σ(x) is a ground term for all x ∈ X . We use greek letters for substitutions and
postfix notation for their application to terms. Composition is denoted by juxtaposition.
Bijective substitutions are called variable renamings.

Given two terms s, t, computing the substitution σ whenever it exists such that t =
sσ is called matching, and s is then said to be more general than t. This quasi-ordering
is naturally extended to substitutions. Given to terms s, t their most general unifier
whenever it exists is the most general substitution σ (unique up to variable renaming)
such that sσ = tσ.

A (plain) rewrite rule is a pair of terms, written l → r, such that l �∈ X and Var(r) ⊆
Var(l). Plain rewriting uses plain pattern-matching for firing rules: a term t rewrites to a
term u at position p with the rule l → r ∈ R and the substitution σ, written t−→p

l→r u
if t|p = lσ and u = t[rσ]p. A (plain) term rewriting system is a set of rewrite rules
R = {li → ri}i. An equation is a rule which can be used both ways. An equation
x = s with x ∈ X is collapsing. We use AC for associativity and commutativity, and
↔E for rewriting with a set E of equations.

The reflexive transitive closure of a relation →, denoted by →∗, is called derivation,
while its symmetric, reflexive, transitive closure is denoted by ↔∗, or ↔∗

R or =R when
the relation is generated by a rewrite system R. A term rewriting system R is confluent
(resp. Church-Rosser) if t →∗ u and t →∗ v (resp. u↔∗ v) implies u →∗ s and
v →∗ s for some s. The Church-Rosser property shall sometimes be used for some
subset T ⊂ T (F ,X ), in which case u, v are assumed to belong to T .
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An ordering � on terms is monotonic if s � t implies u[s] � u[t] for all terms u,
and stable if s � t implies sσ � tσ for all substitutions σ. A rewrite ordering is a
well-founded, monotonic, stable ordering on terms.

Given a set of equations E and a rewrite ordering � total on ground terms, ordered
rewriting with the pair (E,�) is defined as plain rewriting with the infinite system
R = {lσ → rσ | l = r ∈ E, γ ground and lγ � rγ}. When R is not confluent, the pair
(E,�) can be completed into a pair (E∞,�) such that the associated rewrite system
R∞ is confluent, a process called ordered completion: given two equations g = d ∈ E,
l = r ∈ E such that (i) the substitution σ is the most general unifier of the equation
g = l|p and (ii) gσγ � dσγ and lσγ � rσγ for some ground substitution γ, then, the
so-called ordered critical pair l[dσ]p = rσ is added to E if it is not already confluent.

Given two sets of equations E and S sharing absolutely no function symbol, a key
observation is that (E ∪ S)∞ = E∞ ∪ S∞ for any rewrite ordering + total on ground
terms. Because, if the signatures are disjoint, there are no critical pairs between E and
S. Therefore, ordered completion is modular for disjoint unions. Note that the result
of completion is not changed by adding an arbitrary set of free variables provided the
ordering is extended so as to remain a total rewrite ordering for terms in the extended
signature, which is possible with the recursive path ordering.

3 Caps and Aliens

Following Toyama, our main assumption throughout this paper is that we are given two
disjoint vocabularies FR and FS , that is, such that

FR ∩ FS = ∅.

We also assume without loss of generality a fixed bijective mapping ξ from a denumer-
able set of variables Y disjoint from X , to the set of terms T (FR ∪ FS ,X ).

We proceed by slicing terms into homogeneous subparts:

Definition 1. A term in the union T (FR ∪ FS ,X ) is heterogeneous if it uses symbols
of both FR and FS, otherwise it is homogeneous.

A heterogeneous term can be decomposed into a topmost maximal homogeneous part,
its cap, and a multiset of remaining subterms, its aliens. Thanks to our assumption,
there is only one way of slicing a term by separating its homogeneous cap from its
aliens rooted by symbols of the other signature.

Definition 2 (Cap and alien positions). Given a term t, a position

(i) q ∈ Dom(t) is a cap position if and only if ∀p ≤ q t(p) ∈ FR ∪ X iff t(Λ) ∈
FR ∪ X . In particular, Λ is a cap position;

(ii) q ∈ Dom(t)\ {Λ} is an alien position, and the subterm t|q is an alien if and only
if t(q) ∈ FS (resp. FR) iff ∀p < q, t(p) ∈ FR (resp. FS).

We use CPos(t) for the set of cap positions in t, APos(t) for its set of alien positions,
and Aliens(t) for the multiset of aliens in t.

A term is its own (trivial) alien at level 0. (Non-trivial) aliens at level i > 0 in t are
the aliens of the aliens at level i−1. The rank of a term is the maximal level of its aliens.
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Definition 3 (Cap term and alien substitution). Given a term t, its cap t̂ and alien
substitution γt are defined as follows:

(i) Pos(t̂) = CPos(t) ∪ APos(t);
(ii) ∀p ∈ CPos(t) t̂(p) = t(p);
(iii) ∀q ∈ APos(t) t̂(q) = ξ−1(t|q)
(iv) γt is the restriction of ξ to the variables in Var(t̂) ∩ Y .

We will often use ξ instead of γt. The following result is straithforward:

Lemma 1. Given a term t, its hat t̂ and alien substitution γt are uniquely defined and
satisfy t = t̂γt. Moreover APos(t) = ∅ and t̂ = t if t is homogeneous.

4 Plain Rewriting

Let R and S be two rewrite systems operating on sets of terms defined over the respec-
tive vocabularies FR ∪ X and FS ∪ X . We will often write s−→∗ t for s−→∗

R∪S t
operating on sets of terms defined over the vocabulary FR ∪ FS ∪ X .

4.1 Cap Reduction, Alien Reductions, and Equalizers

The notion of an equalizer is the key original notion of this paper, which allows us
to perform reductions in the cap independently of reductions in the aliens (even if the
rewrite rules are not left-linear) by anticipating reductions in the aliens.

Definition 4 (Equalizer). A term t is an equalizer if for any two non-trivial aliens u at
level i and v at level j in t, u↔∗

R∪S v iff u = v.
A substitution γ is an equalizer substitution if ∀x ∈ Dom(γ), γ(x) is an equalizer,

and ∀x, y ∈ Dom(γ), x = y iff γ(x)↔∗
R∪S γ(y).

Example 1. Let FR = {f, c,+, a, b},FS = {g, h}, R = {+(a, b) → +(b, a)} and
S = {g(x) → h(x)}. The term c(f(g(+(b, a))), g(+(b, a))) is an R ∪ S-equalizer,
while the term c(f(g(+(a, b))), h(+(b, a))) is not.

Definition 5. We define a cap reduction s−→C t if s
p−→

R∪S
t with p ∈ CPos(s), and an

alien reduction s−→A t if s
p−→

R∪S
t with p �∈ CPos(s).

Alien reductions take place inside an alien term, not necessarily at an alien position.

Lemma 2. Let s−→A t. Then t̂(p) = ŝ(p) for all p ∈ CPos(s) while Aliens(s)
(−→)mulAliens(t).

Proof. Since the reduction takes place in the aliens, CPos(s) ⊆ CPos(t) and t̂(p) =
t(p) = s(p) = ŝ(p) for all p ∈ CPos(s). �

Note that Dom(t̂) and Dom(ŝ) become different in case the rule has collapsed the cap
of an alien of s to a subterm in the other signature, hence enlarging the cap of the whole
term.
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Lemma 3. Let s−→p
C t with rule l → r ∈ R and substitution σ. Then,

(i) ŝ
p−→

l→r
t̂ ∈ T (FR,Y) \ Y; or

(ii) ŝ
p−→

l→r
y ∈ Y , r ∈ Var(l) and t = ξ(y) is an alien of s.

In both cases t is an equalizer if s is an equalizer.

Note that ŝ and t̂ belong to the same signature and s and t have the same rank in the
first case, while they do not in the second case and the rank has decreased strictly from
s to t.

Proof. Since s = ŝγs by lemma 1, p ∈ CPos(s) and rules are homogeneous, σ =
δγs for some homogeneous substitution δ. Therefore, s = s[s|p]p = ŝγs[lδγs]p =
(ŝ[lδ]p)γs since p ∈ FPos(ŝ), and t = (ŝ[rδ]p)γs. Assuming that s is an equalizer,
then γs is an equalizer substitution and t is an equalizer as well.

Case (i) ŝ[rδ]p �∈ Y , that is, ŝ[rδ]p ∈ T (FR,Y) \ Y . Then, ŝ−→l→r t̂ = ŝ[rδ]p and
t = t̂γs.

Case (ii) ŝ[rδ]p ∈ Y . Necessarily, rδ = y ∈ Var(ŝ), r ∈ Var(l), and t = yγs = yξ.
�

4.2 Stable Equalizers

Due to the possible action of collapsing reductions, the cap and the aliens may grow or
change signature along derivations. In particular, the cap may change signature if the
term is equivalent to one of its aliens. Before introducing a stronger notion of equalizer,
let us consider an example:

Example 2. Let R = {f(x, x) → x, h(x) → x} and S = {a → b}.
Then, f(h(a), b)−→ f(h(b), b)−→ f(b, b)−→ b.

Collapsing the cap here needs rewriting first an alien in order to transform the starting
term into an equalizer, before applying the non-linear collapsing rules according to
Lemma 3 (ii). Starting from the equalizer directly would not need any alien rewrite
step. This suggests a stronger notion of equalizer.

Definition 6 (Stability). A rewrite step s−→ t is cap-stable if ŝ and t̂ belong to the
same signature. A cap-stable derivation is a sequence of cap-stable rewrite steps. An
equalizer s is cap-collapsing if there exists a cap-stable derivation s−→∗

C t and an
alien u of t such that t−→C u.

An equalizer s is cap-stable if it is not cap-collapsing, stable if it is cap-stable and
its aliens are themselves stable, and alien-stable if its aliens are stable.

According to Lemma 2, alien rewrite steps are cap-stable. We proceed with a thorough
investigation of the properties of stable equalizers, of which the first is straightforward.

Lemma 4. Any alien of a stable equalizer is a stable equalizer.

Lemma 5. Assume that s is a stable equalizer such that s−→C t. Then s and t have
their cap in the same signature and t is a stable equalizer.
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Proof. By stability assumption of s, the rewrite step s−→C t must satisfy Lemma 3
case (i). It is therefore a cap-stable step, and ŝ, t̂ are built from the same signature. By
Lemma 3 (i) again, every alien u of t is an alien of s, hence is a stable equalizer, and
therefore t is an alien-stable equalizer. We are left to show that t is cap-stable.

If it were not, then t−→∗
C u for some cap-stable derivation and u−→C v for some

alien v of u. The derivation s−→C t−→∗
C u−→C v now contradicts the stability as-

sumption of s. �

Lemma 6. Given an alien-stable equalizer s such that s−→∗
A t, there exists a substi-

tution θ from Var(t̂)∩Y to Var(ŝ)∩Y such that ŝ = t̂θ and θγs −→∗ γt. Moreover, θ
is a bijection if t is an equalizer.

Proof. By Lemma 2, ŝ and t̂ are in the same signature, and by Lemma 5 t is alien-stable.
Hence, CPos(s) = CPos(t), and ∀p ∈ CPos(s) s(p) = t(p), and ŝ and t̂ may only
differ by the names of their variables in Y . Let p, q ∈ APos(t) such that t̂|p = t̂|q ∈ Y .
Then t|p = t|q , therefore s|p ↔∗ s|q since s−→∗

A t. Hence s|p = s|q since s is an
equalizer. Therefore ŝ|p = ŝ|q , and ŝ = t̂θ for some θ from Var(t̂)∩ Y to Var(ŝ)∩ Y .
Also θγs −→∗ γt since s−→∗

A t.
If t is an equalizer, then ŝ|p = ŝ|q ∈ Y implies t|p = t|q, hence t̂|p = t̂|q, and θ is

bijective. �

Lemma 7. Let s be an alien-stable equalizer such that s−→∗
A u−→C v. Then there

exists a term t such that s−→C t.

Proof. By Lemma 6, û = ŝσ for some substitution σ. By Lemma 3, û is rewritable,
and therefore ŝ−→ w for some w, hence s−→C wγs = t. �

Lemma 8. Let e be an alien-stable equalizer. Then, e is cap-collapsing iff ê−→∗ y for
some variable y ∈ Y .

Proof. The if part is clear, we show the converse. Assume that e−→∗
C u is a cap-stable

derivation and that u−→C v for some alien v of u. Since all rewrite steps from e to u
are cap-stable cap-rewrite steps, they satisfy Lemma 3(i), and therefore ê−→∗ û. Since
v is an alien of u, their caps are not in the same signature, hence the rewrite step from u
to v is not cap-stable. It therefore satisfies Lemma 3(ii), and û−→l→x y ∈ Y . It follows
that ŝ−→∗ y ∈ Y . �

4.3 Structure Lemma

The goal of this section is to show that equivalence proofs between non-homogenous
stable terms can be decomposed into a proof between their caps, and a proof between
their aliens.

Lemma 9 (Cleaning). Let t be a term such that the set of all its non-trivial aliens has
the Church-Rosser property with respect to R ∪ S. Then, there exists a stable equalizer
e such that t−→∗

R∪S e.
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Proof. By induction on the rank of t = t̂γt. By confluence assumption on the aliens,
γt −→∗ γ′ such that γt(x)↔∗

R∪S γt(y) iff γ′(x)=γ′(y). Let Dom(γ′)={x1, . . . , xm}
and y ∈ Dom(γ′). By induction hypothesis, yγ′ −→∗

R∪S yγ′′, a stable equalizer. Let
s = t̂γ′′, hence t−→∗

A s. We now compute ŝ and γs, show that γs is a stable equalizer
substitution, and that s rewrites to a stable equalizer e.

From Lemma 2, Pos(t̂) ⊆ Pos(ŝ). Let y ∈ Var(t̂) \ Var(t) occurring at position
p in t̂ and θ(y) = ŝ|p. By construction, ŝ = t̂θ and γ′′ = θγs. Since γ′′ is a stable
equalizer substitution, so is γs by Lemma 4, hence s is an alien-stable equalizer. If s
is not cap-collapsing, it is a stable equalizer and we are done. Otherwise, ŝ−→∗ y by
Lemma 8, hence s−→∗ yγs, which is a stable equalizer as already shown and we are
done again. �

By property of ordered completion, let R∞ ∪ S∞ be a confluent rewrite system such
that ↔∗

R∪S = ↔∗
R∞∪S∞ . By definition, both presentations define the same notions of

equalizers.

Lemma 10. Let u be a stable equalizer with respect to R ∪ S. Then, it is a stable
equalizer with respect to R∞ ∪ S∞. �

Proof. Since R ∪ S and R∞ ∪ S∞ define the same equationnal theory, they enjoy the
same set of equalizers. We now prove that u is stable with respect to R∞ ∪ S∞ by
induction on the rank. By induction hypothesis, u is alien-stable. We are left to show
that it is cap-stable.

Assume it does not hold. By Lemma 8, û−→∗
R∞∪S∞ y for some variable y ∈ Y , and

therefore û↔∗
R∪S y. Since û is homogeneous, by confluence of R∪S on homogeneous

terms, û−→∗
R∪S y. Lemma 8 now yields a contradiction. �

The fact that R∞∪S∞ and R∪S define the same notions of stable equalizers is crucial
in the coming structural property of equalizers.

Lemma 11 (Structure). Let R ∪ S be a disjoint union, and v and w be stable equal-
izers such that v↔∗

R∪S w. Then, there exists a variable renaming η such that (i)
v̂↔∗

R∪S ŵη and (ii) γv ↔∗
R∪S η−1γw.

Proof. By assumption, v and w are stable equalizers with respect to R ∪ S, hence to
R∞ ∪ S∞ by Lemma 10. Let v′ and w′ be their respective normal forms with respect
to cap-rewrites with R∞ ∪ S∞. By lemma 5 (applied repeatedly), v′ and w′ are stable
equalizers with respect to R∞ ∪ S∞.

Therefore, v′ ↔∗
R∞∪S∞ w′, v′ −→∗

R∞∪S∞ s and w′ −→∗
R∞∪S∞ s for some s. Now,

since v′ and w′ are in normal form for cap-rewrites, all rewrites from v′ to s and w′ to
s must occur in the aliens by Lemma 7. Since R∞ ∪ S∞ is confluent, equivalent aliens
of s are joinable, and therefore, we can assume without loss of generality than s is an
equalizer.

Since v and w are stable, Lemma 3(i) shows that v̂−→∗ v̂′ and ŵ−→∗ ŵ′ and there-
fore Var(v̂′) ⊆ Var(v̂) and Var(ŵ′) ⊆ Var(ŵ). Since v′ −→∗

A s and w′ −→∗
A s,

Lemma 6 shows that v̂′ = ŝμ and ŵ′ = ŝν for some bijection μ from Var(ŝ) ∩ Y to
Var(v̂′) ∩ Y and ν from Var(ŝ) ∩ Y to Var(ŵ′) ∩ Y . Therefore, v̂′ = ŵ′ν−1μ, and
v̂↔∗

R∪S ŵη where η = μ−1ν is a bijection from Var(v̂′) ∩ Y to Var(ŵ′) ∩ Y .
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Using now Lemmas 3(i) and 6 to relate the alien substitutions of u, v, s, we get γv =
γv′ and μγv′ −→∗

R∞∪S∞ γs, hence μγv ↔∗ γs. Similarly νγw ↔∗ γs, and therefore,
μγv ↔∗ νγw yielding (ii). �

4.4 Modularity

Theorem 1. The union of two Church-Rosser rewrite systems R, S over disjoint signa-
tures is Church-Rosser.

Proof. We show the Church-Rosser property for terms v, w: v↔∗
R∪S w iff v−→∗

R∪S

←−∗
R∪S w. The if direction is straightforward. The proof of the converse proceeds by

induction on the maximum of the ranks of v, w. By induction hypothesis, the Church-
Rosser property is therefore satisfied for the aliens of v, w.
1. By the cleaning Lemma 9, v−→∗

R∪S v′, w−→∗
R∪S w′, v′ and w′ being stable equal-

izers.
2. By the structure Lemma 11, v̂′ ↔∗

R∪S ŵ′η and γv′ ↔∗
R∪S η−1γw′ .

3. By the Church-Rosser assumption for homogeneous terms, v̂′ −→∗ s = t ←−∗ ŵ′η.
4. By the induction hypothesis applied to γv′ and η−1γw′ whose ranks are strictly
smaller than those of v, w, γv′ −→∗ σ = τ ←−∗ η−1γw′ .
5. Conclusion:

v−→∗ v′ = v̂′γv′ −→∗ sγv′ −→∗ sσ
=

w−→∗ w′ = ŵ′γw′ = ŵ′ηη−1γw′ = tη−1γw′ ←−∗ tτ
�

This new proof of Toyama’s theorem appears to be much simpler and shorter than pre-
vious ones. We will see next that it is the key to our generalization to rewriting modulo.

5 Rewriting Modulo Equations

We assume now given a set R of rewrite rules and a set E of equations used for
equational reasoning, both built over the signature FR. Orienting the equations of E
from left-to-right and right-to-left respectively, we denote by E→ and E← the obtained
rewrite systems. the notation E← implies the assumption that no equation x = t with
x ∈ X can be in E.

Note that ↔∗
E = −→∗

E→∪E← , and that E→ ∪ E← is trivially confluent.
Similarly, we are also given a set S of rewrite rules and a set D of equations built

over the signature FS .

5.1 The Zoo of Rewrite Relations Modulo Equations

We will consider five different rewrite relations in the case of rewriting with the pair
(R, E):

1. Class rewriting [6], defined as u−→RE t if ∃s such that u↔∗
E s−→∗

R t;
2. Plain rewriting modulo [2], defined as plain rewriting −→R;
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3. Rewriting modulo [10,3], assuming that E-matching is decidable, defined as
u−→p

RE
t if u|p =E lσ and t = u[rσ]p for some l → r ∈ R;

4. Normal rewriting [4], assuming E-matching is decidable and E admits normal
forms (a modular property [9]), writing u ↓E for the normal form of u, defined
as u−→∗

E u↓E −→∗
RE

t;
5. Normalized rewriting [7], for which E = S∪AC and S is AC-Church-Rosser in the

sense of rewriting modulo defined at case 3, defined as u−→∗
SAC

u↓SAC −→RAC
t.

One step class-rewriting requires searching the equivalence class of u until an equiv-
alent term s is found that contains a redex for plain rewriting. Being the least effi-
cient, class-rewriting has been replaced by the other more effective definitions. Normal
rewriting has been introduced for modelling higher-order rewriting (using higher-order
pattern matching). But our results do not apply directly to the case of higher-order
rewriting in the sense of Nipkow [8] and its generalizations [4], since the E-equational
part is then shared.

5.2 Modularity of Class Rewriting

Modularity of class-rewriting reduces easily to modularity of plain rewriting by using
the fact that R ∪ E→ ∪ E← and S ∪ D→ ∪ D← are confluent rewrite systems over
disjoint signatures whenever class-rewriting with (E, R) and (S, D) are confluent.

Theorem 2. The Church-Rosser property is modular for class rewriting.

Proof. Class rewriting relates to plain rewriting with R ∪ E→ ∪ E← as follows:
u−→RE w iff u↔∗

E v−→R w iff u−→∗
E→∪E← v−→R w, and therefore u−→∗

RE

↔∗
E w iff u−→∗

R∪E→∪E← w. As a consequence, class rewriting with (R, E) is Church-
Rosser iff plain rewriting with −→∗

R∪E→∪E← is Church-Rosser. Since the former is
modular by Toyama’s theorem, so is the latter. �

This proof does not scale up to the other relations for rewriting modulo, unfortunately.

5.3 Modularity of Rewriting Modulo Equations

In order to show the modularity property of all these relations at once, we adopt an
abstract approach using a generic notation =⇒R,E for rewriting modulo with the pair
(R, E). More precisely, we prove that any rewrite relation =⇒R,E satisfying

(i) −→R ⊆ (=⇒R,E ↔∗
E)∗

(ii) =⇒R,E ⊆ (↔∗
E −→R ↔∗

E)∗

(iii) Variables are in normal form for =⇒R,E

(iv) E does not admit collapsing equations

enjoys a modular Church-Rosser property defined as

∀s, t s.t. s
∗↔

R∪E
t ∃v, w s.t. s

∗=⇒
R,E

v, t
∗=⇒

R,E
w and v

∗↔
E

w

Note that all concrete rewriting modulo relations considered in Section 5.1 satisfy
conditions (i,ii), including of course class-rewriting, and moreover that any rewriting
modulo relation should satisfy these conditions to make sense, since (i,ii) imply sounde-
ness
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(=⇒
R,E

∪⇐=
R,E

∪↔
E

)∗ = (−→
R

∪←−
R

∪↔
E

)∗

For all these relations, one =⇒R step suffices in the righthand side of (i), while for (ii),
one −→R step suffices in the righthand side with no ↔E step on its right. For rewriting
modulo, no ↔E steps are needed in (i). They are needed on the left of −→R in (ii) for
modulo, normal and normalized rewriting. Finally, note that (iv) implies (iii) for all our
relations, but is a much stronger assumption.

Our coming generalization of Toyama’s theorem makes an essential use of the rewrite
system R ∪ E→ ∪ E←. We therefore first need to precisely relate the rewrite relation
=⇒R,E to the relation −→R∪E→∪E← when the former is Church-Rosser.

Lemma 12. Assume =⇒R,E is Church-Rosser. Then, plain rewriting with R ∪ E→ ∪
E← is Church-Rosser.

Proof. Straightforward consequence of (ii). �

Form now on, we consider two sets of pairs (R, E) and (S, D), and assume that the
corresponding generic relations for rewriting modulo, =⇒R,E and =⇒S,D, are both
Church-Rosser. We shall use the abbreviation =⇒ for =⇒R∪S,E∪D.

Our proof that the generic relation =⇒ is Church-Rosser for terms in T (FR∪FS ,X )
is essentially based on the structure Lemma 11 for the rewrite systems R ∪ E→ ∪ E←

and S ∪D→ ∪D←. By Lemma 12, both are Church-Rosser under our assumption that
=⇒R,E and =⇒S,D, are Church-Rosser.

To this end, we first need generalizing the cleaning lemma:

Lemma 13 (Cleaning). Let t be a term such that the set of its non-trivial aliens has
the Church-Rosser property for =⇒. Then, there exists a stable equalizer e such that
t =⇒∗ e.

The proof uses the cleaning Lemma 9 for the rewrite relation R∪E→∪E←∪S∪D→∪
D←, which is Church-Rosser for the aliens of t by lemma 12, in order to dispense us
with showing all intermediate properties needed in a direct proof of the lemma. This is
possible since a stable equalizer does not depend upon the rewrite relation in use, but
upon the equational theory itself.

Proof. The proof is by induction on the rank. By our assumptions, Lemmas 12 and 9
(we actually need a more precise statement extracted from its proof), there exists an
alien-stable equalizer s = t̂γ such that γt −→∗

R∪E→∪E←∪S∪D→∪D← γ (hence, by in-
duction hypothesis, γt =⇒∗ γ), and an equalizer e such that

1. either s is cap-stable, in which case e = ŝγ is stable and t =⇒∗ e,
2. or s is cap-collapsing, in which case ŝ−→∗

R∪E→∪E←∪S∪D→∪D← x for some vari-
able x and e = xγ. By the Church-Rosser property of =⇒ for homogeneous terms
and assumption (iii), ŝ=⇒∗ x, hence s =⇒∗ e again. �

We now obtain our main new result:

Theorem 3. The Church-Rosser property is modular for any rewriting modulo relation
satisfying assumptions (i,ii,iii,iv).
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Proof. The proof mimics the proof of Theorem 1. Let v, w satisfying v↔∗
R∪E∪S∪D w.

The proof is by induction on the maximum rank of v, w. By induction hypothesis, the
Church-Rosser property is therefore satisfied for the aliens of v, w.
1. By the cleaning Lemma 13, v =⇒∗ v′, w =⇒∗ w′, v′ and w′ being stable equalizers
for the theory generated by R ∪ E ∪ S ∪ D.
2. By assumptions (i) and (ii), v′ ↔∗

R∪E∪S∪D w′.
3. By the structure Lemma 11, v̂′ ↔∗

R∪E∪S∪D ŵ′η and γv′ ↔∗
R∪E∪S∪D η−1γw′ .

4. By the Church-Rosser assumption for homogeneous terms, v̂′ =⇒∗ s =E∪D t

⇐=∗ ŵ′η. Note that E ∪ D applies here to an homogeneous term, that is, we do not
know which of E or D is used to relate s and t.
5. By the induction hypothesis applied to γv′ and η−1γw′ whose ranks are strictly
smaller than those of v, w, γv′ =⇒∗ σ =E∪D τ ⇐=∗ η−1γw′ .
6. Conclusion:

v =⇒∗ v′ = v̂′γv′ =⇒∗ sγv′ =⇒∗ sσ
=E∪D

w =⇒∗ w′ = ŵ′γw′ = ŵ′ηη−1γw′ = tη−1γw′ ⇐=∗ tτ
�

We have not investigated whether this result extends to a theory E that does not satisfy
assumption (iv). We suspect it does when assumption (iii) is satisfied, by generalizing
the notion of collapsing reduction to s−→R =E t for some alien t of s, but have not
tried.

6 Conclusion

We have given a comprehensive treatment of Toyama’s theorem which should ease its
understanding. Moreover, we have generalized Toyama’s theorem to rewriting modulo
equations for all rewriting relations considered in the litterature (and for those not yet
considered as well, if any, since they should satisfy our conditions to make sense), under
the assumption that the equations are non-collapsing.

The question arises whether our proof method scales up to the constructor shar-
ing case. This requires extending the modularity of ordered completion to cope with
constructor sharing. We have tried without succes, except for the trivial case where
constructors cannot occur on top of righthand sides of rules (a rule violating this as-
sumption is called constructor lifting in the litterature). This implies that the modularity
of the Church-Rosser property of higher-order rewriting cannot be derived from our
results, except when the higher-order rewrite rules do not have a binder or an applica-
tion at the root of their righthand sides. This shows that extending our method to the
constructor sharing case is an important direction for further research.

On the other hand, we think that our proof method should yield a simpler proof of
other modularity results, in particular for the existence of a normal form. We have not
tried this direction.

Acknowledgments. The author thanks Nachum Dershowitz and Maribel Fernandez for
numerous discussions about modularity and Yoshito Toyama for suggesting the trick of
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orienting equations both ways instead of repeating the basic proof. An anonymous ref-
eree suggested a potential further simplification by stabilizing terms before equalization.
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Abstract. Recently automated deduction tools have proved to be very
effective for detecting attacks on cryptographic protocols. These analysis
can be improved, for finding more subtle weaknesses, by a more accu-
rate modelling of operators employed by protocols. Several works have
shown how to handle a single algebraic operator (associated with a fixed
intruder theory) or how to combine several operators satisfying disjoint
theories. However several interesting equational theories, such as expo-
nentiation with an abelian group law for exponents remain out of the
scope of these techniques. This has motivated us to introduce a new
notion of hierarchical combination for intruder theories and to show de-
cidability results for the deduction problem in these theories. Under a
simple hypothesis, we were able to simplify this deduction problem. This
simplification is then applied to prove the decidability of constraint sys-
tems w.r.t. an intruder relying on exponentiation theory.

1 Introduction

Recently many procedures have been proposed to decide insecurity of crypto-
graphic protocols in the Dolev-Yao model w.r.t. a finite number of protocol ses-
sions [1,4,24,22]. Among the different approaches the symbolic ones [22,9,3] are
based on reducing the problem to constraint solving in a term algebra. While
these approaches rely on a perfect encryption hypothesis, the design of some
protocols (see e.g. [26]) rely on lower-level primitives such as exponentiation or
bitwise exclusive or (xor). These specification may give rise to new attacks ex-
ploiting the underlying algebraic structure when it is not abstracted as perfect
encryption. For attacks exploiting the bitwise xor equational properties in the
context of mobile communications see for instance [5].

Hence several protocol decision procedures have been designed for handling
equational properties [21,11,6,18] of the cryptographic primitives. A very fruitful
concept in this area is the notion of locality introduced by McAllester [19] which
applies to several intruder theories [12,18]. When an intruder theory is local then
we can restrict every intruder deduction to contain only subterms of its inputs,
i.e. its hypotheses and its goal and this may lead to decidability of intruder
constraints. Here we extend this approach to a case where the signature can be
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divided into two disjoint sets and where the term algebra can be divided into two
types of terms, say 0 and 1 type, according to their root symbol. Then we give
sufficient conditions so that we can restrict intruder deductions to deductions
where all subterms of type 1 that occur in the deduction are subterms of the
inputs (i.e. some initially given terms and the goal term). Our goal is to bound
the deductions of terms of type 1 by the intruder, thus permitting subsequent
analysis to focus deductions of terms of type 0.

This approach allows us to decide interesting intruder theories presented as
non-disjoint combination of theories, and that were not considered before, by
reducing them to simpler theories. For instance it allows one to combine the
Abelian group theory of [23] with a theory of an exponential operator.

Related works. In [8] we have extended the combination algorithm for solving
E-unification problems of [2] to solve intruder constraints on disjoint signa-
tures. Here we show that we can handle some non-disjoint combinations. In [13]
Delaune and Jacquemard consider theories presented by rewrite systems where
the right-hand side of every rule is a ground term or a variable. Comon and
Treinen [12,10] have also investigated general conditions on theories for deciding
insecurity with passive intruders.

As an application, we have obtained a decidable intruder theory combining
Abelian group and exponential which has less restrictions than any previous one:
unlike [7] it permits the intruder to multiply terms outside exponents, which is
natural with the Diffie-Hellman protocol where the prime decomposition of the
module is public. The setting is also less restrictive than in [25] where bases of
exponentials have to be constants and exponential terms must not appear inside
exponents.

Outline. In Section 2 we will first recall basic notions about terms, substitu-
tions, term rewriting and define a new notion of mode. We then derive a notion
of subterm value from the mode, and study properties of term replacement op-
erations. We recall the definition of intruder systems in Section 3, and define the
notion of well-moded intruders. We also prove the existence of special sequences
of deductions called quasi well-formed derivations. Then we define constraint
systems in Section 4. In Section 5 we define for a constraint system C a special
kind of substitutions called bound substitutions. We prove that whenever a con-
straint system C is satisfiable it is also satisfied by a bound substitution. We also
prove that these solutions do not increase the number of subterms of C of type
1, i.e. after instanciating C with a bound solution, the number of subterms of
type 1 in the result is lesser or equal. We then give in Section 6 an application
of these results to an interesting class of security protocols.

2 Terms, Subterms and Modes

2.1 Basic Notions

We consider an infinite set of free constants C and an infinite set of variables
X . For all signatures G (i.e. sets of function symbols not in C with arities), we
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denote by T(G) (resp. T(G,X )) the set of terms over G∪C (resp. G∪C∪X ). The
former is called the set of ground terms over G, while the latter is simply called
the set of terms over G. The arity of a function symbol f is denoted by ar(f).
Variables are denoted by x, y, terms are denoted by s, t, u, v, and finite sets of
terms are written E, F, ..., and decorations thereof, respectively. We abbreviate
E ∪ F by E, F , the union E ∪ {t} by E, t and E \ {t} by E \ t.

Given a signature G, a constant is either a free constant or a function symbol
of arity 0 in G. We define the set of atoms A to be the union of X and the set
of constants. Given a term t we denote by Var(t) the set of variables occurring
in t and by Cons(t) the set of constants occurring in t. We denote by Atoms(t)
the set Var(t) ∪ Cons(t). A substitution σ is an involutive mapping from X to
T(G,X ) such that Supp(σ) = {x|σ(x) �= x}, the support of σ, is a finite set. The
application of a substitution σ to a term t (resp. a set of terms E) is denoted tσ
(resp. Eσ) and is equal to the term t (resp. E) where all variables x have been
replaced by the term σ(x). A substitution σ is ground w.r.t. G if the image of
Supp(σ) is included in T(G).

An equational presentation H = (G, A) is defined by a set A of equations u = v
with u, v ∈ T(G,X ) and u, v without free constants. For any equational presen-
tation H the relation =H denotes the equational theory generated by (G, A) on
T(G,X ), that is the smallest congruence containing all instances of axioms of A.
Abusively we shall not distinguish between an equational presentation H over
a signature G and a set A of equations presenting it and we denote both by H.
We will also often refer to H as an equational theory (meaning the equational
theory presented by H).

The syntactic subterms of a term t are denoted Subsyn(t) and are defined
recursively as follows. If t is a variable or a constant then Subsyn(t) = {t}. If
t = f(t1, . . . , tn) then Subsyn(t) = {t}∪

⋃n
i=1 Subsyn(ti). The positions in a term

t are sequences of integers defined recursively as follows, ε being the empty se-
quence. The term t is at position ε in t. We also say that ε is the root position.
We write p ≤ q to denote that the position p is a prefix of position q. If u is a
syntactic subterm of t at position p and if u = f(u1, . . . , un) then ui is at posi-
tion p · i in t for i ∈ {1, . . . , n}. We write t|p the subterm of t at position p. We
denote t(s1, . . . , sm) a term that admits s1 . . . sm among its syntactic subterms.
We write t[s] to denote a term t where s is a syntactic subterm of t.

In this paper, we will consider two disjoint signatures F0 and F1, an equa-
tional theory E0 (resp. E1) on F0 (resp. F0 ∪ F1). We denote by F the union
of the signatures F0 and F1 and by E the union of the theories E0 and E1. We
assume that E is consistent (i.e. two free constants are not equal modulo E). A
term t in T(F0,X ) (resp.T(F1,X )) is called a pure 0-term (resp. pure 1-term ).
We denote by top(·) the function that associates to each term t its root symbol.
We also partition the set of variables X into two infinite sets X0 and X1.

2.2 Congruences and Ordered Rewriting

In this subsection we shall introduce the notion of ordered rewriting [14] which
has been useful (e.g. [2]) for proving the correctness of combination of unification
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algorithms. Let < be a simplification ordering on T(G)1 assumed to be total on
T(G) and such that the minimum for < is a constant cmin ∈ C and non-free
constants are smaller than any non-constant ground term.

Given a signature G, we denote by CspeG the set containing the constants in G
and cmin. For the the signature F = F0∪F1 defined earlier, we abbreviate CspeF
by Cspe. Given a possibly infinite set of equations O on the signature T(G) we
define the ordered rewriting relation →O by s →O s′ iff there exists a position
p in s, an equation l = r in O and a substitution τ such that s = s[p ← lτ ],
s′ = s[p ← rτ ], and lτ > rτ . It has been shown (see [16,14]) that by applying the
unfailing completion procedure to a set of equations H we can derive a (possibly
infinite) set of equations O, called o-completion of H and such that, first, the
congruence relations =O and =H are equal on T(F); and second, the ordered
rewrite relation →O is convergent (i.e. terminating and confluent) on T(F).

From now on when we will say “the rewrite system →O” this will mean “the
ordered rewrite relation →O”, when will say “by convergence of O”, we will mean
“by convergence of →O on ground terms”. By convergence of O we can define
(t)↓O as the unique normal form of the ground term t for →O. A ground term
t is in normal form, or normalized, if t = (t)↓O . Given a ground substitution
σ we denote by (σ)↓O the substitution with the same support such that for all
variables x ∈ Supp(σ) we have x(σ)↓O = ((xσ)↓O). A substitution σ is normal if
σ = (σ)↓O. In the following we will denote by R an o-completion of E = E1 ∪E2.

2.3 Modes

When one considers the union of two equational theories over two disjoint signa-
tures, a standard processing is to decompose the terms according to the signature
of their inner symbols into a set of equations whose members are pure terms (i.e.
built with symbols from a single signature). The rational for this decomposition
is that by construction, in the case of disjoint signatures, the rewrite system
obtained by o-completion is the union of two independent rewrite systems, each
one operating on pure terms. This decomposition cannot be applied as is in the
case of non-disjoint signatures. We provide here a notion of mode that allows
one (under some hypothesis) to decompose terms in subterm values such that
that the left-hand sides of rules in the o-completion never overlap two terms in
the decomposition of a term. This notion of mode is different from the standard
notion of type that would define how terms can be built.

In the following we assume that there exists a mode function m(·, ·) such that
m(f, i) is defined for every symbol f∈F and every integer i such that 1≤ i ≤ ar(f).
For all f, i we have m(f, i) ∈ {0, 1} and for all f ∈ F0 and for all i, m(f, i) = 0.

For all f ∈ F ∪X we define a function that gives the class sig(f) of a symbol:

sig : F ∪ X → {0, 1, 2}

sig(f) =
{

i if f ∈ Fi ∪ Xi for i ∈ {0, 1}
2 otherwise, i.e. when f is a free constant

The function sig is extended to terms by taking sig(t)= sig(top(t)).
1 By definition < satisfies for all s, t, u ∈ T(G) s ≤ t[s] and s < u implies t[s] < t[u].
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A position different from ε in a term t is well-moded if it can be written
p · i (where p is a position and i a nonnegative integer) such that sig(t|p·i) =
m(top(t|p), i). In other words the position in a term is well-moded if the subterm
at that position is of the expected type w.r.t. the function symbol immediately
above it. A term is well-moded if all its non root positions are well-moded. If a
non root position of t is not well-moded we say it is ill-moded in t. An equational
presentation H = (G, A) is well-moded if for all equations u = v in A the terms
u and v are well-moded and sig(u)=sig(v). One can prove that if an equational
theory is well-moded then its completion is also well-moded.

We call a subterm value of a term t a syntactic subterm of t that is either
atomic or occurs at an ill-moded position of t2. We denote Sub(t) the set of sub-
term values of t. By extension, for a set of terms E, the set Sub(E) is defined as
the union of the subterm values of the elements of E. The subset of the maximal
and strict subterm values of a term t plays an important role in the sequel. We
call these subterm values the factors of t, and denote this set Factors(t).

Example 1. Consider two binary symbols f and g with sig(f) = sig(g) =
m(f, 1) = m(g, 1) = 1 and m(f, 2) = m(g, 2) = 0, and t = f(f(g(a, b), f(c, c)), d).
Its subterm values are a, b, f(c, c), c, d, and its factors are a, b, f(c, c) and d.

In the rest of this paper and unless otherwise indicated, the notion of subterm
will refer to subterm values. From now on we assume that E is a well-moded
equational presentation, and thus that R is a well-moded rewrite system. Under
this assumption, one can prove that rewriting never overlaps subterm values.

2.4 Normalisation and Replacement

Subterms and Normalisation. We now study the evolution of the subterms
of a term t when t is being normalized. Assuming the theory is well-moded, we
can prove that (ordered) rewriting by R preserves factors in normal form. Since
R is convergent, this permits to prove the following lemma.

Lemma 1. Let t be a term with all its factors in normal form. Then either (t)↓ ∈
Factors(t)∪Cspe or sig((t)↓) = sig(t). Moreover Sub((t)↓) ⊆ (Sub(t))↓ ∪Cspe.

Replacement and Normalization. We now give conditions under which the
replacement of a normal subterm s of a term t commutes with the normalisation
of t. First let us define replacement with respect to the subterm value relation on
terms. If Π is a set of non-comparable positions in term t we denote by t[Π ← v]
the term obtained by putting v at all positions of t that are in Π . We denote δu,v

the replacement of u by v such that if u appears at positions Πu as a subterm
(i.e. as a subterm value) of t then tδu,v = t[Πu ← v]. We denote in short δu the
replacement δu,cmin.

We define the notion of free terms to express that a term s is not in a set
of terms T once a substitution σ has been applied. A term s is free in T with
respect to a ground substitution σ if there is no t ∈ T such that (tσ)↓ = (s)↓. A
2 Note that the root position of a term is always ill-moded.
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term which is not free is said to be bound by σ in T . We feel free to omit σ or T
when they are clear from context. Since rewriting by R never overlaps subterm
values, we can prove that normalization and subterm replacement commute.

Lemma 2. Let t be a ground term with all its factors in normal form, and let
s be a ground term in normal form with s �= (t)↓ and s /∈ Cspe. Then we have
(tδs)↓ = ((t)↓δs)↓.

Example 2. Consider the equational theory E = {f(g(x)) = x}. The only valid
mode functions set either the mode of the argument of f and g to 0 or to 1.
Since there is no critical pairs and the right-hand side is a subterm of the left-
hand side, the rewrite system obtained by unfailing completion is f(g(x)) → x.
Consider now the terms t = f(g(a)) and s = g(a). In both choices of the mode
function, the subterms of t are t, and thus tδs = t. This shows how the notion
of mode permits to define replacements compatible with normalization.

Let s be a normalized ground term with sig(s) = 1 and σ be a ground normal
substitution. Next lemma shows that under the provision that a normalized
term s is free in Sub(t) for a ground substitution σ, the replacement of s in
(tσ)↓ yields the same result as the replacement of s in σ. This will permit to
transfer a pumping argument on instantiated terms to a pumping argument on
substitutions. The proof again relies on the convergence of R.

Lemma 3. Let t be a term, σ be a normalized substitution and s be a ground
term in normal form with sig(s) = 1. Assume s is free in Sub(t) for σ and let
σ′ = (σδs)↓. We have:

((tσ)↓δs)↓ = (tσ′)↓

Example 3. Consider now the equational theory E = {f(x, x) = 0}, the term t =
f(f(x, x), f(x, cmin)) and xσ = a, and consider the replacement δa. Using the no-
tations of Lemma 3, we have σ′ = {x $→ cmin}, and thus tσ′ = f(f(cmin, cmin),
f(cmin, cmin)), while on the other hand (tσ)↓δa = f(0, f(cmin, cmin)) . This exam-
ple shows even though s is in normal form, an extra normalization is needed after
replacement. Replacing one of the occurrence of x by a also shows why we need s
to be free in Lemma 3.

3 Intruder Deduction Systems

We first recall here the general definition of intruder systems, as is given in [8].
Then we define the well-moded intruder in which we are interested in this paper.
In the context of a security protocol (see e.g. [20] for a brief overview), we model
messages as ground terms and intruder deduction rules as rewrite rules on sets
of messages representing the knowledge of an intruder. The intruder derives new
messages from a given (finite) set of messages by applying intruder rules. Since
we assume some equational axioms H are satisfied by the function symbols in
the signature, all these derivations have to be considered modulo the equational
congruence =H generated by these axioms. An intruder deduction rule in our
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setting is specified by a term t in some signature G. Given values for the variables
of t the intruder is able to generate the corresponding instance of t.

Definition 1. An intruder system I is given by a triple 〈G,S,H〉 where G is a
signature, S ⊆ T(G,X ) and H is a set of equations between terms in T(G,X ).
To each t ∈ S we associate a deduction rule Lt : Var(t) → t and Lt,g denotes
the set of ground instances of the rule Lt modulo H:

Lt,g = {l → r | ∃σ, ground substitution on G, l = Var(t)σ and r =H tσ}

The set of rules LI is defined as the union of the sets Lt,g for all t ∈ S.

Each rule l → r in LI defines an intruder deduction relation →l→r between finite
sets of terms. Given two finite sets of terms E and F we define E →l→r F if
and only if l ⊆ E and F = E ∪ {r}. We denote →I the union of the relations
→l→r for all l → r in LI and by →∗

I the transitive closure of →I . Note that by
definition, given sets of terms E, E′ ,F and F ′ such that E =G E′ and F =G F ′

we have E →I F iff E′ →I F ′. We simply denote by → the relation →I when
there is no ambiguity about I.

Example 4. Let →I× be the relation between ground sets of terms defined by
the Abelian group intruder I× = 〈{×, i, 1} , {x × y, i(x), 1} , E×〉. One has:

a, b, c × a →I× a, b, c, c× a, i(a) →I× a, b, c, c× a, i(a), c

The latter deduction resulting from the application of the rule x, y → x× y with
x instantiated by i(a), y instantiated by c × a, with right-hand side c which is
equal to i(a) × (c × a) modulo the equational theory.

A derivation D of length n, n ≥ 0, is a sequence of steps of the form E0 →I
E0, t1 →I · · · →I En with finite sets of ground terms E0, . . . En, and ground
terms t1, . . . , tn, such that Ei = Ei−1 ∪ {ti} for every i ∈ {1, . . . , n}. The term
tn is called the goal of the derivation. We define E

I
to be equal to the set

{t | ∃F s.t. E →∗
I F and t ∈ F} i.e. the set of terms that can be derived from E.

If there is no ambiguity on the deduction system I we write E instead of E
I
.

With this definition of deduction, one can easily prove that it suffices to
consider deductions on sets of terms in normal form. We will thus only consider
derivations on sets of terms in normal form. From now on we will consider
intruder systems over the signature F0 ∪ F1 modulo the equational theory E =
E0 ∪ E1 as defined in Section 2.1. Let I1 = 〈F ,S, E0 ∪ E1〉 be an intruder system
where terms in S are well-moded.

In the case of a well-moded intruder it is possible to split S into two sets of
well-moded terms S0 and S1 such that for all terms t in Si we have sig(t) = i
for i ∈ {0, 1} and such that S0 contains terms built from symbols of F0. This
permits to extract from I1 a simpler intruder, namely I0 = 〈F0,S0, E0〉. In the
sequel, we will reduce some decision problems on I1 to decision problems on I0
under some adequate hypotheses. We define E →S0 F (resp. E →S1 F , resp.
E →S F ) if E →l→r F with l → r ∈ Lt,g for t ∈ S0 (resp. S1, resp. S).
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Properties of deduction rules. Under the assumption that S is well-moded, one
can prove the following key lemmas. Lemma 4 states that when a term appears
as a new subterm of a knowledge set, it has just been built by the intruder.
Considering a derivation, this will permit to apply Lemma 5 iteratively in order
to show that this term may be eliminated from the derivation. This is the main
step of the proof that terms not appearing as instance subterms of the initial
constraint systems can be replaced by smaller terms (w.r.t. <) in a solution to
yield a smaller solution.

Lemma 4. Assume E and F are in normal form. If E → SF and t ∈ Sub(F ) \
(Sub(E)∪Cspe), then F \E = t and E →Lu F , with u ∈ S and sig(u) = sig(t).

Proof. The hypotheses permit to apply Lemma 1. If the rule is applied with
substitution τ this implies Sub((uτ)↓) ⊆ {(uτ)↓} ∪ Sub(E) ∪ Cspe. Thus t /∈
Sub(E) ∪ Cspe implies t = (uτ)↓ and t /∈ Cspe ∪ Factors(uτ). Thus by Lemma 1
sig(t) = sig(uτ) = sig(u).

Lemma 5. Assume E, s and t are in normal form, s /∈ (E ∪ Cspe), s �= t and
cmin ∈ E. Then E, s → E, s, t implies (Eδs)↓, s → ((E, t)δs)↓, s.

Locality hypothesis on intruder systems. The previous lemma will be used in
conjunction with an extra hypothesis that is related to the locality property [15].

HYPOTHESIS 1: If E →S1 E, r →S1 E, r, t and r /∈ Sub(E, t) ∪ Cspe then
there is a set of terms F such that E →∗

S0
F →S1 F, t.

Let us define the closure of S1 as the smallest set 〈S1〉 of terms that contains S1
and such that if s, s′ ∈ S1 and x is a variable of s of mode 1 then s[x ← s′] ∈ 〈S1〉.
By construction the set 〈S1〉 contains only terms with head in F1 and thus
contains only well-moded terms. We can prove that for any set of terms S1 the
set of terms 〈S1〉 satisfies Hypothesis 1.

4 Constraint Systems

We introduce now the constraint systems to be solved for checking protocols. It
is shown in [8] how these constraint systems permit to express the reachability
of a state in a protocol execution.

Definition 2. (Unification systems) Let H be a set of equational axioms on
T(G,X ). An H-Unification system S is a finite set of couples of terms in T(G,X )
denoted by {ui

?= vi}i∈{1,...,n}. It is satisfied by a ground substitution σ, and we
note σ |= S, if for all i ∈ {1, . . . , n} we have uiσ =H viσ.

Definition 3. (Constraint systems) Let I = 〈G, S,H〉 be an intruder system.
An I-Constraint system C is denoted: ((Ei � vi)i∈{1,...,n},S) and it is defined
by a sequence of couples (Ei, vi)i∈{1,...,n} with vi ∈ X and Ei ⊆ T(G,X ) for i ∈
{1, . . . , n}, and Ei−1 ⊆ Ei for i ∈ {2, . . . , n} and by an H-unification system S.
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An I-Constraint system C is satisfied by a ground substitution σ if for all
i ∈ {1, . . . , n} we have viσ ∈ Eiσ and if σ |=H S. If a ground substitution σ
satisfies a constraint system C we denote it by σ |=I C.

Constraint systems are denoted by C and decorations thereof. Note that if a
substitution σ is a solution of a constraint system C, by definition of constraint
and unification systems the substitution (σ)↓O is also a solution of C. In the
context of cryptographic protocols the inclusion Ei−1 ⊆ Ei means that the
knowledge of an intruder does not decrease as the protocol progresses: after
receiving a message a honest agent will respond to it. This response can be
added to the knowledge of an intruder who listens to all communications.

We are not interested in general constraint systems but only in those related
to protocols. In particular we need to express that a message to be sent at some
step i should be built from previously received messages recorded in the variables
vj , j < i, and from the initial knowledge. To this end we define:

Definition 4. (Deterministic Constraint Systems) We say that an I-constraint
system ((Ei � vi)i∈{1,...,n},S) is deterministic if for all i in {1, . . . , n} we have
Var(Ei) ⊆ {v1, . . . , vi−1}.

In order to be able to combine solutions of constraints for the intruder theory I1
with solutions of constraint systems for intruders defined on a disjoint signature
we have, as for unification, to introduce some ordering constraints to be satisfied
by the solution. Intuitively, these ordering constraints prevent from introducing
cycle when building a global solution. This motivates us to define the Ordered
Satisfiability problem:

Ordered Satisfiability
Input: an I-constraint system C, X the set of all variables and C the

set of all free constants occurring in C and a linear ordering ≺
on X ∪ C.

Output: Sat iff there exists a substitution σ such that σ |=I C and
for all x ∈ X and c ∈ C, x ≺ c implies c /∈ Subsyn(xσ)

5 Minimal Solutions

Let σ be a normal ground substitution and C be a constraint system. We say
that σ is bound in C if, for every s ∈ Sub(Var(C)σ), if sig(s) = 1 then s is bound
by σ in Sub(C). The goal of this section is to prove that whenever a constraint
system C is satisfiable, there exists a normal ground substitution σ bound in C
such that σ |= C. The last key ingredient to this proof is the notion of quasi
well-formed derivations.

Definition 5. A derivation E0 →∗ En and of goal t is quasi well-formed if for
every term u ∈ Sub(En) we have sig(u) = 1 implies u ∈ Sub(E0, t) ∪ Cspe.

Let I=〈F ,S, E〉 be a well-moded intruder that satisfies HYPOTHESIS 1 w.r.t.
this mode function.
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Lemma 6. Assume cmin ∈ E and E is in normal form. If t ∈ E
S

there exists
a quasi well-formed derivation starting from E of goal t.

Lemma 7. Let E and F be finite sets of normalized terms with cmin ∈ E. Let
s, t be two normalized terms not in Cspe with s ∈ E \ Sub(E), sig(s) = 1 and
t ∈ E ∪ F . We have:

(tδs)↓ ∈ ((E ∪ F )δs)↓

We can now prove that a satisfiable constraint system is satisfied by a bound
solution.

Proposition 1. Let C be a satisfiable constraint system. There exists a normal
bound substitution σ such that σ |= C.

If we denote Sub1(T ) the terms of signature 1 in Sub(T ), this implies the equality:
Sub1((Sub1(C)σ)↓) = (Sub1(C)σ)↓

6 Application to Security Protocols

We present now a decision procedure for the exponentiation operator which
is used e.g. with Diffie-Hellman scheme for the collaborative construction of a
secret key by two principals. We define the union of two intruder systems as the
intruder system having the deduction rules of both intruder systems.

In order to support properties of the exponential operator in cryptographic
protocols analysis our goal is to prove the decidability of ordered satisfiability
for an intruder able to exploit the properties of exponentiations. Note that the
specification of the exponentiation operation is dependent on the specification
of the multiplication, and thus Theorem 1 of [8] cannot be applied directly.

Note also that simple extensions of the theory we consider here would lead to
undecidability of intruder constraints even when they are reduced to equational
unification problems. See [17] for a survey of several exponentiation theories
and their unification problems. The axiomatization we consider here was to our
knowledge first introduced in [21].

Intruder Deduction System. We consider the union F of the two signatures
F0 = { · , i( ), 1} and F1 = {exp( , )}. We consider terms in T(F ,X ) modulo
the following equational theory E :

x · (y · z) = (x · y) · z (A)
x · y = y · x (C)
x · 1 = x (U)

x · i(x) = 1 (I)
exp(x, 1) = x (E0)

exp(exp(x, y), z) = exp(x, y · z) (E1)



118 Y. Chevalier and M. Rusinowitch

Modes. One easily checks that for the following mode and signature functions
the theory E is a well-moded theory:

– m(·, 1) = m(·, 2) = m(i, 1) = 0;
– m(exp, 1) = 1 and m(exp, 2) = 0;
– sig(·) = sig(i) = sig(1) = 0
– sig(exp) = 1

According to this definition of mode and signature we define E to be the union
of E0 = {(A), (C), (U), (I)} and E1 = {(E0), (E1)}. The set E0 generates the
theory of a free Abelian group whose generators are the atomic symbols in C.
We denote by R an o-completion of E with the same congruence classes as E
and such that for each term t = exp(t1, t2), if t is in normal form for R then t1
is not an exponential term (i.e. sig(t1) �= 1)3.

Let T = {x · y, i(x), 1, exp(x, y)}. We now consider the intruder system
Iexp = 〈F , T, E〉 that represents the modular exponentiation operation as em-
ployed for Diffie-Hellman-like construction of secret keys. According to mode
and signature functions, this permits to define two intruder systems by taking
S0 = {x · y, i(x), 1} and S1 = {exp(x, y)}. Let Iag be the intruder
〈{·, i, 1} , {x · y, i(x), 1} , E0〉. In the rest of this section we present and justify
an algorithm that runs in NP time and permits to reduce ordered satisfiability
for Iexp deterministic constraint systems to ordered satsifiability for Iag deter-
ministic constraint systems. Before proceeding further, let us first prove that the
intruder Iexp satisfies HYPOTHESIS 1.

Lemma 8. Let E be a finite set of terms in normal form, and let r, t be two
terms in normal form such that:

E →S1 E, r →S1 E, r, t

If r /∈ Sub(E, t) and E �→ E, t then there exists a term u such that:

E →S0 E, u →S1 E, u, t

Proof. Assume r /∈ Sub(t) and E �→ E, t. Since r /∈ Sub(E) it is necessary an
exponential by Lemma 4. Let τ be the substitution with which the second rule
x, y → exp(x, y) is applied. Since E �→ E, t one must have either r = xτ or
r = yτ .

First let us prove that w.l.o.g. one can assume r �= yτ . If xτ is not an exponen-
tial, then since E and r are in normal form, so is exp(xτ, yτ), and thus r ∈ Sub(t),
which contradicts the hypothesis. If xτ is an exponential, say xτ = exp(x1τ, y1τ),
then:

exp(xτ, r) =E t′ = exp(x1τ, y1τ × r)

By convergence of R we have (t′)↓ = t. Since either xτ ∈ E or r = xτ , the
assumption r /∈ Sub(E) implies that r is not a strict subterm of xτ , and thus

3 such a system R can be obtained by o-completion with a suitable ordering.
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r /∈ Sub(x1τ, y1τ). Since the factors of t′ are in normal form and r �= t, we have
(t′δr)↓ = (tδr)↓, and thus r /∈ Sub(t) implies (t′δr)↓ = t. In turn, this implies
that xτ, cmin → t is ground instance of a rule in S1 that can be applied on E, r
to deduce t.

The claim and E �→ t implies xτ = r and yτ �= r and thus yτ ∈ E. It suffices
now to consider the ground instance s1, s2 → (exp(s1, s2))↓ = r of the rule that
permits to deduce r from E. Since s1, s2 ∈ E we have the following derivation:

E → S0E, s2 × yτ →S1 E, s2 × yτ, (exp(s1, s2 × yτ))↓

The equality E2 implies that this last term is equal to t.

As a consequence the exponential intruder enjoys quasi well-formed derivations
and by Proposition 1, a satisfiable constraint system can be satisfied by a bound
substitution. Thus we can bound the number of exponential subterms in quasi
well-formed derivations. We can therefore design a correct, complete and termi-
nating algorithm for solving the Iexp-constraints.

Properties of Bound Solutions. Let C = ((Ei � vi)1≤i≤n,S) be a con-
straint system and σ be a solution of C. Given t ∈ Sub(C) let us define It =
{j | (tσ)↓ ∈ Sub((Sub(Ej)σ)↓, vjσ)}. If It �= ∅ we say that the term t is deduction-
bound. In this case we define the indice of t, and denote it, the minimum in-
dice in It. If t ∈ Sub(C) is deduction bound, we say it is past-bound if t ∈
Sub((Sub(Ejt)σ)↓) and past-free otherwise. Finally, given a past-bound term t
of indice it, we say that a term m is a complete prefix of t if:

1. sig(m) = sig((tσ)↓) and (mσ)↓ = (tσ)↓;
2. For all factor u of m; either (uσ)↓ is past-free or sig(u) = sig((uσ)↓)
3. Var(m) ⊆ {v1, . . . , vit}

Lemma 9. It is possible to compute a complete prefix of (tσ)↓ for all past-bound
terms t in Sub(C).

Algorithm. We present here a decision procedure for the exponential intruder
Iexp that takes as input a constraint system C = ((Ei �vi)1≤i≤n,S) and a linear
ordering <i on variables and constants of C. Let m = |Sub(C)| be the number of
subterms in C.

Step 1: Choose m triples (ei, xi, yi)i∈{1,...,m} of new variables and m2 variables

{yi,j}i,j∈{1,...,m}. Add to S equations ei
?= exp(xi, yi) for i ∈ {1, . . . , m} and

yi ·yi,j
?= yj for i, j ∈ {1, . . . , m}. Let Se be the obtained unification problem

and Xe be the set of these new variables.
Step 2: Choose an equivalence ≡σ relation among subterms of C and Se. Let

Q = {q1, . . . , qn} be a set of new variables each denoting an equivalence
class. Add to Se the equation t

?= q for each t ∈ q for each equivalence class
q ∈ Q. Let S′′ be the obtained constraint system. Choose a subterm relation
on Q.
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Step 3: Guess a subset of Qd of Q, and let L = Q ∪ {v1, . . . , vn} and let L =
{l1, . . . , lk}. Let < be a total order on L such that i < j implies vi < vj and
form the constraint system C′ = ((Fi � li)1≤i≤k,S′′) with⎧⎨⎩

F1 = E1
Fi+1 = Fi ∪ (Ej+1 \ Ej) If li = vj

Fi+1 = Fi, li Otherwise

Step 4: Replace each past-bound term in C’ with a complete prefix and past-
free terms with the representative q of their equivalence class. Reduce with
equation (E1) to form the constraint system C′′.

Step 5: Guess which constraints E�v in C′′ must be solved by derivations ending
with a rule in S1, and reduce them (if possible) to constraints to solve with
S0

Step 6: Reduce S′′ to a system of general unification modulo E0 according to
algorithm employed in [21], p. 7, proof of main theorem and purify the
deduction constraints.

Step 7: Solve the resulting Iag deterministic intruder system with the linear
constant restriction <i.

Comments on the Algorithm. We assume in the following that the ordered
satisfiability problem (C, <i) is satisfied by a ground substitution σ0.

Step 1: If C is satisfiable, it is satisfied by a bound substitution for which there
are less than m different exponential terms. The yi,j will denote the expo-
nents that we have to build so that exp(ei, yi,j) = ej.

Step 2: The subterm relation and the equivalence classes are needed to compute
past-free and past-bound terms.

Step 3: The construction amounts to concatenating all derivations from (Eiσ)↓
of goal viσ into one derivation that has to deduce the terms viσ at some
point and in which in some steps the set of term is arbitrarily extended (case
li = vj). From this pseudo-derivation we extract in turn all applications of
the S1 rule and all applications of the S0 rule that yield a past-free term.
The first one permits a complete reduction at next step of the algorithm,
while the second one permits to ensure that the resulting constraint system
is determinitic once past-free terms are replaced by variables. The rational
for this is that by definition the normal form q of a past-free term will be
deduced (i.e. appear in a constraint F � q) before a term in this equivalence
class (that will be replaced by the variable q) appears in any knowledge set.

Step 4: Note here that if a S1 rule permits to deduce a non-exponential term
q, this term is past-bound. Thus the replacement made at previous step
permits to ensure that q will never appear again in the deduction part of the
constraint system, and thus that erasing this constraint during the reduction
will not turn the constraint system into a non-deterministic one. If a S1 rule
permits to deduce an exponential term, it will be seen as a constant when
solving the resulting constraint system w.r.t. the Iag intruder. It is thus safe
to erase the constraint in this case.
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Step 5: In [21] unification systems with constants modulo E are reduced to gen-
eral unification systems modulo E0 containing the exp as a free binary symbol.
We go one step further and turn this unification system into a unification sys-
tem with linear constant restrictions but without non-constant free symbols
in order to syntactically eliminate the exp symbol. The deduction constraints
are purified by replacing all equivalence classes of exponential terms by a rep-
resentative constant.

As a consequence of this algorithm we have a decidability result for ordered
satisfiability w.r.t. exponential intruder.

Proposition 2. The ordered satisfiability problem for deterministic constraints
and intruder Iexp is decidable (with complexity NP).

7 Conclusion

We have introduced a combination scheme for intruder theories that extends
disjoint combination. We have shown how it can be used to derive new decid-
ability results for security protocols. The scheme relies on an extension of the
notion of locality. Unfortunately it does not apply to homomorphism properties
(handled in a specific way in [18]) because they are ill-moded by nature and more
investigations are needed to see whether it can be extended in this direction.
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Abstract. Term Rewriting Systems are now commonly used as a mod-
eling language for programs or systems. On those rewriting based mod-
els, reachability analysis, i.e. proving or disproving that a given term
is reachable from a set of input terms, provides an efficient verification
technique. For disproving reachability (i.e. proving non reachability of a
term) on non terminating and non confluent rewriting models, Knuth-
Bendix completion and other usual rewriting techniques do not apply.
Using the tree automaton completion technique, it has been shown that
the non reachability of a term t can be shown by computing an over-
approximation of the set of reachable terms and prove that t is not in
the approximation. However, when the term t is in the approximation,
nothing can be said. In this paper, we refine this approach and propose
a method taking advantage of the approximation to compute a rewriting
path to the reachable term when it exists, i.e. produce a counter exam-
ple. The algorithm has been prototyped in the Timbuk tool. We present
some experiments with this prototype showing the interest of such an
approach w.r.t. verification of rewriting models.

1 Introduction

In the rewriting theory, the reachability problem is the following: given a term
rewriting system (TRS) R and two terms s and t, can we decide whether s →∗

R t
or not? This problem, which can easily be solved on strongly terminating TRS
(by rewriting s into all its possible reduced forms and compare them to t), is un-
decidable on non terminating TRS. There exists several syntactic classes of TRSs
for which this problem becomes decidable: some are surveyed in [FGVTT04],
more recent ones are [GV98, TKS00]. In general, the decision procedures for
those classes compute a finite tree automaton recognizing the possibly infinite
set of terms reachable from a set E ⊆ T (F) of initial term, by R, denoted by
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R∗(E). Then, provided that s ∈ E, those procedures check whether t ∈ R∗(E)
or not. On the other hand, outside of those decidable classes, one can prove
s �→∗

R t using over-approximations of R∗(E) [Jac96, Gen98, FGVTT04] and
proving that t does not belong to this approximation.

Recently, reachability analysis turned out to be a very efficient verification
technique for proving properties on infinite systems modeled by TRS. Some of
the most successful experiments, using proofs of s �→∗

R t, were done on crypto-
graphic protocols [Mon99, GK00, OCKS03, GTTVTT03], [BHK05] where pro-
tocols and intruders are described using a TRS R, E represents the set of initial
configurations of the protocol and t a possible flaw. Then reachability analysis
can detect the flaw (if s →∗

R t) or prove its absence (if ∀s ∈ E : s �→∗
R t). How-

ever, the main drawback of those techniques based on tree automata, is that if
t ∈ R∗(E) then we have the proof but not the rewriting path (also denoted by
trace in the following). Indeed, from the tree automaton recognizing R∗(E) it
is not possible to reconstruct the rewrite path from a possible s to t (i.e. the
attack leading to a flaw in the context of cryptographic protocols). On the other
hand, when dealing with an over-approximation App ⊇ R∗(E) if t ∈ App then
there is no way to check whether t ∈ R∗(E) (t is really reachable from s) or if
t ∈ App \ R∗(E) (t is an artefact of the approximation). This problem becomes
crucial when using approximations to prove security and safety properties. In
that case, producing counter examples on a faulty specification makes the user
more confident with the tool when it finally claims that the property is proven
on a fixed version of the specification.

This paper tackles those two problems and proposes a solution that auto-
matically gives the rewrite path when R∗(E) is constructed exactly and helps
to discriminate between terms of R∗(E) and terms of the approximation when
R∗(E) is over-approximated.

This paper is organized as follows. In section 2, we give the basic definitions
for TRS and tree automata. In section 3, we recall the tree automata completion
technique. In section 4, we define the trace reconstruction method we propose.
Finally, in section 5, we present some experimentations done with our prototype
implemented within Timbuk [GVTT00] a tree automata completion tool.

2 Preliminaries

Comprehensive surveys for TRSs and tree automata can be found respectively
in [BN98] and in [CDG+02].

Let F be a finite set of symbols, each one with an arity and let X be a
countable set of variables. T (F ,X ) denotes the set of terms, and T (F) denotes
the set of ground terms (terms without variables). The set of variables of a term t
is denoted by Var(t). A substitution is a function σ from X into T (F ,X ), which
can uniquely be extended to an endomorphism of T (F ,X ). A position p for a
term t is a word over N. The empty sequence ε denotes the top-most position.
The set Pos(t) of positions of a term t is inductively defined by:
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– Pos(t) = {ε} if t ∈ X
– Pos(f(t1, . . . , tn)) = {ε} ∪ {i.p | 1 ≤ i ≤ n and p ∈ Pos(ti)}

If p ∈ Pos(t), then t|p denotes the subterm of t at position p and t[s]p denotes
the term obtained by replacement of the subterm t|p at position p by the term s.
For any term s ∈ T (F ,X ), we denote by PosF(s) the set of functional positions
in s, i.e. {p ∈ Pos(s) | Root(s|p) ∈ F} where Root(t) denotes the symbol at
position ε in t. Similarly, we denote by Posx(s) the set of positions of variable
x ∈ X occuring in s, i.e. the set {p ∈ Pos(s) | s|p = x}.

A TRS R is a set of rewrite rules l → r, where l, r ∈ T (F ,X ), l �∈ X , and
Var(l) ⊇ Var(r). A rewrite rule l → r is left-linear (resp. right-linear) if each
variable of l (resp. r) occurs only once in l (resp. in r). A rule is linear if it is
both left and right-linear. A TRS R is linear (resp. left-linear, right-linear) if
every rewrite rule l → r of R is linear (resp. left-linear, right-linear). The TRS
R induces a rewriting relation →R on terms whose reflexive transitive closure
is denoted by →�

R. The set of R-descendants of a set of ground terms E is
R∗(E) = {t ∈ T (F) | ∃s ∈ E s.t. s →�

R t}.
Let Q be an infinite set of symbols, with arity 0, called states such that

Q∩ F = ∅. T (F ∪Q) is called the set of configurations.

Definition 1 (Transition and normalized transition). A transition is a
rewrite rule c → q, where c is a configuration i.e. c ∈ T (F ∪Q) and q ∈ Q.
A normalized transition is a transition c → q where c = f(q1, . . . , qn), f ∈ F ,
Arity(f) = n, and q1, . . . , qn ∈ Q.

An epsilon transition is a transition of the form q → q′ where q and q′ are
states. Any set of transition Δ ∪ {q → q′} can be equivalently replaced by
Δ ∪ {c → q′ | c → q ∈ Δ}.

Definition 2 (Bottom-up non-deterministic finite tree automaton). A
bottom-up non-deterministic finite tree automaton (tree automaton for short) is
a quadruple A = 〈F ,Q,Qf , Δ〉, where Qf ⊆ Q and Δ is a set of normalized
transitions.

The rewriting relation on T (F ∪Q) induced by the transitions of A (the set Δ)
is denoted by →Δ. When Δ is clear from the context, →Δ will also be denoted
by →A. Similarly, by notation abuse, we will often note q ∈ A and t → q ∈ A
respectively for q ∈ Q and t → q ∈ Δ.

Definition 3 (Recognized language). The tree language recognized by A in
a state q is L(A, q) = {t ∈ T (F) | t →�

A q}. The language recognized by A
is L(A) =

⋃
q∈Qf

L(A, q). A tree language is regular if and only if it can be
recognized by a tree automaton. A state q is a dead state if L(A, q) = ∅.

Example 1. Let A be the tree automaton 〈F ,Q,Qf , Δ〉 such that F = {f, g, a},
Q = {q0, q1, q2}, Qf = {q0} and Δ = {f(q0) → q0, g(q1) → q0, g(q2) → q2, a →
q1}. In Δ transitions are normalized. A transition of the form f(g(q2)) → q0
is not normalized. The term g(a) is a term of T (F ∪Q) (and of T (F)) and
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can be rewritten by Δ in the following way: g(a) →Δ g(q1) →Δ q0. Note that
L(A, q1) = {a} and L(A, q0) = {f(g(a)), f(f(g(a))), . . .} = {f�(g(a))}. Note
also that L(A, q2) = ∅ since no term of T (F) rewrites to q2, hence q2 is a dead
state.

3 Tree Automata Completion

Given a tree automaton A and a TRS R, the tree automata completion algo-
rithm, proposed in [Gen98, FGVTT04], computes a tree automaton Ak such
that L(Ak) = R∗(L(A)) when it is possible (for the classes of TRSs covered by
this algorithm see [FGVTT04]) and such that L(Ak) ⊇ R∗(L(A)) otherwise.

The tree automata completion works as follows. From A = A0 completion
builds a sequence A0.A1 . . .Ak of automata such that if s ∈ L(Ai) and s →R t
then t ∈ L(Ai+1). If we find a fixpoint automaton Ak such that R∗(L(Ak)) =
L(Ak), then we have L(Ak) = R∗(L(A0)) (or L(Ak) ⊇ R∗(L(A)) if R is not in
one class of [FGVTT04]). To build Ai+1 from Ai, we achieve a completion step
which consists in finding critical pairs between →R and →Ai . For a substitution
σ : X $→ Q and a rule l → r ∈ R, a critical pair is an instance lσ of l such
that there exists q ∈ Q satisfying lσ →∗

Ai
q and lσ →R rσ. For every critical

pair detected between R and Ai such that rσ �→∗
Ai

q, Ai+1 is constructed by
adding a new transition rσ → q to Ai such that Ai+1 recognizes rσ in q, i.e.
rσ →Ai+1 q.

lσ

Ai

R
rσ

q

∗
Ai+1

∗

However, the transition rσ → q is not necessarily a normalized transition of
the form f(q1, . . . , qn) → q and so it has to be normalized first. For example, to
normalize a transition of the form f(g(a), h(q′)) → q, we need to find some states
q1, q2, q3 and replace the previous transition by a set of normalized transitions:
{a → q1, g(q1) → q2, h(q′) → q3, f(q2, q3) → q}.

Assume that q1, q2, q3 are new states, then adding the transition itself or
its normalized form does not make any difference. Now, assume that q1 = q2,
the normalized form becomes {a → q1, g(q1) → q1, h(q′) → q3, f(q1, q3) → q}.
This set of normalized transitions represents the regular set of non normalized
transitions of the form f(g�(a), h(q′)) → q which contains the transition we want
to add but also many others. Hence, this is an over-approximation. We could
have made an even more drastic approximation by identifying q1, q2, q3 with q,
for instance.

For every transition, there exists an equivalent set of normalized transitions.
Normalization consists in decomposing a transition s → q, into a set Norm(s →
q) of normalized transitions. The method consists in abstracting subterms s′ of
s s.t. s′ �∈ Q by states of Q.
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Definition 4 (Abstraction function). Let F be a set of symbols, and Q a set
of states. An abstraction function α maps every normalized configuration into a
state:

α : {f(q1, . . . , qn) | f ∈ Fn and q1, . . . qn ∈ Q} $→ Q

Definition 5 (Abstraction state). Let F be a set of symbols, and Q a set of
states. For a given abstraction function α and for all configuration t ∈ T (F ∪Q)
the abstraction state of t, denoted by topα(t), is defined by:

1. if t ∈ Q, then topα(t) = t,
2. if t = f(t1, . . . , tn) then topα(t) = α(f(topα(t1), . . . , topα(tn))).

Definition 6 (Normalization function). Let F be a set of symbols, Q a set
of states, Δ a set of normalized transitions, s → q a transition s.t. s ∈ T (F ∪Q)
and q ∈ Q, and α an abstraction function. The set Normα(s → q) of normalized
transitions is inductively defined by:

1. if s = q, then Normα(s → q) = ∅, and
2. if s ∈ Q and s �= q, then Normα(s → q) = {c → q | c → s ∈ Δ}, and
3. if s = f(t1, . . . , tn), then Normα(s → q) =

{f(topα(t1), . . . , topα(tn)) → q} ∪
⋃n

i=1 Normα(ti → topα(ti)).

Example 2. Let α an abstraction function such that: α = {g(q1, q0) $→ q, b $→
q1, a $→ q2)}. Consequently, topα = {q0 $→ q0, b $→ q1, a $→ q2, g(b, q0) $→ q}. The
transition f(a, g(b, q0)) → q can be normalized using Normα in the following
way :

Normα(f(a, g(b, q0)) → q) = {f(topα(a), topα(g(b, q0))) → q}
∪Normα(a → q2) ∪ Normα(g(b, q0) → q)

By applying Definition 6 on Normα(a → q2) and Normα(g(b, q0) → q), we obtain
that Normα(f(a, g(b, q0)) → q) = {f(q2, q) → q, a → q2, b → q1, g(q1, q0) → q}.

With different abstraction function, on the same transition, one can obtain differ-
ent normalizations. Hence, the precision of the fixpoint automaton Ak depends
on the abstraction α.

Definition 7 (Automaton completion). Let Ai = 〈F ,Qi,Qf , Δi〉 be a tree
automaton, R a TRS and α an abstraction function. The one step completed
automaton Ai+1 is a tree automaton 〈F ,Qi+1,Qf , Δi+1〉 such that:

Δi+1 = Δi ∪
⋃

l→r∈R, q∈Q, σ:X �→Q, lσ→∗
Δi

q

Normα(rσ → q)

Qi+1 = {q | c → q ∈ Δi+1}
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4 Reconstruction Method

To make the reading of this paper easier, we give once for all the notations used
in the remainder of this paper:

– R is a left-linear TRS;
– α is a given abstraction function (following Definition 4);
– A0,A1, . . . ,Ak is a finite sequence of automata obtained by the completion

algorithm presented in Definition 7 for a given abstraction function α;
– Ak is a fixpoint automaton obtained from A0,R and α;
– Δi is the set of transitions of the automaton Ai;
– Qf is the set of final states of automata A0,A1, . . . ,Ak.

We suppose that for all i = 0, . . . , k: Δi are a sets of normalized transitions.
In particular all Δi do not contain epsilon transitions (see Definition 1).

Definition 8 (Δ−Unifier). Let Δ be a set of transitions, t1 ∈ T (F ,X ), and
t2 ∈ T (F ∪Q). A substitution σ : X $→ T (F ∪Q) is a Δ-unifier of t1 and t2 if
and only if

1. t1σ →∗
Δ t2, and

2. for all x ∈ Var(t1):
– if Posx(t1) ∩ PosF(t2) �= ∅ then σ(x) = t2|p′ for some p′ ∈ Posx(t1) ∩

PosF(t2).
– otherwise, σ(x) = q where q ∈ Q.

We denote by ⇑Δ(t1, t2) the set of Δ−unifiers of t1 and t2.

The example below illustrates that, in general, for two terms t1 and t2 there exist
several Δ-unifiers. The example also illustrates the case when t1 is not linear.
After the example, in Lemma 1, we show that for two terms t1 and t2 the set
⇑Δ(t1, t2) is finite.

Example 3. Let t1 = f(g(x), h(y, y)), t2 = f(q1, h(g(a), g(q2))) and a set of
transitions Δ containing at least the following transitions a → q2, g(q) →
q1, g(q1) → q1 and g(q2) → q1. The following two substitutions σ1 = {x $→
q, y $→ g(a)} and σ2 = {x $→ g(q1), y $→ g(a)} are Δ-unifiers of t1 and t2, but
σ3 = {x $→ q1, y $→ g(q2)} is not since g(q2) �→∗

Δ g(a) and thus t1σ3 �→∗
Δ t2.

Lemma 1. For all Δ, t1 and t2, the set ⇑Δ(t1, t2) is finite.

Proof. Given a term t ∈ T (F ∪Q), let us denote by Sub(t) the set of all subterms
of t, i.e. Sub(t) = {t|p | p ∈ Pos(t)}. By definition of ⇑Δ(t1, t2), any substitution
σ of this set maps a variable either to a state or to a subterm of t1. Hence
⇑Δ(t1, t2) ⊂ (Var(t1) $→ (Q ∪ Sub(t1)). Since Var(t1), Q and Sub(t1) are finite
then so is (Var(t1) $→ (Q ∪ Sub(t1)) and thus ⇑Δ(t1, t2) is finite.

During the completion algorithm presented in Definition 7, critical pairs are
detected. The role of Occurency of a critical pair (OCCP) is to store the in-
formation on every critical pair found during completion (the applied rule, the
substitution, the position) so as to infer information on feasible traces afterwards.
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Definition 9 (Occurency of a Critical Pair(OCCP)). Let Ak be a fixpoint
tree automaton obtained from A0 using the completion algorithm of Definition 7
such that Ak = Ak+1 and k ≥ 0. An OCCP is a triple 〈l → r, ρ, q〉 where:

– l → r is a rewriting rule of R;
– ρ a substitution of variables in Var(l) by states in Q;
– q ∈ Q;
– lρ →∗

Δk
q

Let OCCPk be the set of all OCCP built on Ak.

Our method of trace reconstruction is based on data back-tracking on the au-
tomaton Ak = 〈F ,Qk,Qf , Δk〉 obtained by the completion of an automaton
A0 = 〈F ,Q0,Qf , Δ0〉 by a TRS R.

From Ak, OCCPk and a term t ∈ L(Ak), we need to find t′ ∈ L(Ak) a
predecessor of t i.e. such that t′ →R t. Then we search for a predecessor of t′

and so on until reaching a term t0 ∈ L(A0). Before defining formally the set of
predecessors of a term t from Ak and OCCPk, we define a particular substitution
constructor.

Definition 10. σ
⊔

ρ = σ ∪ {x $→ t | x �∈ dom(σ) ∧ x $→ t ∈ ρ}
Example 4. Let σ1, σ2 : X $→ T (F ∪Q) be two substitutions such that:

– σ1 = {x → a, y → q1} and
– σ2 = {x → q2, y → q3, z → b}.

Thus, σ1
⊔

σ2 = {x $→ a, y $→ q1, z $→ b} and σ2
⊔

σ1 = {x $→ q2, y $→ q3, z $→
b} = σ2.

Definition 11 (Pred). Let cp = 〈l → r, ρ, q〉 be an OCCP such that cp ∈
OCCPk. The set of predecessors of t ∈ T (F ∪Q) w.r.t. cp at position p ∈ Pos(t)
is defined by Pred(t, cp, p) = {t[lσ

⊔
ρ]p | σ ∈ ⇑Δk

(r, t|p) and rσ →∗
Δk

rρ}.
Example 5. Let Δ be a set of transitions containing the transitions g(q2) →
q3, a → q2, g(q1) → q1, g(q4) → q1 and l → r = f(x, y) → f(g(x), h(y, y)) be a
rewriting rule. Let cp = 〈l → r, q, ρ〉 be an OCCP where ρ = {x $→ q1, y $→ q3}
and t = f(q1, h(g(a), g(q2))) be a term over T (F ∪Q). For the position ε and the
term t, Pred(t, cp, ε) = {f(q1, g(a))}. Indeed, the only Δ−unifier σ ∈ ⇑Δ(r, t)
respecting the condition rσ →∗

Δ rρ is σ = {x $→ g(q1), y $→ g(a)}. Consequently,
by applying the substitution σ

⊔
ρ on l, we obtain f(g(q1), g(a)).

Thus, by iterating this process on the terms obtained at each step, we are able
to build some sequences of terms as shown in Definition 12.

Definition 12 (Sequence). Let t0, . . . , tn ∈ T (F ∪Q) and q ∈ Q such that
∀i = 1 . . . n : ti →∗

Δk
q. Let cp1, . . . , cpn ∈ OCCPk and p1, . . . , pn ∈ N∗ such that

∀i = 1 . . . n : cpi = 〈li → ri, ρi, qi〉. If ∀i = 1 . . . n : ti−1 ∈ Pred(ti, cpi, pi) then

tn
cpn,pn← tn−1 . . .

cp1,p1← t0.

is a sequence from tn to t0.
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The following theorem relates sequences to rewriting paths. Roughly, if a se-
quence starts from t and ends up on a term t0 ∈ L(A0) then there exist a
rewriting path from t0 to t. Note that if t0 �∈ T (F) (but t0 ∈ T (F ∪Q)) then
there exists a term t′0 ∈ T (F) and t′0 ∈ L(A0) such that t′0 →A0 t0 and t′0 →∗

R t.

Theorem 1 (Correctness). Given t ∈ L(Ak) and a final state qf ∈ Qf such
that t →∗

Δk
qf , if there exists a sequence tn

cpn,pn← tn−1 . . .
cp1,p1← t0 such that

t = tn, ∀i = 0 . . . n : ti →∗
Δ qf and t0 →∗

Δ0
qf then there exists a term

s ∈ L(A0), s →∗
Δ0

t0 and s →∗
R t.

Moreover, there exists a rewrite path (or trace)

sn
rln,pn→ sn−1 . . . s1

rl0,p0→ t

where rli = li → ri is the rule of the OCCP cpi, sn = s, and si−1 = si[riμi]pi

and lμi = si|pi .

Proof (Sketch). The proof can be done by induction on the length of the se-
quence. See [BG06] for more details.

Not only to be correct, our method is also complete in the sense that if there
exists a rewriting path between two terms then our method finds at least one
path. However, because of Definition 8, only minimal paths are constructed.
Thus, between two terms s and t it is not possible to find all the possible traces
but only minimal ones.

Theorem 2 (Completeness). Let t, u ∈ L(Ak). If u →∗
R t then there exists

t0, . . . , tn−1 ∈ L(Ak), cp1, . . . , cpn ∈ OCCPk, p1, . . . pn ∈ N∗ and a sequence
t

cpn,pn← tn−1 . . .
cp1,p1← t0 such that u →∗

Δ t0.

Proof (Sketch). The proof is done by induction of the length of the rewrite
derivation u →∗

R t. See [BG06] for details.

Thus, thanks to Theorem 2 and Theorem 1, we can define an algorithm that
builds a valid sequence. For constructing a valid sequence, we start from a term
t, construct the finite set of predecessors of t for all positions of t and all the
computed OCCPs. Then, we repeat non deterministically the same operation
on all the predecessors of t until finding a term t0 →∗

Δ0
qf where qf is a final

state of A0. Of course, since we are dealing with infinite models, it is not always
possible to conclude because trace reconstruction may diverge if it starts from a
term that is not reachable.

5 Experimental Results

Timbuk[GVTT01, GVTT00] was used to prototype the method presented in
Section 4. Timbuk is a collection of tools for achieving proofs of reachability
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over TRS and for manipulating tree automata (bottom-up non-deterministic
finite tree automata).

In particular, Timbuk implements the tree automata completion algorithm
presented in Section 3. To reconstruct a trace, the process is the following: Let
A0, R, α and t be respectively a tree automaton, a TRS, an abstraction function
and a term to find. Timbuk performs the completion of A0 by R using the
abstraction function α.

If the term t is not recognized by the completed tree automaton, then t is
not reachable. Otherwise, either it is reachable or it is in the over-approximation
part. To discriminate between the two solutions, we can use trace reconstruction.
First, the set of OCCP is computed. Then, given t and a natural N , we search
the tree of possible sequences for a predecessor of t in L(A0), breadth-first and
up to a depth N . Our system returns the first found trace which is one of the
minimal traces.

Three different results can be obtained:

1. t0 →R . . . →R t: a trace is found and returned;
2. Term of the approximation: No trace can be provided because t is in the

approximation part. This can be shown when the tree of predecessors of t is
of depth M such that M ≤ N and no term of the tree belongs to the initial
set, i.e. L(A0).

3. Cannot conclude: The tree of predecessors of t has been explored up to a
depth N (and depth of the tree is not bounded by N) without finding a term
of the initial set.

Note that in practice, we also use a generalization of this: patterns of forbidden
terms, tp ∈ T (F ,X ), instead of a single term t. In those cases, the trace recon-
struction process is very similar: we look for substitutions σ : X $→ Q such that
tpσ is recognized by the over-approximation. Then, we can start reconstruction
from tpσ. If such a σ exists then we know that there exists at least one substi-
tution ρ : X $→ T (F) such that tpρ is recognized by the over-approximation (no
dead states). Then we can start reconstruction from tpρ.

Now, let us present some experimentations on the verification of a simple
two processes counting system. The following TRS describes the behavior of two
processes each one equipped with an input list and a FIFO. Each process receives
a list of symbols ’+’ and ’−’ to count, as an input. One of the processes, say
P+, is counting the ’+’ symbols and the other one, say P− is counting the ’−’
symbols. When P+ receives a ’+’, it counts it and when it receives a ’−’, it adds
the symbol to P−’s FIFO. The behavior of P− is symmetric. When a process’
input list and FIFO is empty then it stops and gives the value of its counter.

Here is a possible rewrite specification of this system, given in the Timbuk lan-
guage, where S( , , , ) represents a configuration with a process P+, a process
P−, P+’s FIFO and P−’s FIFO. The term Proc( , ) represents a process with an
input list and a counter, add( , ) implements adding of an element in a FIFO,
and cons, nil, s, o are the usual constructors for lists and natural numbers.



132 Y. Boichut and T. Genet

Ops
S:4 Proc:2 Stop:1 cons:2 nil:0 plus:0 minus:0 s:1 o:0 end:0 add:2

Vars x y z u c m n
TRS R1
add(x, nil) -> cons(x, nil)
add(x, cons(y, z)) -> cons(y, add(x, z))
S(Proc(cons(plus, y), c), z, m, n) -> S(Proc(y, s(c)), z, m, n)
S(Proc(cons(minus, y), c), u, m, n) -> S(Proc(y, c), u, m, add(minus, n))
S(x, Proc(cons(minus, y), c), m, n) -> S(x, Proc(y, s(c)), m, n)
S(x, Proc(cons(plus, y), c), m, n) -> S(x, Proc(y, c), add(plus, m), n)
S(Proc(x, c), z, cons(plus,m), n) -> S(Proc(x, s(c)), z, m, n)
S(x, Proc(z, c), m, cons(minus,n)) -> S(x, Proc(z, s(c)), m ,n)
S(Proc(nil, c), z, nil, n) -> S(Stop(c), z, nil, n)
S(x, Proc(nil, c), m, nil) -> S(x, Stop(c), m, nil)

On this specification, we aim at proving that, for any input lists, there is
no possible deadlock. In this example, a deadlock is a configuration where a
process has stopped but there are still symbols to count in its FIFO, i.e. terms
of the form (pattern tp): S(Stop(x), z, cons(plus, u), c). The set of initial
configurations of the system is described by the following tree automaton, where
each process has a counter initialized to 0 and has an unbounded input list (with
both ’+’ and ’−’) and with at least one symbol.

Automaton A1
States q0 qinit qzero qnil qlist qsymb
Final States q0
Transitions
cons(qsymb, qnil) ->qlist minus -> qsymb nil -> qnil
Proc(qlist, qzero) -> qinit plus -> qsymb o -> qzero
S(qinit, qinit, qnil, qnil) -> q0 cons(qsymb, qlist) -> qlist

Let α1 be the (constant) abstraction function normalizing every configuration
into a single state q, i.e. α1 : T (F ∪Q) $→ {q} and let α2 be the abstraction
function normalizing every configuration into a new state. Roughly, α1 and α2
are respectively the worst and the better abstraction functions. Using comple-
tion, α1 (resp. α2) produces the most approximated (resp. precise) automaton.
By running Timbuk on the previous specification, with α1, we can obtain within
a few seconds a tree automaton over-approximating R1∗(L(A1)). However, we
cannot prove that the system is deadlock free. Indeed, when looking for patterns
S(Stop(x), z, cons(plus, u), c) in the over-approximation, some solutions
are found, i.e. there exists substitutions σ : X $→ T (F) such that S(Stop(x),
z, cons(plus, u), c)σ is recognized by the tree automaton. Without trace
reconstruction, there was no mean to figure out if it was a real problem or an ap-
proximation artefact. Now, using trace reconstruction, we can find automatically
a counter-example, i.e. the smallest rewriting path between a particular term of
the infinite language L(A1) and a term matching S(Stop(x), z, cons(plus,
u), c). The rewriting path obtained by our prototype is given using the follow-
ing syntax: s -[| applied rule, position ]-> s′ . . .
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Statistics:
- Number of nodes visited: 23921
- Computation Time: 11.39 seconds
- Trace(s):
S(Proc(cons(plus,nil),o),Proc(cons(plus,nil),o),nil,nil)
-[|S(Proc(cons(plus,y),c),z,m,n) -> S(Proc(y,s(c)),z,m,n),epsilon|]->

S(Proc(nil,s(o)),Proc(cons(plus,nil),o),nil,nil)
-[|S(Proc(nil,c),z,nil,n) -> S(Stop(c),z,nil,n),epsilon|]->

S(Stop(s(o)),Proc(cons(plus,nil),o),nil,nil)
-[|S(x,Proc(cons(plus,y),c),m,n) ->

S(x,Proc(y,c),add(plus,m),n),epsilon|]->
S(Stop(s(o)),Proc(nil,o),add(plus,nil),nil)
-[|add(x,nil) -> cons(x,nil),epsilon.3|]->

S(Stop(s(o)),Proc(nil,o),cons(plus,nil),nil)

Thanks to trace reconstruction, our system has found the two necessary con-
ditions for the problem to occur:

– the P− process has to have at least one ’+’ symbol in its input list (initial
term), and

– the P+ process needs to count all the symbols of its list and terminates
before the P− process starts to store ’+’ symbols in the P+ FIFO (rewriting
sequence)

then P+ is stopped with a non-empty FIFO. Note that, using α2 instead of α1,
completion does not terminate but after a finite number of completion steps, a
similar trace can be found by visiting fewer nodes (113 nodes in 2.86 seconds)
thanks to a more precise approximation.

The problem found here can be fixed by adding an additional symbol: ’end’
which has to be added by process P+ to P− FIFO when P+ has reached the
end of its list, and symmetrically for P−. Then, a process can stop if and only
if it has reached the end of its list and if it has read the ’end’ symbol in its
FIFO. On the corrected TRS, it is possible to compute an over-approximation
of all reachable terms with Timbuk. In the obtained approximation, no dead-lock
situation occurs, proving the property [BG06].

In some other experiments, we used approximations and trace reconstruction,
to find attacks in rewrite specifications of cryptographic protocols [BG06]. On
those examples with more complex search trees, the obtained results show that
computing first an over-approximation of reachable terms and then searching for
a particular reachable term provides a very efficient alternative to usual breath-
first search in the rewriting tree. In particular, in [BG06] we give an example
where trace reconstruction succeeds and Maude [CDE+01] exhausts memory.

6 Conclusion

In this paper, we have presented a trace reconstruction method for over-
approximations of sets of reachable terms. The proposed algorithm takes advan-
tage of the completion-based approximation construction to prune the search
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space in the set of all possible traces. Completeness of the approach ensures that
if a trace exists then it can be obtained by trace reconstruction, whatever the
approximation may be. However, since we are dealing with infinite models, it is
not always possible to conclude because trace reconstruction may diverge if it
starts from a term that is not reachable.

With regards to other works in the domain, the first main interest of our
technique is that it can find reachable terms on infinite sets (regular tree lan-
guages) of initial input terms. As shown on the counting processes example,
trace reconstruction permits to find the exact rewriting path to a reachable
term from an infinite set of possible input terms. When (1) the set of initial
terms is infinite and (2) the term rewriting system is not confluent not ter-
minating, this problem can hardly be tackled by usual rewriting tools such as
Elan[BKK+98] or Maude[CDE+01] as well as by completion based tools like
Waldmeister[GHLS03]. However, in order to compare with some existing tools,
we also achieved some experiments on finite sets of initial terms in the case of
cryptographic protocols [BG06]. It comes up that, for reachability analysis and
in some particular cases, our prototype can compete with a cutting edge rewrite
engine like Maude.

Furthermore, when every problem is corrected in the rewrite specification, the
usual tree automata completion algorithm is able to prove that problem/attack/
deadlock are not reachable, hence cannot happen in the system, by over-
approximating the set of reachable terms. This is to be used in the TA4SP
tool (based on Timbuk) which is part of the AVISPA [ABB+05] protocol ver-
ification tool so as to discriminate between reachable terms (real attacks) and
terms of the approximation.
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Abstract. We show that rewrite systems can be used to give semantics to im-
perative programs with boolean variables, a class of programs used in software
model-checking as over- or underapproximations of real programs. We study the
classes of rewrite systems induced by programs with different features like pro-
cedures, concurrency, or dynamic thread creation, and survey a number of results
on their word problem and their symbolic reachability problem.

1 Introduction

Software Model Checking is an active research area whose goal is the application of
model-checking techniques to the analysis and verification of programs. It devotes a
lot of attention to boolean programs, which are imperative, possibly nondeterministic
programs acting on variables of boolean type. The reason is that boolean programs can
be used as over- or underapproximations of the real program one wishes to analyze. In
order to obtain underapproximations, one restricts the range of the variables to a small,
finite domain. Once this has been done, an instruction of the program can be simulated
by an instruction acting on a number of boolean variables, one for each bit needed to
represent the finite range (for instance, if we restrict the range of an integer variable v
to the interval [0..3] we can simulate an assignment to v by a simultaneous assignment
to two boolean variables). The executions of the underapproximation correspond to the
executions of the program in which the values of the variables stay within the specified
range.

Overapproximations are obtained by predicate abstraction [22]. In this approach,
one defines a set of boolean predicates on the variables of the program (e.g., x ≤ y for
two integer variables x and y) and defines an abstraction function that assigns to a val-
uation of the program variables the set of predicates that it satisfies. Using standard
abstract interpretation techniques [15], one can then construct a boolean program hav-
ing the same control structure as the original one, but now acting on a set of boolean
variables, one for each predicate. In Software Model Checking, these approximations
are progressively refined in an automatic way until the property is proved, refuted, or
until the tools run out of memory. This technique is called counterexample-guided ab-
straction refinement [14].
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Boolean while programs have a finite state space, and can be analyzed using stan-
dard model-checking techniques. However, modern software goes far beyond while
programs: Programs can exhibit recursion, parallelism, and thread creation. Each one
of these features leads to an infinite state space, and to questions about the decidability
and complexity of analysis problems. In order to attack these questions we need to find
semantic models linking boolean programs to formal models with a strong theory and
powerful analysis algorithms. This has been the subject of intensive research since the
late 90s.

This paper shows that semantic models for boolean programs can be elegantly for-
mulated as rewrite systems. In this approach, program states are formalized as terms,
and program instructions as rewrite rules. A step of the program is matched by a rewrite
step in its corresponding rewrite system. The nature of the program determines the class
of terms we use. In particular, we use string-rewriting and multiset-rewriting as special
cases of term rewriting.

Once we have a rewrite model, we wish to analyze it. From the model-checking or
program analysis point of view questions like termination and confluence play a minor
rôle. One is far more interested in the word problem, and actually on a generalization
of it: Given a rewriting system and two (possibly infinite!) sets of terms T and T ′, can
some element of T be rewritten into an element of T ′? The software model checking
community has attacked this question by studying symbolic reachability techniques. In
this approach, one tries to find data structures providing finite representations of a suf-
ficiently interesting class of infinite sets of terms, and satisfying at least one of the two
following properties: (1) if a set T is representable, then the set post∗(T ) of terms reach-
able from T by means of an arbitrary number of rewriting steps is also representable;
moreover, its representation can be effectively computed from the representation of T ,
and (2) same property with the set pre∗(T ) of terms that can be rewritten into terms of
T instead of post∗(T ).

We survey a number of results on symbolic reachability algorithms for different
classes of programs. We start with sequential programs, move to concurrent programs
without recursion and, finally, consider the difficult case of concurrent programs with
recursive procedures. For each class we give a small example of a program and its
semantics, and then present analysis results.

2 Sequential Programs

Consider the program of Figure 1. It consists of two procedures, main() and p(), and
has no variables. The intended semantics of if ? then c1 else c2 fi is a nondeterministic
choice between c1 and c2. The program state is not determined by the current value
of the program counter only; we also need information about the procedure calls that
have not terminated yet. This suggests to represent a state of the program as a string
p0 p1 . . . pn where p0 is the current value of the program counter and p1 . . . pn is the
stack of return addresses of the procedure calls whose execution has not terminated yet.
For instance, the initial state of the program of Figure 1 is m0, but the state reached after
the execution of m1 : callp() is not p0, it is the string p0 m2.
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procedure p();
p0: if (?) then
p1: call main();
p2: if ? then call p() fi

else
p3: call p()

fi;
p4: return

procedure main();
m0: if ? then return fi;
m1: call p;
m2: return

p0 → p1
p0 → p3
p1 → m0 p2
p2 → p0 p4
p2 → p4
p3 → p0 p4
p4 → ε
m0 → ε
m0 → m1
m1 → p0 m2
m2 → ε

Fig. 1. A sequential program and its semantics

We can capture the behaviour of the program by the set of string-rewriting rules
on the right of Figure 1. A procedure call is modelled by a rule of the form X → Y Z,
where X is the current program point, Y the initial program point of the callee, and
Y the return address of the caller. A return instruction is modelled by a rule X → ε,
where ε denotes the empty string. However, with the ordinary rewriting policy of string-
rewriting systems

X → w

uX v
r−→uwv

where
r−→ denotes a rewrite step, we have m0 p2 m2

r−→m0 p0 p4 m2 (rule p2 → p0 p4),
which is not allowed by the intuitive semantics. We need to use the prefix-rewriting
policy

X → w

X v
r−→wv

instead. We also need to interpret ε as the empty string. With these changes we have for
instance the rewriting chain

m0
r−→m1

r−→ p0 m2
r−→ p1 m2

r−→m0 p2 m2
r−→ p2 m2

r−→ p4 m2
r−→m2

r−→ε

Notice that the string-rewriting system of Figure 1 is monadic, i.e., the left-hand-side
of the rewrite rules consists of one single symbol.

2.1 Adding Variables

Consider the program of Figure 2, where b is a global variable and l is a local variable
of the function foo(). In the presence of variables, a state of a sequential program can
be modelled as a string over the alphabet containing

– a symbol for every valuation of the global variables; and
– a symbol 〈v, p〉 for every program point p and for every valuation v of the local

variables of the procedure p belongs to.
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bool function foo(l);
f0: if l then
f1: return false

else
f2: return true

fi

procedure main();
m0: while b do
m1: b := foo(b)

od
m2: return

b〈t, f0〉 → b〈t, f1〉
b〈 f , f0〉 → b〈 f , f2〉
b〈l, f1〉 → f
b〈l, f2〉 → t

t m0 → t m1
f m0 → ε
bm1 → b,〈b, f0〉m0
bm2 → ε

Fig. 2. A sequential program with global and local variables and its semantics

States are modelled by strings of the form g〈v1, p1〉 . . . 〈vn, pn〉, where g encodes the
current values of the global variables, and each pair 〈vi, pi〉 corresponds to a procedure
call that has not terminated yet. The symbol vi encodes the values of the local variables
of the caller right before the call takes place, while pi encodes the return address at
which execution must be resumed once the callee terminates. It is straightforward to
assign rewrite rules to the program instructions. For instance, the call to foo(b) in main()
is modelled by the rules

t m1 → t 〈t, f0〉m0 and f m1 → f 〈 f , f0〉m0

indicating that control is transferred to f0, that the local variable l gets assigned the
current value of the global variable b, and that the return address is m0. The complete
set of rules is shown on the right of Figure 2. The symbols b and l stand in the rules for
either true or false.

Notice that, due to the presence of global variables, the rewrite system is no longer
monadic, although the left-hand-sides of the rules are strings of length at most 2.

String-rewriting systems using the prefix-rewriting policy are called pushdown sys-
tems, due to their similarity with pushdown automata: Given a string g〈v1, p1〉 . . . 〈vn, pn〉
modelling a program state, the valuation g of the global variables corresponds to the cur-
rent control state of the automaton, while the rest of the string corresponds to the current
stack content.

2.2 Analysis

String-rewriting systems with prefix-rewriting have an interesting story. They seem to
have been studied for the first time by Büchi [9], who called them canonical systems
(see also Chapter 5 of his unfinished book [10]). Büchi proved the fundamental result
that given a regular set S of strings, the sets pre∗(S) and post∗(S) are also regular.
The result was rediscovered by Caucal [12]. Book and Otto (who were also unaware
of Büchi’s work) proved that pre∗(S) is regular for monadic string-rewriting systems
with ordinary rewriting and presented a very simple algorithm that transform a finite
automaton accepting S into another one accepting pre∗(S). This algorithm was adapted
to pushdown systems in [2,21]), and their performance was improved in [18].



140 A. Bouajjani and J. Esparza

Theorem 1. [2,21,18] Given a pushdown system R and a finite-state automaton A, the
sets post∗(L(A)) and pre∗(L(A)) are regular and effectively constructible. in polynomial
time in the sizes of R and A.

More precisely, let P be the set of control states of R, and let Q and δ be the sets of
states and transitions of the automaton A, respectively. Let n = max{|Q|, |P|}. The au-
tomaton representing post∗(L(A)) can be constructed in O(|P||R|(n+ |R|)+ |P||δ|) time
and space, and the automaton representing pre∗(L(A)) can be constructed in O(n2|R|)
time and O(n|R|+ |δ|) space.

The theory of pushdown systems and related models (canonical systems, monadic string-
rewriting systems, recursive state machines, context-free processes, Basic Process Al-
gebra, etc.) is very rich, and even a succinct summary would exceed the scope of this
paper. A good summary of the results up to the year 2000 can be found in [11].

The algorithms of Theorem 1 have found interesting applications. They constitute
the core of the Moped tool, Schwoon’s back-end for model-checking software, and of
its Java front-end jMoped [34]. They are also at the basis of the MOPS tool [13].

3 Concurrent Programs Without Procedures

Programming languages deal with concurrency in many different ways. In scientific
computing cobegin-coend sections are a popular primitive, while object-oriented lan-
guages usually employ threads. We consider both variants. Languages also differ in
their synchronization and communication mechanisms: shared variables, rendezvous,
asynchronous message passing. This point is less relevant for this paper, and we only
consider the shared variables paradigm. In this section we consider programs without
procedures. the combination of concurrency and procedures is harder to analyze, and
we consider it in the next section.

3.1 Threads

The program on the left of Figure 3 spawns a new thread p() each time the while
loop of main() is executed. This thread runs concurrently with main() and with the
other instances of p() spawned earlier. Threads communicate with each other through
shared variables, in this case the global variable b. Since p() nondeterministically de-
cides whether b should be set to true or false, main() can create an unbounded number
of instances of p().

The state of the program can be modelled as a multiset containing the following
elements:

– the current value of the global variable b,
– the current value of the program counter for the main() thread, and
– the current value of the program counter for each thread p().

For instance, the multiset {0,m1, p1, p2, p2} is a possible (and in fact reachable) state of
the program with four threads. In order to model the program by means of rewrite rules
we introduce a parallel composition operator ‖ and model the state as (0 ‖ m1 ‖ p1 ‖
p2 ‖ p2) . Intuitively, we consider a global variable as a process running in parallel with
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thread p();
p0: if ? then
p1: b := true;

else
p2: b := false

fi;
p3: end

thread main();
m0: while b do
m1: fork p()

od;
m2: end

b ‖ p0 → b ‖ p1
b ‖ p0 → b ‖ p2
b ‖ p1 → t ‖ p3
b ‖ p2 → f ‖ p3
b ‖ p3 → b ‖ ε
t ‖ m0 → t ‖ m1
f ‖ m0 → f ‖ m2
b ‖ m1 → b ‖ m0 ‖ p0
b ‖ m2 → b ‖ ε

Fig. 3. A program with dynamic thread generation and its semantics

the program and communicating with it. We rewrite modulo the equational theory of
‖, which states that ‖ is associative, commutative, and has the empty multiset (denoted
again by ε) as neutral element:

u ‖ (v ‖ w) = (u ‖ v) ‖ w u ‖ v = v ‖ u u ‖ ε = u .

Observe that, since we rewrite modulo the equational theory, it does not matter which
rewriting policy we use (ordinary or prefix-rewriting). The complete set of rewrite rules
for the program of Figure 3 is shown on the right of the figure. As in the non-concurrent
case, if the program has no global variables then the rewrite system is monadic. Observe
that without global variables no communication between threads is possible.

Notice that instructions like p : wait(b); p′ : . . . forcing a thread to wait until the
global variable b becomes true can be modelled by the rule t ‖ p → t ‖ p′.

Analysis. While the word problem for pushdown systems can be solved in polynomial
time (Theorem 1), it becomes harder for multiset rewriting.

Theorem 2. [24,17] The word problem for monadic multiset-rewriting systems is NP-
complete.

NP-hardness can be proved by a straightforward reduction to SAT, while membership in
NP requires a little argument. We can also prove a result similar to Theorem 1. In order
to formulate the result, observe first that a multiset M over an alphabet A = {a1, . . . ,an}
can be represented by the vector 〈x1, . . . ,xn〉 ∈ INn, where xi, i∈ {1, . . . ,n}, is the number
of occurrences of ai in M. This encoding allows to represent sets of multisets by means
of arithmetical constraints on integer vectors. The sets of vectors definable by formulas
of Presburger arithmetic are called semi-linear sets. This name is due to the fact that
every semi-linear set is a finite union of linear sets, defined as follows. A set V ⊆ INn

is linear if there is a root vector v0 ∈ INn and a finite number of periods v1, . . . ,vk ∈ INn

such that
V = {v0 + n1v1 + . . . ,nkvk | n1, . . . ,nk ∈ IN} .

Semi-linear sets share many properties with regular sets. They are closed under
boolean operations. Moreover, if we associate to each word w of a regular language
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its Parikh image (the multiset containing as many copies of each symbol a as there
are occurrences of a in w) we get a semi-linear set of multisets1. Conversely, every
semi-linear set is the Parikh image of some regular language.

Intuitively, the following theorem states that semi-linear sets are to monadic multiset-
rewriting what regular sets are to prefix-rewriting (see Theorem 1).

Theorem 3. [17] Given a monadic multiset-rewriting system and a semi-linear set of
states S, the sets post∗(S) and pre∗(S) are semi-linear and effectively constructible.

Unfortunately, Theorem 3 does not hold for non-monadic multiset-rewriting systems.
It is easy to see that these systems are equivalent to (place/transition) Petri nets. In a
nutshell, a rewrite rule

(X1 ‖ . . . ‖ Xn) → (Y1 ‖ . . . ‖ Ym)

corresponds to a Petri net transition that takes a token from the places X1, . . . ,Xn and
puts a token on the places Y1, . . . ,Ym. It is well-known that for Petri nets post∗(S) can be
a non semi-linear set of states even when S is a singleton [23].

The word problem for multiset-rewriting systems is equivalent to the reachability
problem for Petri nets, and so, using well-known results of net theory we obtain:

Theorem 4. [29,25,26] The word-problem for multiset-rewriting systems is decidable
and EXPSPACE-hard.

The known algorithms for the reachability problem of Petri nets are too complicated for
practical use (not to speak of their complexity, which exceeds any primitive-recursive
function). However, many program analysis problems can be stated as control point
reachability problems in which we wish to know if a program point can be reached by
a thread, independently of which or how many other threads run in parallel with it. In
multiset-rewriting terms, the question is if the rewrite system associated to the program
can reach a state of the form X ‖ t for some multiset t. This target set of states is upward-
closed: if some term t belongs to the set, then t ‖ t ′ also belongs to the set for every mul-
tiset t ′. Moreover, multiset-rewriting systems have the following important property: if
t

r−→ t ′, then t ‖ t ′′
r−→ t ′ ‖ t ′′ for every multiset t ′′. This makes them well-structured sys-

tems in the sense of [1,20], and allows to apply a generic backward reachability algo-
rithm to the control-reachability problem. More precisely, one can show that (1) every
upward-closed set admits a finite representation (its set of minimal multisets), (2) if U is
upward-closed then U ∪pre(U) is upward-closed, where pre(U) = {t | ∃u∈U : t

r−→u},
and (3) every sequence U1 ⊆U2 ⊆U3 . . . of upward-closed sets reaches a fixpoint after
finitely many steps. The generic backwards reachability algorithm iteratively computes
(the finite representations of) U,U ∪pre(U),U ∪pre(U)∪pre2(U) . . . until the fixpoint
is reached. So we have:

Theorem 5. Given a multiset-rewriting system and an upward-closed set of states S,
the set pre∗(S) is upward-closed and effectively constructible.

The approach we described above has been adopted for instance in [16] for the verifi-
cation of multithreaded Java programs.

1 Parikh’s theorem states the same result for context-free languages.



Rewriting Models of Boolean Programs 143

3.2 Cobegin-Coend Sections

Another popular way of introducing concurrency is by means of cobegin-coend sec-
tions. Intuitively, in the program (cobegin c1 ‖ c2 coend) ;c3 the code c1 and c2 is exe-
cuted in parallel, and execution continues with c3 after both c1 and c2 have terminated.
The fundamental difference with threads is the existence of an implicit synchronization
point at the end of the execution of c1 and c2.

Modelling the semantics requires to use term rewriting with two operators, one for
sequential and another for parallel composition, which we denote by · and ‖, respec-
tively. For instance, if p1, p2, p3 are the control locations associated to c1,c2,c3 in the
expression above, then we model the expression by the term (v ‖ p1 ‖ p2) · p3,
where v is the current valuation of the global variables. Rewriting takes place modulo
the equational theory of the · and ‖ operators:

u · (v ·w) = (u · v) ·w u ‖ (v ‖ w) = (u ‖ v) ‖ w
ε ·u = u ε ‖ u = u

u ‖ v = v ‖ u

We also have to make the rewriting policy precise. Intuitively, it says that we can only
rewrite the leftmost part of the syntax tree of a term. Formally,

X → w

X · v r−→w · v
and

X → w

X ‖ v
r−→w ‖ v

.

This model was introduced by Mayr [30,31] under the name of Process Rewrite
Systems (PRS). Figure 4 shows a program and its rewriting semantics as PRS. Notice
the rule b · m0 → b ‖ m0, which allows to make progress after the execution of the
instruction (b := ¬ b ‖ b := true).

m0: while b do
m1: cobegin

m2: b := ¬b ‖ m3: b := true
coend

od

t ‖ m0 → t ‖ m1
f ‖ m0 → ε
b ‖ m1 → (b ‖ m2 ‖ m3) ·m0
b ‖ m2 → ¬b
b ‖ m3 → t
b ·m0 → b ‖ m0

Fig. 4. A program with a cobegin-coend section and its semantics

PRSs can also model at least part of the interaction between procedures and concur-
rency, and therefore we delay their analysis until the next section.

4 Putting Procedures and Concurrency Together

The analysis of programs containing both procedures and concurrency is notoriously
difficult. It is easy to show that a two-counter machine can be simulated by a boolean
program consisting of two recursive procedures running in parallel and accessing one
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single global boolean variable. Intuitively, the two recursion stacks associated to the two
procedures are used to simulate the two counters; the depth of the stack corresponds to
the current value of the counter. Increments and decrements can be simulated by calls
and returns. The global variable is used as a semaphore indicating which counter has
to be accessed next. Since two-counter machines are Turing powerful, all interesting
analysis problems about these programs are bound to be undecidable.

In programs with procedures and concurrency the same code unit can be called fol-
lowing different policies: procedural call (caller waits until callee terminates), thread
call (caller runs concurrently with callee), cobegin-coend call (caller waits, may call
several callees). We use the keyword process to denote such a unit.

4.1 Procedural Programs with Cobegin-Coend Sections

In a while program with cobegin-coend sections the maximum number of processes
that can be executed concurrently is syntactically bounded. This is no longer the case in
the presence of recursion. For instance, a process may contain a cobegin-coend section
one of whose branches calls the process itself. The program of Figure 5 is an example.
In the absence of global variables, we can model the program as a monadic PRS (the
rules are shown on the right of the figure).

process main();
m0: if ? then

cobegin
m1: call main() ‖ m2: skip

coend
fi;

m3: return

m0 → (m1 ‖ m2) ·m3
m0 → m3
m1 → m0
m2 → ε
m3 → ε

Fig. 5. A procedural program with global variables and its semantics

Unfortunately, the addition of global variables leads to complications. In order to
understand why, consider the program of Figure 6. It is very similar to the program of
Figure 5, but has a global variable b. The right side of the figure shows an attempt at
a semantics following the ideas we have used so far. However, the derivations of the
rewrite system do not match the intuitive semantics, in which main() should be able
to call itself, and then execute b = true immediately thereafter. No derivation of the
rewrite systems allows to do so. The only derivation having a chance would be

bm0
r−→(b ‖ m1 ‖ m2) ·m3

r−→(b ‖ m0 ‖ m2) ·m3
r−→(((b ‖ m1 ‖ m2) ·m3) ‖ m2) ·m3

but now the rule b ‖ m2 → b ‖ ε can only be applied to the innermost m2, which corre-
sponds to the incarnation of main() as callee, not to its incarnation as caller.

So we conclude that, while monadic PRS are a suitable formalism for modelling
programs without global variables, PRS do not match the interplay between recursion
and concurrency in conventional programming languages.
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process main();
m0: if ? then

cobegin
m1: call main() ‖ m2: b := true

coend
fi;

m3: return

b ‖ m0 → (b ‖ m1 ‖ m2) ·m3
b ‖ m0 → b ‖ m3
b ‖ m1 → b ‖ m0
b ‖ m2 → t ‖ ε
b ‖ m3 → b ‖ ε

Fig. 6. A program with global variables and an incorrect PRS semantics

Analysis. Mayr has shown that the word problem for PRS is decidable [30,31] but,
since PRS contain Petri nets as a subclass, the problem is EXPSPACE-hard. Fortu-
nately, in the case of monadic PRS (which, as we have seen, seems to be more useful
for modelling programs), there exist far more efficient approaches based on symbolic
reachability analysis.

The design of symbolic reachability analysis procedures for PRS (or even for its
monadic fragment) is not easy. First, we need to represent sets of PRS terms, and a
natural idea is to use finite-state tree automata for that. However, we have the problem
that the commutative closure of a regular set of terms is not regular. To see this, consider
the regular set of terms of the form a‖b‖a‖b‖ . . .‖a‖b. Its commutative closure is the set
of all parallel terms with the same number of a’s and b’s, which is clearly not regular.
As a consequence, neither the post∗ nor the pre∗ operation preserves regularity of a set
of terms. Moreover, since PRS subsume Petri nets, they do not preserve semi-linearity
either.

Nevertheless, in some classes of multiset-rewriting systems, including the monadic
class, the post∗ operation does preserve semi-linearity, and there exists an algorithm
that computes post∗ image of any given semi-linear set (see Theorem 3). Let us call a
class of multiset-rewriting systems satisfying this property a semi-linear class. Given
a semi-linear class C , let PRS[C ] be the class of PRS whose sets of rules can be par-
titioned into two sets M and P, where M is a multiset-rewriting system belonging to
the class C , and the rules of P only contain occurrences of the sequential composi-
tion operator. Notice that the sets P and M may share constants. We can ask whether
the semi-linearity of C can be exploited to define an algorithm for symbolic reachabil-
ity analysis of PRS[C ]. This question was addressed in [8] from an automata-theoretic
point of view. An important issue is the representation of sets of PRS terms which are
closed under the equational theories of · and ‖. Since these operators are associative,
PRS terms can be seen as trees with unbounded width. Each node labelled with ‖ (resp.
·) may have an arbitrary number of children labelled with simple symbols (process
constants) and an arbitrary number of children labelled with · (resp. ‖). Therefore, a
natural idea is to use unranked tree automata (also called hedge automata) as symbolic
representations for sets of PRS terms. Furthermore, since parallel composition is com-
mutative, we should use commutative hedge automata (CHA). CHA are closed under
boolean operations and have a decidable emptiness problem (see also [27,33]). Then,
we have the following generic result:
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Theorem 6. [8] Let C be a semi-linear class of multiset rewrite systems. For every
system in PRS[C ] and for every CHA-definable set of terms T , the sets post∗(T ) and
pre∗(T ) are CHA-definable and effectively constructible.

By Theorem 3 we know that the class of monadic multiset rewrite systems is semi-
linear. Therefore, Theorem 6 gives a procedure for symbolic reachability analysis for
monadic PRS:

Theorem 7. [8] Given a monadic PRS, for every CHA-definable set of terms T , the
sets post∗(T ) and pre∗(T ) are CHA-definable and effectively constructible.

Actually, using the same approach, it is possible to extend Theorem 7 to a larger sub-
class of PRS whose rules contain no occurrence of the parallel operator on the left-
hand-side (but possibly occurrences of ·) [8]. This class is called PAD in the literature.

Another approach to the symbolic reachability problem for monadic PRS constructs
not the sets post∗(T ) or pre∗(T ) themselves, but a set of representatives w.r.t. the equa-
tional theories of sequential and parallel composition. This is sufficient to solve reacha-
bility problems where the origin and target sets of terms are closed modulo these equa-
tional theories. In particular, the approach is powerful enough to solve control point
reachability problems. The approach was first studied in [28] and later in [19]. We
rephrase here the result of [19]. Notice that, by essentially the same procedure used to
put a context-free grammar in Chomsky normal form, we can transform a monadic PRS
into a normal form in which the right-hand-side of all rules has the shape X ·Y or X ‖Y .

Theorem 8. [28,19] Let R be a monadic PRS in normal form, and let A be a bottom-
up tree automaton recognizing a set L(A) of PRS terms. One can construct in O(|R| ·
|A|) time two bottom-up tree automata recognizing for every term t ∈ post∗(L(A)) (t ∈
pre∗(L(A))) a term t ′ such that t = t ′ in the equational theory of the ‖ and · operators.

This approach was extended to the case of PAD systems in [7].

4.2 Multithreaded Procedural Programs

Process Rewrite Systems are also inadequate for modelling the combination of multi-
threading and procedures, even in the absence of variables. Consider the program of
Figure 7. If we model the fork operation by a rule like m1 → m3 ‖ p0, we get the
derivation

m0
r−→m2

r−→m0 ·m3
r−→m1 ·m3

r−→(m3 ‖ p0) ·m3
r−→ p0 ·m3

But this is not the intended semantics. The main thread (corresponding to m3 in the term
p0 ·m3) can only terminate after the new thread (corresponding to p0 has terminated.

A new approach has been proposed by the first author, Müller-Olm and Touili in [6].
The idea is to represent a state at which n-threads are active by a string #wn#wn−1 . . .#w1.
Here, w1, . . .wn are the strings modelling the states of the threads, and they are ordered
according to the following criterion: for every 1 ≤ i < j ≤ n, the i-th thread (i.e., the
thread in state wi) must have been created no later than the j-th thread. The reason for
putting younger threads to the left of older ones will be clear in a moment.
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process p();
p0: if (?) then
p1: call p()

else
p2: skip

fi;
p3: return

process main();
m0: if (?) then
m1: fork p()

else
m2: call main()

fi;
m3: return

# p0 → # p1
# p0 → # p2
# p1 → # p0 p3
# p2 → # p3
# p3 → #ε
#m0 → #m1
#m0 → #m2
#m1 → # p0#m3
#m2 → #m0 m3
#m3 → #ε

## → #

Fig. 7. A program with dynamic thread generation and its semantics

We can now try to capture the semantics of the program by string-rewriting rules.
Notice however that we cannot use the prefix-rewriting policy. Loosely speaking, a
thread in the middle of the string should also be able to make a move, and this amounts
to rewriting “in the middle”, and not only “on the left”’. So we must go back to the
ordinary rewriting policy

X → w

uX v
r−→uwv

Instructions not involving thread creation are modelled as in the non-concurrent
case, with one difference: Since we can only rewrite on the left of a wi substring, we
“anchor” the rewrite rules, and use for instance # p1 → # p0 p3 instead of p1 → p0 p3.
The thread creation at program point m1 is modelled by the rule #m1 → # p0#m3. Notice
that we would not be able to give a rule if we wanted to place the new thread to the right
of its creator, because the stack length of the creator at the point of creating the new
thread can be arbitrarily large. This class of string-rewriting systems is called dynamic
networks of pushdown systems (DPN) in [6]. The complete set of rewrite rules for the
program of Figure 7 is shown on the right of the same figure.

Analysis. Notice that DPNs are neither prefix-rewriting nor monadic. However, we
still have good analizability results. First of all, it can be proved that the pre∗ operation
preserves regularity:

Theorem 9. [6] For every regular set S of states of a DPN, the set pre∗(S) is regular
and a finite-state automaton recognizing it can be effectively constructed in polynomial
time.

The post∗ operation, however, does not preserve regularity. To see this, consider a pro-
gram which repeatedly creates new threads and counts (using its stack) the number of
threads it has created. The set of reachable states is not regular, because in each of them
the number of spawned threads must be equal to the length of the stack. Nevertheless,
the post∗ operation preserves context-freeness.
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Theorem 10. [6] For every context-free (pushdown automata definable) set S of states
of a DPN, the set post∗(S) is context-free and a pushdown automaton recognizing it can
be effectively constructed in polynomial time.

Since intersection of a regular language with a context-free language is always context-
free, and since the emptiness problem of context-free languages is decidable, this result
allows to solve the reachability problem between a context-free initial set of configura-
tions and a regular set of target configurations.

So far we have only considered the variable-free case. The results above can be
extended to the case in which processes have local variables, but global variables make
the model Turing powerful. In this case over/underapproximate analysis approaches can
be adopted, which are outside the scope of this paper (see, e.g., [4,5,32,3]).

5 Summary

We have studied rewriting models for sequential and concurrent boolean programs
where concurrent processes communicate through shared variables.

Sequential boolean programs with procedure calls can be modelled by prefix-rewriting
systems (pushdown systems). The word problem and the symbolic reachability problem
for regular sets of states can be solved in polynomial time. The algorithms have been
implemented in the Moped and MOPS tools and applied to the analysis of large programs.

Concurrent programs with dynamic thread creation but without procedures can be
modelled by multiset-rewriting systems (Petri nets). The word problem is decidable, but
the algorithm is not useful in practice. The control reachability problem can be solved
by a simple algorithm based on the theory of well-structured systems. The symbolic
reachability problem can be solved for the monadic fragment and semi-linear sets. The
monadic fragment corresponds to programs without global variables, and so to absence
of communication between threads.

Process Rewrite Systems (PRS) combine prefix-rewriting and multiset-rewriting.
PRS have a decidable word problem, but do not match the interplay between proce-
dures and concurrency in conventional programming languages. Monadic PRS model
parallel programs with cobegin-coend sections and procedure calls, but without global
variables. The word problem is NP-complete. The control reachability problem can be
solved very efficiently using bottom-up tree automata. The symbolic reachability prob-
lem can be solved for sets of states recognizable by commutative hedge automata.

Concurrent programs with thread creation and procedures, but without communica-
tion between threads, can be model by dynamic networks of pushdown systems [6], a
class of string-rewriting systems. The word problem can be solved in polynomial time.
The pre∗ operation preserves regularity (and can be computed in polynomial time),
while the post∗ operation preserves context-freeness.

Concurrent programs with procedures and one single global variable are already Tur-
ing powerful, and so very difficult to analyze. Several approximate analysis have been
proposed based on the automata techniques presented in this paper (see e.g. [4,5,32,3]).
The constrained dynamic networks of [6] replace global variables by a more restricted
form of communication in which a process can wait for a condition on the threads it
created, or for a result computed by a procedure it called.
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Abstract. We introduce syntactic descriptions, an extended type sys-
tem for the linear λ-calculus. With this type system checking that a linear
λ-term normalizes to another one reduces to type-checking. As a conse-
quence this type system can be seen as a formal tool to design matching
algorithms. In that respect, solving matching equations becomes a com-
bination of type inference and proof search. We present such an algorithm
for linear matching equations.In the case of second order equations, this
algorithm stresses the similarities between linear matching in the linear
λ-calculus and linear context matching. It uses tabular techniques and
is a practical alternative to Huet’s algorithm for those equations.

1 Introduction

Matching is the problem of the existence of an instantiation of a term so that
it equates, modulo some equivalence relation, another term. This problem can
be formulated in many term algebra and with many equivalence relations. The
most well known matching problem is the higher order matching in the sim-
ply typed λ-calculus modulo βη-equivalence. This problem has been defined by
Huet [5] as a restriction of the problem of unification. Still the decidability of
higher order matching is not known. In some particular cases, second [5], third
[4] and fourth order [9] this problem has been proved to be decidable. While
choosing β-equivalence as equivalence relation, Loader has proved that sixth
order matching is undecidable [8]. Other classes of matching problems involve
some simpler algebraic languages and relations as for example context matching.
Context matching uses trees (unknowns represent tree contexts) and syntactic
equality and is known to be decidable. Its complexity has been studied in details
by Schmidt-Schauß and Stuber [12].

The class of matching problem we study in this paper is the matching in the
linear λ-calculus, the equivalence relation being βη-equivalence. Motivated by
the central role it plays in parsing Abstract Categorial Grammars, a grammatical
formalism defined by Philippe de Groote [3], this problem has recently focused
many attention. This class of matching problem has been shown decidable and
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NP-complete by de Groote [2] and its complexity has been extensively studied
[11], [13].

To cope with this kind of matching, we introduced [10] a new formal tool: syn-
tactic descriptions. This formalism is actually an extended type system for linear
λ-calculus and allows one to statically check whether a term t βη-normalizes to
a term u. With this type system we design a new algorithm for solving linear
matching in the linear λ-calculus which avoids many drawbacks of the adapta-
tion of uet’s algorithm proposed by de Groote [2]. Furthermore, when applied
to solve second order linear equations, this algorithm shows many similarities
with the algorithm proposed by [12] to solve linear context matching. This has
to be contrasted with our previous result [11] where we showed that second or-
der linear matching in the linear λ-calculus was NP-complete which stressed the
differences between this problem and linear context matching. Notice that when
dealing with linear matching in the linear λ-calculus, we face two kinds of linear-
ities, the linearity of the matching equation and the linearity of the λ-calculus.
One must clearly identify those two different definitions of linearity not to get
confused while reading this paper.

The four remaining sections of this paper are organized as follows. Section 2
will give the necessary formal definitions. Syntactic descriptions will be defined
in section 3. This section will also show their basic properties and how they
are related to linear matching in the linear λ-calculus. Section 4 will describe
the algorithm that we propose to solve linear matching in the linear λ-calculus.
Finally section 5 will conclude, discuss related issues and explain future work.

2 Definitions

In this section we define the notion of linear λ-terms. For some technical conve-
nience, we adopt a Church-style type system. So before defining linear λ-terms,
considering we are given a finite set of atomic types A, we define linear types.

Definition 1. The set LT is the set of linear implicative types and is given by
the following grammar:

LT ::= A | (LT 	 LT )

For short, we will write α1 	 . . . 	 αn 	 β instead of (α1 	 (. . . 	 (αn 	
β) . . .)).

Definition 2. The size of a type α, noted |α| is defined by:

1. |α| = 1 if α is atomic
2. |α 	 β| = |α| + |β|

We then suppose we are given for any α ∈ LT an infinite enumerable set of
variables xα, yα, zα. . . an infinite set of unknowns Xα, Yα, Zα. . . Finally we
suppose we are given a finite set of constants aα1

1 , . . . , aαn
n . Variables, unknowns

and constants are all decorated with a type and are called atomic terms. Often,
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when it is not relevant, we will omit the type annotation. The sets V , X and C
are respectively the set of variables, the set of unknowns and the set of constants.

We can now define raw λ-terms:

Definition 3. The set Λ of raw λ-terms is defined with the following grammar:

Λ ::= V | X | C | λV .Λ | (ΛΛ)

We will write λx1 . . . xn.t for the term λx1.λx2. . . . λxn.t and t0t1 . . . tn for the
term ((. . . (t0t1) . . .)tn). The notion of free variables, β-reduction, η-reduction,
α-conversion etc. . . are defined as usual [1]. We write FV (t) for the set of free
variables in t and U(t) for the set of unknowns which occur in t. The infix
symbols →βη,

∗→βη, =βη denote respectively, βη-contraction, βη-reduction and
βη-conversion.

Definition 4. The size of a λ-term t, noted |t| is given by:

1. |h| = 1 where h is an atomic term
2. |λx.t| = |t|
3. |t1t2| = |t1| + |t2|

Among raw λ-terms we distinguish linear λ-terms.

Definition 5. The set LΛα of linear λ-terms of type α is the smallest set such
that:

1. xα ∈ LΛα, Xα ∈ LΛα and aα ∈ LΛα

2. t1 ∈ LΛβ�α, t2 ∈ LΛβ and FV (t1) ∩ FV (t2) = ∅ imply (t1t2) ∈ LΛα

3. t ∈ LΛα and xβ ∈ FV (t) imply λxβ .t ∈ LΛβ�α

The set LΛ of linear λ-terms is defined to be LΛ =
⋃

α∈LT LΛα.

Those terms are said linear because variables may have at most one free occur-
rence and bound variables have exactly one free occurrence below their binding
abstraction.

The definition of syntactic descriptions requires a precise notion of occurrence
of subterms. Because what is elegant for programming is also convenient for
mathematics, we have chosen Huet’s zippers [6] to denote subterms. To this end,
we need contexts and some of their technical properties.

Definition 6. A context is a λ-term with a hole. Contexts are defined by the
following grammar:

C = [] | ΛC | CΛ | λV .C

Contexts will be written C[] with indices or superscripts. Given a term t, we will
write C[t] the term obtained by inserting t at the place of the hole in C[]. Note
that C[] can bind variables which are free in t.

We are now in position to define subterms by means of zippers.



154 S. Salvati

Definition 7. Given a term u, the set of subterms of u, Su, is defined as:

Su = {(C[], v) | C[v] = u}

We may refer to the subterms of u which have type α (i.e. Su ∩ (C × LΛα))
as Sα

u . Subterms are partially ordered; (C1[], v1) ≺ (C2[], v2) means that there
is C3[] such that C1[] = C2[C3[]]. Whenever neither (C1[], v1) ≺ (C2[], v2) nor
(C2[], v2) ≺ (C1[], v1) hold then we write (C1[], v1) ≺� (C2[], v2).

Linear λ-terms have some remarkable properties. These properties are rather
well known and easy to prove so that we don’t sketch their proofs.

Proposition 1. Given t ∈ LΛ such that x ∈ FV (t), there is a unique context
Ct,x[] such that Ct,x[x] = t and x /∈ FV (Ct,x[]).

The context Ct,x[] denotes the position of the free occurrence of x in t.

Lemma 1 (Type uniqueness). If t ∈ LΛα and t ∈ LΛβ then α = β.

Lemma 2 (Substitution). Given t, u ∈ LΛ, if u ∈ LΛα, t ∈ LΛβ, FV (u) ∩
FV (t) = ∅ and xα ∈ FV (t), then t[xα := u] ∈ LΛβ.

Lemma 3 (Extraction). Given t ∈ LΛ and u ∈ LΛα such that xα ∈ FV (t)
and t[xα := u] ∈ LΛβ then t ∈ LΛβ.

Proposition 2 (Subject Reduction). If t ∈ LΛα and t
∗→βη t′ then t′ ∈ LΛα.

Proposition 3 (Subject Expansion). If t ∈ LΛ, t′ ∈ LΛα and t
∗→βη t′ then

t ∈ LΛα.

For the subject expansion property to be proved, it is mandatory that t is a
linear λ-term, otherwise, of course, it does not hold.

Definition 8. Given t ∈ LΛ, we say that t is in η-long form if for all (C[], v) ∈
Sα�β

t one of the following properties holds:

1. v = λx.w for some w.
2. C[] = C′[[]w] for some C′[] and some w.

For every t ∈ LΛ, there is t′ in η-long form such that t′
∗→η t. Furthermore, Huet

[5] has proved that the terms in η-long form are closed under β-reduction.
The elements of LΛα (resp. LΛ) which are both in η-long form and in normal

form are denoted by lnfα (resp. lnf). Remark that given t ∈ lnf, for all (C[], v) ∈
Sα

t if v ∈ lnf then either α is atomic or v = λx.v′.

Definition 9. A matching equation is a pair (t, u), written t
?= u, such that

U(u) = ∅ and there is α such that t, u ∈ lnfα. The matching equation t
?= u has

a solution if there is a substitution σ with the following properties:

1. the domain of σ is equal to U(t) and t.σ ∈ LΛ
2. t.σ =βη u

We say that a matching equation is linear whenever each unknown has at most
one occurrence in t.



Syntactic Descriptions: A Type System for Solving Matching Equations 155

3 Syntactic Descriptions

In this section we introduce the main conceptual tool of this paper, syntactic
descriptions. Syntactic descriptions make the problem of checking whether a
certain linear λ-term has a certain normal form become a problem of type-
checking. Consequently syntactic descriptions formalize how to build a linear
λ-term which must have a certain normal form. As solving a matching equation
t

?= u consists in finding a substitution σ such that t.σ normalizes to u, syntactic
descriptions transform that problem in finding a substitution σ such that t.σ
respects the construction rules to make t.σ be βη-convertible to u.

Technically syntactic descriptions may be seen as a type system for linear
λ-calculus. Thus, in a certain way, syntactic descriptions transform a matching
problem in a proof search problem. We now present the system and the properties
which relate it to matching.

Definition 10. Given u ∈ lnf, we define the set of u-descriptions of type α, Dα
u

as follows:

1. if α is atomic then Dα
u = Sα

u

2. if d ∈ Dα
u and e ∈ Dβ

u then d 	 e ∈ Dα�β
u

The set of all descriptions built on u is denoted Du.

Remark that given a type α the size of Dα
u is in O(|u||α|).

For typing terms with syntactic descriptions, we will use the following typing
contexts.

Definition 11. Given u ∈ lnf, then a u-context is a finite subset, Γ , of V ×Du

such that:

1. if (xα, d) ∈ Γ then d ∈ Dα
u

2. if (xα, d) ∈ Γ and (xα, e) ∈ Γ then d = e.

Given a u-context Γ = {(xα1
1 , d1); . . . ; (xαn

n , dn)} we will denote Γ by xα1
1 :

d1, . . . , x
αn
n : dn. If Γ and Δ are two u-contexts such that Γ ∩Δ = ∅ and Γ ∪ Δ

is a u-context, then we write Γ, Δ for the context Γ ∪Δ. We may also associate
descriptions to unknowns in u-context when they occurre linearily in a term.

Some particular descriptions are needed both to type constants with descrip-
tions and to characterize the terms which are βη-convertible to subterms of u.

Definition 12. Given u ∈ lnf and (C[], t) ∈ Su, we define θ(C[], t) as follows:

1. if C[] = C′[[]t′] then θ(C[], t) = θ(C′[t[]], t′) 	 θ(C′[], tt′)
2. if t = λx.t′ then θ(C[], t) = θ(C[λx.Ct′,x[]], x) 	 θ(C[λx.[]], t′)
3. θ(C[], t) = (C[], t) otherwise

This definition is not ambiguous because if (C[], t) ∈ Su, C[t] is a linear λ-term in
normal form. Firstly if C[] = C′[[]t′], it is not possible to have t = λx.t′′ otherwise
we would have that u = C′[(λx.t′′)t′] is not in normal form. Secondly when
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t = λx.t′, having C[] = C′[[]t′′] will also contradict that u ∈ lnf. Furthermore, it
is easy to check that, by induction on the type of t that the definition of θ(C[], t)
does not loop. Moreover, the last case can only arise when t has an atomic
type and therefore this last case eventually produces a syntactic description
which obeys the definition we have given. Thus, a trivial induction proves that
if (C[], t) ∈ Su, then θ(C[], t) ∈ Du.

In the following, given u ∈ lnf, (C[], t) ∈ Su such that FV (t) = {x1, . . . , xn}
we write Φ(C[], t) for the context:

x1 : θ(C[Ct,x1 []], x1), . . . , xn : θ(C[Ct,xn []], xn).

As it will be shown by lemma 8, the context Φ(C[], t) must be seen as the
context in which t can be typed by the description θ(C[], t). If S = {x1, . . . , xn}
is a subset of FV (u), we then write Φ(u, S) for the u-context

x1 : θ(Cu,x1 [], x1), . . . , xn : θ(Cu,xn [], xn).

The typing rules of syntactic descriptions are given by the following rules:

d ∈ Dα
u

Axiom
u; xα : d 1 xα : d

(C[], a) ∈ Su
Constant

u; 1 a : θ(C[], a)

u; Γ, x : d 1 t : e
λ−abst.

u; Γ 1 λx.t : d 	 e

u; Γ1 1 t1 : d 	 e u; Γ2 1 t2 : d
App.

u; Γ1, Γ2 1 t1t2 : e

Implicitely, we assume that the rule App can only be applied when Γ1, Γ2 is
an actual u-context. Thus, it can easily established that all derived contexts are
u-contexts, that all derived types are u-descriptions.

As shown by the next two lemmas, this system can only type linear λ-terms.

Lemma 4. The sequent u; Γ, xα : d 1 t : e is derivable iff xα ∈ FV (t).

Proof. Trivial induction on the derivation of u; Γ 1 t : e.

Lemma 5. If d ∈ Dα
u and u; Γ 1 t : d is derivable then t ∈ LΛα.

Proof. This lemma can be proved by induction on the derivation of u; Γ 1 t : d,
but one has to use the previous lemma for the case of abstraction.

We associate a formal semantics to syntactic descriptions and we prove that the
derivation system is sound with this semantics.

Definition 13. If u ∈ lnf, then the semantics of the elements of Du is:

– if α is atomic and (C[], v) ∈ Sα
u , [[(C[], v)]] = {w ∈ LΛα | C[w] =βη C[v]}

– if d 	 e ∈ Dα�β
u then [[d 	 e]] = {w ∈ LΛα�β | ∀v ∈ [[d]].wv ∈ [[e]]}

Before we prove that this semantics is correct for the system, we need show
technical properties which are necessary to initiate the induction.
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Lemma 6. Given u ∈ lnf and (C[], t) ∈ Sα
u , if t ∈ lnf then

{w ∈ LΛα | C[w] =βη C[t]} = {w ∈ LΛα | w =βη t}.

Proof. When t ∈ lnf, the context C[] cannot be of the form C′[[]t′], thus for any
w the term C[w] contains only the redices of w. This entails that the normal
form of C[w] is C[v] where v is the normal form of w, and we finally get the
result.

We now prove that the semantics of θ(C[], t) is the set of terms v such that
C[v] =βη C[t]. The description θ(C[], t) characterizes the terms which can replace
t in the context C[] without changing the normal form. This, somehow, explains
the definition of θ(C[], t). For example, θ(C[[]t′], t) = θ(C[t[]], t′) 	 θ(C[]tt′)
expresses that the terms that can replace t in the context C[[]t′] are the one
which, when applied to terms that can replace t′ in C[t[]], can replace tt′ in the
context C[]. The other equalities of the definition come from a similar idea.

Lemma 7. If u ∈ lnf and (C[], t) ∈ Su, then [[θ(C[], t)]] = {v | C[v] =βη C[t]}.

Proof. We proceed by induction on the type of t:
Case 1: in case C[] = C′[[]t′] we have that t ∈ LΛα�β and:

[[θ(C[], t)]] = [[θ(C′[t[]], t′) 	 θ(C′[], tt′)]]
= {v ∈ LΛα�β | ∀w ∈ [[θ(C′[t[]], t′)]].vw ∈ [[(θC′[], tt′)]]}

By induction hypothesis and lemma 6 (because t′ is in long form), we have:

[[θ(C′[t[]], t′)]] = {w | C′[tw] =βη C′[tt′]} = {w | w =βη t′} (1)

and [[θ(C′[], tt′)]] = {w | C′[w] =βη C′[tt′]} (2)

If we take w ∈ [[θ(C[], t)]] and v ∈ [[θ(C′[t[]], t′)]] we have that wv ∈ [[θ(C′[], tt′)]].
So from (2) we have C′[wv] =βη C′[tt′] = C[t] but, from (1), v =βη t′. Thus,
we obtain C[t] =βη C′[wt′] = C[w]. This shows that if w ∈ [[θ(C[], t)]] then
C[w] =βη C[t].

Conversely, given w such that C[w] =βη C[t] and v ∈ [[θ(C′[t[]], t′)]], from (1)
we have that v =βη t′. To prove that w ∈ [[θ(C[], t)]], we have to show that wv ∈
[[θ(C′[], tt′)]], which is, by (2), equivalent to prove that C′[wv] =βη C′[tt′]. As
v =βη t′, C′[wv] =βη C′[wt′] = C[w] and we already know that C[w] =βη C[t].
This finally entails that [[θ(C[], t)]] = {v | C[v] =βη C[t]}.
Case 2: in case t = λx.t′ we have that t ∈ LΛα�β , and:

[[θ(C[], t)]] = [[θ(C[λx.Ct,x[]], x) 	 θ(C[λx.[]], t′)]]
= {w ∈ LΛα�β | ∀v ∈ [[θ(C[λx.Ct,x[]], x)]].wv ∈ [[θ(C[λx.[]], t′)]]}

By induction hypothesis, the fact that t is in lnf because u is in lnf and lemma
6, we have:

[[θ(C[λx.Ct,x[]], x)]] = {w | C[λx.Ct,x[w]] =βη C[λx.Ct,x[x]]}, (3)
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[[θ(C[λx.[]], t′)]] = {w | C[λx.[w]] =βη C[λx.[t′]]} (4)

and {w | C[w] =βη C[t]} = {w | w =βη t} (5)

If v ∈ [[θ(C[], t)]], then, as x ∈ [[θ(C[λx.Ct,x[]], x)]], we have vx ∈ [[θ(C[λx.[]], t′)]]
i.e, from (4), C[λx.vx]] =βη C[λx.t′] = C[t]. But C[v] =η C[λx.vx], we then get
that C[v] =βη C[t] and as a conclusion [[θ(C[], t)]] ⊆ {v | C[v] =βη C[t]}.

Now given w ∈ [[θ(C[λx.Ct,x []], x)]] and v such that C[v] =βη C[t], from (5),
we have v =βη t, we have to prove that vw ∈ [[θ(C[λx.[]], t′)]]. This amounts to
show that C[λx.vw] =βη C[t], but

C[λx.(vw)] =βη C[λx.(tw)] = C[λx.((λx.Ct,x [x])w)] →β C[λx.Ct,x[w]]

by (3) C[λx.Ct,x[w]] =βη C[λx.Ct,x[x]] = C[t], which finally completes the proof
of [[θ(C[], t)]] = {v | C[v] =βη C[t]}.
Case 3: in case t ∈ LΛα with α atomic, the result is a direct consequence of the
definitions.

We are now in position to prove that the derivation system we propose is sound
for that semantics.

Proposition 4. (Soundness) Given u ∈ lnf, if u; x1 : d1, . . . , xn : dn 1 t : d
is derivable then for all families (tk)k∈[1,n] such that tk ∈ [[dk]] we have t[x1 :=
t1, . . . , xn := tn] ∈ [[d]].

Proof. This lemma can easily be proved by induction on the derivation of u; x1 :
d1, . . . , xn : dn 1 t : d. The only case which is not trivial is the case where one
derives that u; 1 a : θ(C[], a) from (C[], a) ∈ Su. This case can be solved with
the previous lemma which implies a ∈ [[θ(C[], a)]].

The derivation system for syntactic descriptions is not complete for the seman-
tics. Indeed proving that t ∈ [[d]] may necessitate some classical reasoning and
the derivation system is intrinsically intuitionnistic. This is not an issue; as we
will see later, this system is powerful enough to solve matching equations. The
following lemma shows that it can establish that t ∈ [[θ(C[], t)]].

Lemma 8 (Reflexivity). Given u ∈ lnf and (C[], t) ∈ Su, u; Φ(C[], t) 1 t :
θ(C[], t) is derivable.

Proof. This lemma is proved by a trivial induction on the structure of t.

We can now prove the derivation system is able to establish v ∈ [[θ(C[], t)]]
whenever v =βη t. This further result relies on the usual properties of the linear
λ-calculus we emphasized in the previous section.

Lemma 9 (Substitution). If u; Γ, xα : d 1 t : e and u; Δ 1 t′ : d are derivable,
Γ ∩ Δ = ∅ and Γ ∪ Δ is a u-context, then u; Γ, Δ 1 t[xα := t′] : e is derivable.
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Proof. Induction on the derivation of u; Γ, xα : d 1 t : e.

Lemma 10 (Extraction). Given t, t′ ∈ LΛ, if u; Γ 1 t[xα := t′] : e is derivable
and xα ∈ FV (t) then there is a description d and two u-contexts Γ1 and Γ2 such
that, Γ = Γ1, Γ2 and u; Γ1, x

α : d 1 t : e and u; Γ2 1 t′ : d are derivable.

Proof. Induction on the derivation of u; Γ 1 t[xα := t′] : e.

Proposition 5 (Subject Reduction). Given t, t′ ∈ LΛ, if u; Γ 1 t : d is
derivable and t

∗→βη t′, then u; Γ 1 t′ : d is derivable.

Proof. This proposition can be proved with the usual techniques.

Proposition 6 (Subject Expansion). Given t, t′ ∈ LΛ, if u; Γ 1 t′ : d is
derivable and t

∗→βη t′, then u; Γ 1 t : d is derivable.

Proof. The η-expansion is trivial, concerning β-expansion we need two steps: 1.
one shows by induction on the structure of C[] that if u; Γ 1 C[t[x := t′]] : d is
derivable then u; Γ 1 C[(λx.t)t′] : d is derivable. The basic case can be proved
with the extraction lemma. 2. it suffices to iterate the previous result to obtain
the proposition.

The subject reduction property, the subject expansion property and the reflex-
ivity lemma are the key properties for reducing the normalization problem to
the type-checking problem.

Proposition 7. Given u ∈ lnf and (C[], t) ∈ Su, if t ∈ lnf, then v =βη t if and
only if u; Φ(C[], t) 1 v : θ(C[], t) is derivable.

Proof. The only if part of the equivalence can be obtained by using the reflexivity
lemma, the subject expansion property and the subject reduction property. The
if part uses the soundness property and the lemma 6.

We can now express in terms of syntactic descriptions what it means to solve a
matching equation.

Proposition 8. Given a linear matching equation t
?= u, (Sk)k∈[1,n], (tk)k∈[1,n]

with U(t) = {Xα1
1 ; . . . ;Xαn

n }, FV (t), S1, . . . , Sn is a partition of FV (u) then:

1. for all k ∈ [1, n], FV (tk) = Sk and tk ∈ LΛαk

2. t[Xα1
1 := t1, . . . ,Xαn

n := tn] =βη u

if and only if there is a family (dk)k∈[1,n] such that

1. for all k ∈ [1, n], dk ∈ Dαk
u and u; Φ(u, Sk) 1 tk : dk is derivable

2. u;Xα1
1 : d1, . . . ,Xαn

n : dn, Φ(u, FV (t)) 1 t : θ([], u) is derivable

Proof. The first part of the equivalence is proved using the previous proposition
and the extraction lemma. The second part is proved using the substitution
lemma and the previous proposition.
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As a consequence of the previous proposition, solving a linear matching equation
t

?= u where U(t) = {Xα1
1 , . . . ,Xαn

n } can be seen as:

1. partionning FV (u)\FV (t) within S1, . . . , Sn

2. choosing descriptions d1 ∈ Dα1
u , . . . , dn ∈ Dαn

u

3. verifying that u;Xα1
1 : d1, . . . ,Xαn

n : dn, Φ(u, FV (t)) 1 t : θ([], u) is derivable
4. proving that for all k there is tk such that u; Φ(u, Sk) 1 tk : dk is derivable

The first step of the procedure gives rise to finitely many possibilities. Since we
must have dk ∈ Dαk

u , the second step also gives rise to finitely many possibilities.
The third step only amounts to type-checking and can be performed in linear
time in the size of t. The fourth step amounts to proof-search. With an analogy
with implicative linear logic one can easily see that this step is decidable1. This
entails the decidability of the problem of solving linear matching in the linear
λ-calculus. This can easily be extended to the case of matching in the linear
λ-calculus by remarking that such a matching equation can be considered as
a linear matching equation together with some equality constraints between
the terms substituted to the unknowns. This gives an alternative proof to the
decidability of matching in the linear λ-calculus and if one looks more carefully
at each step, then it is easy to see the problem is in NP.

4 Using Syntactic Descriptions to Solve Linear Matching
Equations

The algorithm we propose uses tabular techniques. Given an equation t
?= u it

memorises triplets of the form (Γ ; (C[], v); d) where Γ is a u-context, (C[], v) ∈
Sα

t and d ∈ Dα
u . Such triplets are called partial solutions of t

?= u. Given a partial
solution (Γ ; (C[], v); d) with U(v) = {Xα1

1 ; . . . ;Xαn
n }, it represents the existence

of descriptions d1, . . . , dn such that di ∈ Dαi
u , u; Γ,Xα1

1 : d1, . . . ,Xαn
n : dn 1 v : d

is derivable, and there is Δi ⊆ Φ([], u) and ti such that u; Δi 1 ti : di is derivable.
In what follows, we suppose we are given a linear equation t

?= u we are
trying to solve. The algorithm and its properties are expressed with respect to
that equation.

As a subroutine, this algorithm uses a proof-search procedure that we don’t
describe here. It acts on a set M of partial solutions with the five following rules:

1. if (C[],Xv1 . . . vn) ∈ Sα
t and the following hypothesis hold:

(a) α is an atomic type,
(b) for all i ∈ [1, n], (Γi; (C[Xv1 . . . vi−1[] . . . vn], vi); di) ∈ M
(c) there is (C′[], v) ∈ Sα

u and there is Δ ⊆ Φ([], u) and w such that u; Δ 1
w : d1 	 . . . 	 dn 	 (C′[], v) is derivable

1 The exponential character of the constant is harmless since their type are some-
how monotonous, i.e. the conclusions of the arguments are strict subterms of the
conclusion of the type itself.
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then:
M →M M ∪ {(Γ1, . . . , Γn; (C[],Xβv1 . . . vn); (C′[], v))}

2. if (C[], xv1 . . . vn) ∈ Sα
t , and the following hypothesis hold:

(a) α is an atomic type,
(b) C[] binds x
(c) for all i ∈ [1, n], (Γi; (C[xv1 . . . vi−1[] . . . vn], vi); di) ∈ M
(d) (C′[], v) ∈ Sα

u and d = d1 	 · · · 	 dn 	 (C′[], v)
then:

M →M M ∪ {(Γ1, . . . , Γn, x : d; (C[], xv1 . . . vn); (C′[], v))}

3. if (C[λx.[]], v) ∈ St and (Γ, x : d; (C[λx.[]], v); e) ∈ M then:

M →M M ∪ {(Γ ; (C[], λx.v); d 	 e)}

4. if (C[], xv1 . . . vn) ∈ Sα
t , and the following hypothesis hold:

(a) α is an atomic type,
(b) C[] does not bind x
(c) for all i ∈ [1, n], (Γi; (C[xv1 . . . vi−1[] . . . vn], vi); di) ∈ M
(d) x ∈ FV (u) ∩ FV (t) and θ(Cu,x[], x) = d1 	 · · · 	 dn 	 (C′[], v)
then:

M →M M ∪ {(Γ1, . . . , Γn, x : θ(Cu,x[], x); (C[], xv1 . . . vn); (C′[], v))}

5. if (C[], av1 . . . vn) ∈ Sα
t , and the following hypothesis hold:

(a) α is an atomic type,
(b) for all i ∈ [1, n], (Γi; (C[av1 . . . vi−1[] . . . vn], vi); di) ∈ M
(c) there is (Ca[], a) ∈ Su such that θ(Ca[], a) = d1 	 · · · 	 dn 	 (C′[], v)
then:

M →M M ∪ {(Γ1, . . . , Γn; (C[], av1 . . . vn); (C′[], v))}

The proof-search procedure is only needed for the first rule. In a first time,
such a procedure can be implemented as a slight modification of a proof-search
procedure for intuitionnistic implicative linear logic (IILL).

Lemma 11. If M
∗→M M1 and M

∗→M M2 then M
∗→M M1 ∪ M2.

Proof. This is a simple consequence the memorisation technique.

Lemma 12 (Correctness). If ∅ p→M M then for all (Γ ; (C[], v); d) ∈ M with
U(v) = {Xα1

1 ; . . . ;Xαn
n }, there is (Δi)i∈[1,n], (ti)i∈[1,n] and (di)i∈[1,n] such that:

1. u; Γ,Xα1
1 : d1, . . . ,Xαn

n : dn 1 v : d is derivable
2. u; Δi 1 ti : di is derivable for all i ∈ [1, n]

Proof. This proof is a simple induction on p where one only has to check that
the five different cases of the algorithm respect the derivation rules of syntactic
descriptions.
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Lemma 13 (Completeness). Given (C[], v) ∈ Sα
t such that v ∈ lnf, if U(v) =

{Xα1
1 ; . . . ;Xαn

n } and if there is d ∈ Dα
u , a u-context Γ , (Δi)i∈[1,n], (ti)i∈[1,n] and

(di)i∈[1,n] such that:

1. if x : e ∈ Γ and x is not bound by C[] then x ∈ FV (u) and e = θ(Cu,x[], x)
2. u; Γ,Xα1

1 : d1, . . . ,Xαn
n : dn 1 v : d is derivable

3. Δi ⊆ Φ([], u) and u; Δi 1 ti : di is derivable for all i ∈ [1, n]

then ∅ ∗→M M with (Γ ; (C[], v); d) ∈ M .

Proof. We proceed by induction on the structure of v. There are five cases:
Case 1: in case v = Xβv1 . . . vn, then, because v ∈ lnf, v has an atomic type
and d must be equal to some (C′[], w) ∈ Sα

u .By hypothesis, for all Yγ ∈ U(v) we
have ΔYγ ⊆ Φ([], u), tYγ ∈ LΛγ and dYγ ∈ Dγ

u such that u; ΔYγ 1 tYγ : dYγ is
derivable. Now let Γ ′

i = {Yγ : dYγ | Yγ ∈ U(vi)}, by hypothesis, we have:

u; Γ, Γ ′
1, . . . , Γ

′
n,Xβ : dXβ 1 Xβv1 . . . vn : (C′[], w)

We must have dXβ = d1 	 · · · 	 dn 	 (C′[], v) for some d1, . . . , dn. Therefore
there must be (Γi)i∈[1,n] such that Γ = Γ1, . . . , Γn and for all i ∈ [1, n] the
sequent u; Γi, Γ

′
i 1 vi : di is derivable. Then by induction hypothesis, for all

i ∈ [1, n], ∅ ∗→M Mi such that (Γi; (Ci[], vi); di) ∈ Mi. By lemma 11, this entails
that

∅ ∗→M M ′ where M ′ =
n⋃

i=1

Mi

and for all i ∈ [1, n], (Γi; (Ci[], vi); di) ∈ M ′. We then have M ′ →M M ′ ∪
{(Γ ; (C[], v); (C′[], w))} by using the first rule.

Case 2: v = xv1 . . . vn and x is bound by C[], then Γ must be of the form
Γ ′, x : d1 	 · · · 	 dn 	 (C′[], w) and d must be equal to (C′[], w). We can
use the induction hypothesis in a similar way as in the previous case and then
conclude by using the second rule.

Case 3: v = λx.v′, in that case, d = d1 	 d2 and u; Γ 1 λx.v′ : d1 	 d2 is
derivable if and only if u; Γ, x : d1 1 v′ : d2 is derivable. We can then use the
induction hypothesis and conclude with the third rule.
Case 4: v = xv1 . . . vn and x is not bound by C[], in that case Γ must be of the
form Γ ′, x : θ(Cu,x[], x) there and if θ(Cu,x[], x) = d1 	 · · · 	 dn 	 (C′[], w)
then d = (C′[], w). We can use the induction hypothesis as in the first case and
then conclude with the fourth rule.
Case 5: v = av1 . . . vn, in that case we must have d = (C′[], aw1 . . . wn) and
therefore to derive the sequent u; Γ,Xα1

1 : d1, . . . ,Xαn
n : dn 1 v : (C′[], aw1 . . . wn)

the assumption u; 1 a : θ(C′[[]w1 . . . wn], a) must have been used. This allows us
to conclude by induction as for case 1 but using the fifth rule.

Given (C[], v) ∈ St, if v ∈ LΛα0 and {xα1
1 , . . . , xαn

n } is the set of free variables
in v which are bound by C[], then there can be

∏n
i=0 |u||αi| partial solutions of
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the form (Γ ; (C[], v); d) stored in M . Furthermore, if (C[],Xv1 . . . vn) ∈ St (resp.
(C[], xv1 . . . vn) ∈ St) and if vi can be in at most nvi partial solution then the
rule concerning the unknown (resp. variable) can be used |u| ×

∏n
i=1 nvi times.

Therefore if for all (C[], v) ∈ St such that v ∈ LΛα0 and {xα1
1 , . . . , xαn

n } is the
set of free variables in v which are bound by C[], we write ρ(C[], v) =

∑n
i=0 |αi|.

Let p = max(C[],v)∈St
(ρ(C[], v)) and q be the maximal arity of the types of

variables or unknowns in t, then the algorithm runs in O(|u|p×q+1) in time
(without taking proof-search for descriptions into account) and O(|u|p) in space.

Of course as soon as p and q become big, this algorithm becomes intractable.
Nevertheless, in practice, for natural language processing, p and q are rather
small, and this algorithm can give very quickly refutation when an equation has
no solution whereas the adaptation of huet’s algorithm proposed by de Groote
will have to try all the possible substitutions before ending. It is also possible to
add heuristic to its behavior so that it can find solutions faster.

In particular, it is possible to show that only particular descriptions can be
used in partial solutions in order to obtain a solution of the equation. This
constraint gives a way of saving space and time. Furthermore, given such a
description d, one can prove there is a unique context Δ ⊆ Φ([], u) so that if there
is td and Δ′ ⊆ Φ([], u) such that u; Δ′ 1 td : d then Δ = Δ′. This context can
easily be inferred from d. Finally because of the particular form of descriptions
involved in matching, the search for td is greatly eased by very simple heuristics
(we don’t know yet if this proof-search problem polynomial or NP-hard). Another
way of improving the algorithm is also to determine in t which are the variable
which will be substituted during reduction (active variables) and the one which
won’t (passive variables). Passive variables are the variables introduced because
of the presence of constants and free variables common in u and t. Therefore
this restricts the possible descriptions that can be associated to them. Because of
the lack of space, we cannot go into all those details. We will instead emphasize
how this algorithm relates linear matching in the linear λ-calculus to the linear
context matching. To this end, we show how the algorithm behaves when it
attempts to solve second order linear equations.

Let’s consider a linear equation t
?= u where the unknowns of t are at most

second order and the constants and the free variables of u are at most second
order. When applying the algorithm to this kind of equations, partial solutions
can be represented as pairs ((C′[], v); (C[], w)) because the restrictions on the
equation entail that the context will always be empty and that at any time the
description will be atomic. The rules that will be used are only the first, the
fourth and the fifth one. For the first one, we will need to find whether there is
a Δ ⊆ Φ([], u) and a term t such that u; Δ 1 t : (C1[], v1) 	 · · · 	 (Cn[], vn) 	
(C0[], v0) is derivable. One can easily see that this is the case if and only if:

1. for all i ∈ [1, n] (Ci[], vi) ≺ (C0[], v0)
2. for all i, j ∈ [1, n],i �= j implies (Ci[], vi) ≺� (Cj [], vj)

Therefore rephrasing the rules of the algorithm for that particular case gives
the three following rules:
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1. if (C[],Xv1 . . . vn) ∈ Sα
t , and the following hold:

(a) α is an atomic type
(b) for all i ∈ [1, n], there is ((C[Xv1 . . . vi−1[] . . . vn], vi), (C′

i[], wi)) ∈ M
such that if i �= j C′

i[] ≺� C′
j [].

(c) (C′[], w) ∈ Sα
u is such that for all i ∈ [1, n] C′

i[] ≺ C′[]
then M →M M ∪ {(C[],Xv1 . . . vn), (C′[], w))}

2. if (C[], xv1 . . . vn) ∈ Sα
t and (C′[], xw1 . . . wn) ∈ Sα

u and for all i ∈ [1, n],

((C[xv1 . . . vi−1[] . . . vn], vi), (C′[xw1 . . . wi−1[] . . . wn], wi)) ∈ M

then M →M M ∪ {((C[], xv1 . . . vn), (C′[], xw1 . . . wn))}
3. if (C[], av1 . . . vn) ∈ Sα

t and (C′[], aw1 . . . wn) ∈ Sα
u and for all i ∈ [1, n],

((C[av1 . . . vi−1[] . . . vn], vi), (C′[aw1 . . . wi−1[] . . . wn], wi)) ∈ M

then M →M M ∪ {((C[], av1 . . . vn), (C′[], aw1 . . . wn))}

In the second order case, the algorithm associates subterms of t to subterms
of u in M as soon as there is a substitution which unifies those subterms. This
is the principle used by the algorithm proposed by Schmidt-Schauß and Stuber
[12] in order to prove the polynomiality of linear context matching. What makes
linear matching in the linear λ-calculus be NP-complete at second order while
linear context matching is polynomial is that the condition (b) of the first rule
is more restrictive in the case of linear context matching. Together with the fact
that i �= j implies C′

i[] ≺� C′
j [], there is a further constraint which imposes that

i < j implies that C′
i[] is on the left of C′

j []. This last ordering condition makes
condition (b) be checkable in linear time for linear context matching whereas its
complexity has n as exponent in the case of linear second order matching in the
linear λ-calculus.

5 Conclusion

In this paper, we have presented a new approach for coping with higher order
matching in the linear λ-calculus. This approach gives some precise theoretical
understanding of matching. The underlying ideas can be generalized in order to
study many matching problems. Firstly, the fact that we have focused the linear
matching problem can be easily overcome by seeing non-linear equations as lin-
ear equations with some further equality constraints on the solutions. Secondly
the restriction to the linear λ-calculus can also be overcome. For example, this
approach can be used for matching in the calculus which represents proofs in
the Lambek system [7] or in other substructural logics. It can also be adapted
to higher order βη matching in the simply typed λ-calculus by using some inter-
section types. Thus this approach may find some natural application for pattern
matching in XML documents.

We used the syntactic descriptions to design an algorithm for linear matching
equations in the linear λ-calculus. This algorithm generalizes an efficient ap-
proach for linear context matching equations. This algorithm can be really fine
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tuned by including some simple heuristics and by proving some basic properties
on syntactic descriptions. The proof-search algorithm which is needed, we could
not present within the space of this article, is also simple and can solve the
problem of the emptiness of descriptions efficiently. A further use of syntactic
descriptions [10] we made is for parsing second order Abstract Categorial Gam-
mars [3]. The algorithm we obtain is very efficient and general. It is proved to
be as efficient as the best known algorithms for parsing.
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A Terminating and Confluent Linear Lambda
Calculus

Yo Ohta and Masahito Hasegawa

Research Institute for Mathematical Sciences, Kyoto University
Kyoto 606-8502, Japan

Abstract. We present a rewriting system for the linear lambda calculus
corresponding to the {!, 	}-fragment of intuitionistic linear logic. This
rewriting system is shown to be strongly normalizing, and Church-Rosser
modulo the trivial commuting conversion. Thus it provides a simple de-
cision method for the equational theory of the linear lambda calculus.
As an application we prove the strong normalization of the simply typed
computational lambda calculus by giving a reduction-preserving trans-
lation into the linear lambda calculus.

1 Introduction

In the literature, there exist many proposals of linearly typed lambda calculi
which correspond to Girard’s linear logic [7] via the Curry-Howard correspon-
dence. However, only a few of them have studied the equality between terms
(or proofs) seriously. Just like the simply typed lambda calculus with the βη-
equality is sound and complete for semantic models given by cartesian closed
categories [13,5], it is desirable for a linear lambda calculus to be equipped with
an equational theory which is sound and complete for the now well-established
categorical models of linear logic [19,3,4,16].

Barber and Plotkin’s Dual Intuitionistic Linear Logic (DILL) [1,2] is one of
such calculi: its equational theory, determined by the standard βη-axioms and a
few axioms for commuting conversions (for identifying the terms representing the
same proof modulo trivial proof permutations), has been shown to be sound and
complete for the categorical models of the multiplicative exponential fragment
of the intuitionistic linear logic. Together with its natural-deduction style simple
term expressions, DILL can be considered as one of the canonical calculi for this
fragment of linear logic.

However, DILL is not equipped with a rewriting system. There is a symmet-
ric un-orientable axiom for commuting conversions, thus it is not clear if the
equational theory of DILL has a simple decision procedure based on a rewriting
system, while it is the case for many of the standard typed lambda calculi.

Regarding decidability, the answer is actually known: Barber [1] in his PhD
thesis, and independently Ghani [6] in an unpublished manuscript, have shown
that the equational theory of DILL is decidable. However, their proofs are long
and complicated, using some new notations and/or advanced techniques which
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are not always easy to follow. Barber’s approach involves a translation into a net-
like system and rewriting on equivalence classes of expressions. Ghani have used
the η-expansion technique which again is a rather heavy machinery. At least,
they do not present a simple and intuitively understandable rewriting system in
the traditional sense.

Here we propose a simpler solution for the {	, !}-fragment (which is enough
to mimic the simply typed lambda calculus via Girard’s translation as σ → τ =
!σ 	 τ) by a classical rewriting-theoretic method. Specifically, we appeal to
the seminal result by Huet on reduction modulo equivalence [12]. We provide a
rewriting system � together with a (trivially) decidable equational theory ∼∗

generated by the symmetric commuting conversion ∼ on linear lambda terms
such that (following the terminology of Terese [20])

1. The equivalence relation generated from � and ∼ agrees with the equational
theory of the linear lambda calculus,

2. � is strongly normalizing,
3. � is locally confluent modulo ∼∗, and
4. � is locally coherent modulo ∼∗.

Then Huet’s theorem implies that � is Church-Rosser modulo ∼∗, and deciding
the equality in this linear lambda calculus is reduced to comparing the �-normal
forms up to the easily decidable equality ∼∗.

From rewriting-theoretical point of view, this work does not present much
new idea. However, it does give an interesting case motivated by the study
on the semantic and logical foundations of functional programming languages.
Recent work [8,9,10] suggest that there exist many interesting translations of
various calculi into this linear lambda calculus, including monadic and CPS
translations. As an interesting example, we prove the strong normalization of
the simply typed version of Moggi’s computational lambda calculus by giving a
reduction-preserving translation into the linear lambda calculus. Together with
this result, our work can be considered as a follow-up of the work by Maraist et
al. [15] and Sabry and Wadler [18].

The rest of this paper is organized as follows. We introduce the linear lambda
calculus in Section 2, and our rewriting system in Section 3. Section 4 is a quick
reminder of the classical definitions and result from the theory of reduction
modulo equivalence. Section 5, 6 and 7 are devoted to show the strong nor-
malization, local confluence modulo ∼∗, and local coherence modulo ∼∗, which
jointly imply the Church-Rosser property modulo equivalence. Section 8 gives a
reduction-preserving translation from the simply typed computational lambda
calculus to the linear lambda calculus. Some concluding remarks are given in
Section 9.

2 The Linear Lambda Calculus with 	 and !

The calculus to be considered below is a dual-context natural deduction system
for the {!, 	}-fragment of IMELL, based on DILL of Barber and Plotkin [1,2].
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The identical calculus appears in [8]. In this formulation of the linear lambda cal-
culus, a typing judgement takes the form Γ ; Δ 1 M : τ in which Γ represents an
intuitionistic (or additive) context whereas Δ is a linear (multiplicative) context.
We assume that all variables in Γ and Δ are distinct. While the variables in Γ
can be used in the term M as many times as we like, those in Δ must be used ex-
actly once. A typing judgement x1 : σ1, . . . , xm : σm ; y1 : τ1, . . . , yn : τn 1 M : σ
can be considered as the proof of the sequent !σ1, . . . , !σm, τ1, . . . , τn 1 σ, or the
proposition !σ1 ⊗ . . .⊗!σm ⊗ τ1 ⊗ . . . ⊗ τn 	 σ.

Types and Terms

σ ::= b | σ 	 σ | !σ
M ::= x | λxσ.M | M M | !M | let !xσ be M in M

where b ranges over a set of base types. We may omit the type subscripts for
ease of presentation.
Typing

Γ ; x : τ � x : τ
LinAx

Γ1, x : τ, Γ2 ; ∅ � x : τ
IntAx

Γ ; Δ, x : τ1 � M : τ2

Γ ; Δ � λxτ1 .M : τ1 	 τ2
	 Intro

Γ ; Δ1 � M : τ1 	 τ2 Γ ; Δ2 � N : τ1

Γ ; Δ1�Δ2 � MN : τ2
	 Elim

Γ ; ∅ � M : τ

Γ ; ∅ �!M :!τ
!Intro

Γ ; Δ1 � M :!τ1 Γ, x : τ1 ; Δ2 � N : τ2

Γ ; Δ1�Δ2 � let !xτ1 be M in N : τ2
!Elim

where ∅ is the empty context, and Δ1�Δ2 is a merge of Δ1 and Δ2 [1,2]. Thus,
Δ1�Δ2 represents one of possible merges of Δ1 and Δ2 as finite lists. More
explicitly, we can define the relation “Δ is a merge of Δ1 and Δ2” inductively
as follows [1]:

– Δ is a merge of ∅ and Δ
– Δ is a merge of Δ and ∅
– if Δ is a merge of Δ1 and Δ2, then x : σ, Δ is a merge of x : σ, Δ1 and Δ2
– if Δ is a merge of Δ1 and Δ2, then x : σ, Δ is a merge of Δ1 and x : σ, Δ2

We assume that, when we introduce Δ1�Δ2, there is no variable occurring both
in Δ1 and in Δ2. We note that any typing judgement has a unique derivation
(hence a typing judgement can be identified with its derivation).

Axioms
β� (λx.M)N = M [N/x]
η� λx.M x = M
β! let !x be !M in N = N [M/x]
η! let !x be M in !x = M
com C[let !x be M in N ] = let !x be M in C[N ]

where M [N/x] denotes the capture-free substitution, while C[−] is a linear con-
text (no ! binds [−]):

C ::= [−] | λx.C | C M | M C | let !x be C in M | let !x be M in C
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The use of linear contexts is crucial: com is not allowed for non-linear contexts,
e.g. the “idempotency equation” [2] !(let !x be M in x) = let !x be M in !x
(which implies the idempotency of !, i.e., !!σ � !σ) is not derivable. The equality
judgement Γ ; Δ 1 M = N : σ, where Γ ; Δ 1 M : σ and Γ ; Δ 1 N : σ,
is defined as the congruence relation on the well-typed terms of the same type
under the same typing context, generated from these axioms.

In the sequel, we work on terms up to the α-congruence. We may write M = N
as a shorthand for the equality judgement Γ ; Δ 1 M = N : σ, while we will
use M ≡ N for expressing that M and N are the same modulo α-congruence.

The axiom com expresses the commuting conversions. By induction on the
construction of linear contexts, com can be expressed by five explicit instances:

Proposition 1. The axiom com can be replaced by the following five axioms.

com1 (let !x be M in N)L = let !x be M in N L
com2 let !y be (let !x be M in N) in L = let !x be M in let !y be N in L
com3 λy.(let !x be M in N) = let !x be M in λy.N
com4 L (let !x be M in N) = let !x be M in L N
com5 let !x be L in let !y be M in N = let !y be M in let !x be L in N

��

Remark 1. As stated above, we only consider the equality on the well-typed
terms under the same typing contexts. Thus, for example, in com3, y cannot be
free in M ; and in com5, x and y cannot be free in L and M .

Remark 2. As noted in [11], this linear lambda calculus allows a yet simpler
axiomatization:

β� (λx.M)N = M [N/x]
η� λx.M x = M
β! let !x be !M in N = N [M/x]
η′
! let !x be M in L (!x) = L M

While this is very compact, it does not immediately hint a terminating confluent
rewriting system. Nevertheless, we will see later that a rewrite rule similar to
this η′

! is needed for obtaining such a rewriting system.

3 A Rewriting System for the Linear Lambda Calculus

3.1 Motivating the Rewriting Rules

Now let us derive a rewriting system for the linear lambda calculus from its
axioms. As a natural starting point, we orient the βη-axioms from left to right,
as the case of the standard βη lambda calculus. The commuting conversions are
tricky, however. First of all, it is not possible to orient the symmetric axiom
com5, so it needs to be treated separately. Here we follow the tradition of reduc-
tion modulo equivalence: we design our system so that com5-reasoning can be
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postponed after all other rewriting steps are done. For com1∼4, it seems natural
to orient the axioms so that the let-bindings are pulled outside the contexts, i.e.,

com1 (let !x be M in N)L � let !x be M in N L
com2 let !y be (let !x be M in N) in L � let !x be M in let !y be N in L
com3 λy.(let !x be M in N) � let !x be M in λy.N
com4 L (let !x be M in N) � let !x be M in L N

thus flattening the let-expressions as possible as we can. Alas, there is a problem
on these rules and η!:

– η! and com1∼4 give a non-joinable critical pair, e.g.

let !x be M in L (!x) com4←− L (let !x be M in !x)
η!−→ L M

– The same problem happens with com5:

let !x be M in let !y be N in !xcom5←− let !y be N in let !x be M in !x
η!→ let !y be N in M

To overcome this difficulty, we introduce a refined version of η!

η′
! let !x be M in C[!x] � C[M ]

(where C ranges over the linear contexts as before) for which this problem dis-
appears.

3.2 Rewriting System

Our rewriting system features the following rules.

β� (λx.M)N � M [N/x]
η� λx.M x � M
β! let !x be !M in N � N [M/x]
η′
! let !x be M in C[!x] � C[M ]

com1 (let !x be M in N)L � let !x be M in N L
com2 let !y be (let !x be M in N) in L � let !x be M in let !y be N in L
com3 λy.(let !x be M in N) � let !x be M in λy.N
com4 L (let !x be M in N) � let !x be M in L N

We may use � for the compatible relation on the well-typed terms generated by
these rules (one-step rewriting), and �∗ will denote its reflexive transitive closure
(many-step rewriting). We note that the com-rewriting rules can be summarized
as

D[let !x be M in N ] � let !x be M in D[N ]

where D ::= [−] L | let !y be [−] in L | λy.[−] | L [−].
We also have to consider the symmetric rule com5:

com5 let !x be L in let !y be M in N ∼ let !y be M in let !x be L in N

We write ∼ for the compatible relation generated by com5 (one-step reasoning
via com5), and ∼∗ for its reflexive transitive closure. A few easy facts:
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Proposition 2. The reflexive symmetric transitive closure of � ∪ ∼ coincides
with the equality of the linear lambda calculus. ��

Proposition 3. Each equivalence class of ∼∗ is finite, and thus ∼∗ is decidable.
��

The following result, easily shown by induction, will be useful in proving the
local confluence:

Lemma 1. C[let !x be M in N ] �∗ · ∼∗ let !x be M in C[N ]. ��

Remark 3. In passing, we shall note that our rewriting system � can simulate
the βη-reduction in the simply typed lambda calculus via Girard translation [7]:
types are translated as b◦ = b and (σ → τ)◦ =!σ◦ 	 τ◦, and for terms we have

x◦ ≡ x
(λx.M)◦ ≡ λy.let !x be y in M◦

(MN)◦ ≡ M◦(!N◦)

For further details, see e.g. [8]. It is immediate to see that each βη-reduction in
the simply typed lambda calculus is sent to non-trivial reduction in �:

((λx.M)N)◦ ≡ (λy.let !x be y in M◦) (!N◦)
� let !x be !N◦ in M◦ (β�)
� M◦[N◦/x] (β!)
≡ (M [N/x])◦

(λx.M x)◦ ≡ λy.let !x be y in M◦ (!x)
� λy.M◦ y (η′

!)
� M◦ (η�)

4 Rewriting Modulo Equivalence

In the following sections, we will show that our rewriting system together with
∼ gives a decision procedure of the equality on the linear lambda terms. For-
tunately, it turns out that a classical result due to Huet is directly applicable
to our case. Below we recall basic definitions on reduction modulo equivalence
for abstract rewriting systems (ARS’s) and state Huet’s theorem. We follow the
treatment in Terese (Chapter 14.3) [20].

Definition 1. Let (A,→) be an ARS, and ∼ be an equivalence relation on A.
We say:

1. a, b are joinable modulo ∼ if there exist c, d such that a →∗ c, b →∗ d and
c ∼ d.

2. → is locally confluent modulo ∼ if, for any a, b, c, a → b and a → c imply b
and c are joinable modulo ∼.
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3. → is locally coherent modulo ∼ if, for any a, b, c, a → b and a ∼ c imply
that b and c are joinable modulo ∼.

4. → is Church-Rosser modulo ∼ if a ≈ b implies a and b are joinable modulo
∼, where ≈ is (∼ ∪ → ∪ ←)∗.

What we wish to establish for our system on linear lambda terms is the strong
normalization of � and the Church-Rosser property of � modulo ∼∗. The fol-
lowing result provides a sufficient condition for this.

Theorem 1 (Huet [12]). Let (A,�) be an ARS, and ∼ be an equivalence
relation on A. If � is strongly normalizing, locally confluent modulo ∼, and
locally coherent with ∼, then � is Church-Rosser modulo ∼. ��

In the following three sections, we show that � is (i) strongly normalizing, (ii)
locally confluent modulo ∼∗, and (iii) locally coherent with ∼∗.

5 Strong Normalization

Theorem 2 (strong normalization). � is strongly normalizing.

For proving this, we proceed as follows. First, by showing that a translation into
the simply typed lambda calculus weakly preserves the reduction, we reduce the
problem to that of the smaller rewriting system. We then show the termination
of this subsystem by assigning natural numbers to expressions which are strictly
decreasing with respect to the reduction steps.

5.1 Translation into the Simply Typed Lambda Calculus

There is an obvious translation from the linear lambda calculus into the simply
typed βη-lambda calculus (an inverse to Girard’s translation [8]) which weakly
preserves the reductions.

b• = b
(!τ)• = τ•

(τ1 	 τ2)• = τ•
1 → τ•

2

x• ≡ x

(λxτ .M)• ≡ λxτ•
.M•

(M N)• ≡ M• N•

(!M)• ≡ M•

(let !xτ be M in N)• ≡ N•[M•/x]

Straightforward inductions show the following facts:

Lemma 2 (type soundness). Γ ; Δ 1 M : τ implies Γ •, Δ• 1 M• : τ•. ��

Lemma 3 (substitution lemma). (M [N/x])• ≡ M•[N•/x]. ��
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Now we see how reductions in the linear lambda calculus are related to those on
the simply typed lambda calculus.

Proposition 4. If M � N in the linear lambda calculus, then M• �βη N• or
M• ≡ N• in the simply typed lambda calculus.

Proof. It suffices to look at the reduction rules.

((λx.M) N)• ≡ (λx.M•) N•

�β M•[N•/x]
≡ (M [N/x])• by Lemma 3

(λx.M x)• ≡ λx.M• x
�η M

(let !x be !M in N)• ≡ N•[M•/x]
≡ (N [M/x])•

(let !x be M in C[!x])• ≡ (C[!x])•[M•/x]
≡ (C[M ])•

((let !x be M in N) L)• ≡ N•[M•/x] L•

≡ (let !x be M in N L)•

(let !y be (let !x be M in N) in L)• ≡ L•[N•[M•/x]/y]
≡ L•[N•/y][M•/x]
≡ (let !x be M in let !y be N in L)•

(L (let !x be M in N))• ≡ L• (N•[M•/x])
≡ (let !x be M in L N)•

(λy.let !x be M in N)• ≡ λy.N•[M•/x]
≡ (let !x be M in λy.N)•

��

Corollary 1. Strong normalization of β!, η
′
! , com1, com2, com3 and com4 im-

plies that of �.

Proof. Suppose that � is not strongly normalizing, thus there exists an infinite
strict reduction sequence M0 � M1 � . . . in the linear lambda calculus. We
then have an infinite sequence M•

0 , M•
1 , . . . in the simply typed lambda calculus,

where M•
i �βη M•

i+1 or M•
i ≡ M•

i+1 holds by the last proposition. Since the
βη-reduction of the simply typed lambda calculus is strongly normalizing, there
exists some n such that M•

m ≡ M•
n holds for any m ≥ n. This means that the

infinite reduction sequence Mn � Mn+1 � . . . consists just of the non-β�η�
reductions. ��

5.2 Termination of the Subsystem

We now complete our proof of strong normalization by showing that β!, η
′
! , com1,

com2, com3, com4 is indeed strongly normalizing.
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Proposition 5. The following set of rewriting rules is strongly normalizing.

β! let !x be !M in N � N [M/x]
η′
! let !x be M in C[!x] � C[M ]

com1 (let !x be M in N)L � let !x be M in N L
com2 let !y be (let !x be M in N) in L � let !x be M in let !y be N in L
com3 λy.(let !x be M in N) � let !x be M in λy.N
com4 L (let !x be M in N) � let !x be M in L N

Proof. We assign a positive natural number |M | to each (possibly non-well-
typed) term M by

|x| = 1
|λxτ .M | = 2|M |
|M N | = 2|M |+ 2|N |
|!M | = |M |
|let !xτ be M in N | = 2|M |+ |N [M/x]|

(note that the last line is well-defined — compare the depths of let-bindings) and
show that M � N implies |M | > |N |. Note that this assignment is monotone
with respect to each argument. Therefore |L[M/x]| ≥ |L[N/x]| holds if we know
|M | ≥ |N |.

– β!: |let !x be !M in N | = 2|!M |+ |N [!M/x]| = 2|M |+ |N [M/x]| > |N [M/x]|.
– η′

! : |let !x be M in C[!x]| = 2|M | + |C[!M ]| = 2|M |+ |C[M ]| > |C[M ]|.
– com1: |(let !x be M in N)L| = 4|M | + 2|N [M/x]| + 2|L|, while

|let !x be M in N L| = 2|M | + 2|N [M/x]| + 2|L|.
– com2:

|let !y be (let !x be M in N) in L|
= 2|let !x be M in N | + |L[let !x be M in N/y]|
= 4|M | + 2|N [M/x]| + |L[let !x be M in N/y]|
≥ 4|M | + 2|N [M/x]| + |L[N [M/x]/y]|

while
|let !x be M in let !y be N in L|

= 2|M | + |let !y be N [M/x] in L|
= 2|M | + 2|N [M/x]| + |L[N [M/x]/y]|

– com3, com4: similar to the case of com1. ��

6 Local Confluence Modulo Equivalence

Theorem 3 (local confluence modulo ∼∗). � is locally confluent modulo
∼∗: if L � M1 and L � M2 then there exist N1 and N2 such that M1 �∗ N1,
M2 �∗ N2 and N1 ∼∗ N2.

Proof (sketch). There are 16 cases to be considered. Many of them are joinable
without ∼∗, except the following three cases.
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(let !x be K in L) (let !y be M in N)

let !x be K in L (let !y be M in N) let !y be M in (let !x be K in L)N

let !x be K in let !y be M in L N let !y be M in let !x be K in L M

�
��

�
��

� �

com1 com4

com4 com1

∼

Other two cases involve ∼∗ via Lemma 1 (Section 3.2).

(λy.C[y]) (let !x be M in N)

C[let !x be M in N ] let !x be M in (λy.C[y])N

· let !x be M in C[N ]

�
��

�
��

� �

β� com4

Lemma 1
�∗ β�

∼∗

let !y be (let !x be M in N) in C[!y]

C[let !x be M in N ] let !x be M in let !y be N in C[!y]

· let !x be M in C[N ]

�
��

�
��

� �

η′
! com2

Lemma 1
�∗ η′

!

∼∗

��

7 Local Coherence Modulo Equivalence

Theorem 4 (local coherence modulo ∼∗). � is locally coherent modulo ∼∗,
i.e., if L ∼∗ M � N then there exists some L′, N ′ such that L �∗ L′, N �∗ N ′

and L′ ∼∗ N ′.

Proof (sketch). Note that it suffices to show: if L ∼ M � N then there exists
some L′, N ′ such that L �∗ L′, N �∗ N ′ and L′ ∼∗ N ′. There are six cases to
be considered. The first four are rather obvious:

let !x be !L in let !y be M in N

let !y be M in let !x be !L in Nlet !y be M in N [L/x]

�
�

�
��

�
β!

β! ∼
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let !y be M in let !x be !L in N

let !x be !L in let !y be M in Nlet !y be M in N [L/x]

�
�

�
��

�
β!

β! ∼

let !x be L in let !y be M in C[!x]

let !y be M in let !x be !L in C[!x]let !y be M in C[L]

�
�

�
��

�
η′
!

η′
! ∼

let !y be M in let !x be !L in C[!x]

let !x be L in let !y be M in C[!x]let !y be M in C[L]

�
�

�
��

�
η′
!

η′
! ∼

The remaining two cases are less trivial:

let !x be (let !z be L in K) in let !y be M in N

let !y be M in let !x be (let !z be L in K) in N

let !z be L in let !x be K in let !y be M in N let !y be M in let !z be L in let !x be K in N

�
�

�
�

�
��

�
�

�

∼∗

∼

com2

com2

D[let !x be L in let !y be M in N ]

let !x be L in D[let !y be M in N ] D[let !y be M in let !x be L in N ]

let !y be M in D[let !x be L in N ]

let !x be L in let !y be M in D[N ] let !y be M in let !x be L in D[N ]

�
��

�
�

�

�

�

com i ∼

comi

comi

comi

∼
��

Now we can state the fruit of the last three sections, thanks to Theorem 1.

Theorem 5 (Church-Rosser modulo ∼∗). � is Church-Rosser modulo ∼∗;
if M = N , there exist M ′, N ′ such that M �∗ M ′, N �∗ N ′ and M ′ ∼∗ N ′. ��
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8 Translation from the Computational Lambda Calculus

8.1 The Simply Typed Computational Lambda Calculus λc

The simply typed computational lambda calculus λc (its untyped version was
introduced by Moggi [17]) has the same syntax as the simply typed lambda
calculus plus the let-binding

Γ 1 M : σ Γ, x : σ 1 N : τ

Γ 1 let xσ be M in N : τ

It is a call-by-value calculus however, and its rewriting / equational theory is
valid for reasoning about programs in the call-by-value programming languages
like ML and Scheme. λc features the following reduction rules:

(β.v) (λxσ.M)V � M [V/x]
(η.v) λxσ.V x � V (x �∈ FV(V ))
(β.let) let xσ be V in M � M [V/x]
(η.let) let xσ be M in x � M
(assoc) let yτ be (let xσ be L in M) in N � let xσ be L in let yτ be M in N
(let .1) P M � let xσ be P in xM (P : σ)
(let .2) V Q � let yσ be Q in V y (Q : σ)

where V , W range over values (variables and lambda abstractions) while P , Q
over non-values (applications and let expressions).

8.2 The Kernel Computational Lambda Calculus λc∗

Interestingly, the reductions in the λc-calculus can be simulated within a smaller
sublanguage λc∗ called kernel computational lambda calculus [18]. In λc∗, applica-
tions M N are restricted to those of values V W , and we no longer have reduction
rules (let .1) and (let .2). Its reduction rules are given as follows.

(β.v) (λxσ.M)V � M [V/x]
(η.v) λxσ.V x � V (x �∈ FV(V ))
(β.let) let xσ be V in M � M [V/x]
(η.let) let xσ be M in x � M
(assoc) let yτ be (let xσ be L in M) in N � let xσ be L in let yτ be M in N

Here is a reduction-preserving inclusion (−)∗ from λc into λc∗:

x∗ ≡ x
(λxσ.M)∗ ≡ λxσ.M∗

(P M)∗ ≡ let x be P ∗ in (λy.(y M)∗)x
(V Q)∗ ≡ let y be Q∗ in (λx.V ∗ x) y
(V W )∗ ≡ V ∗ W ∗

(let xσ be M in N)∗ ≡ let xσ be M∗ in N∗
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Lemma 4. If Γ 1 M : σ is derivable in λc, so is Γ 1 M∗ : σ in λc∗. ��

Lemma 5. M∗[V ∗/x] ≡ (M [V/x])∗. ��

Proposition 6. If M �1 N in λc, then M∗ �1 N∗ in λc∗.

Proof (sketch). The key cases are

(P M)∗ ≡ let x be P ∗ in (λy.(y M)∗)x
β.v
� let x be P ∗ in (xM)∗

≡ (let x be P in xM)∗

(V Q)∗ ≡ let y be Q∗ in (λx.V ∗ x) y
β.v or η.v

� let y be Q∗ in V ∗ y
≡ (let y be Q in V y)∗

��

Corollary 2. λc∗ is strongly normalizing if and only if λc is strongly normaliz-
ing. ��

Remark 4. This embedding (−)∗ is inspired from the translation ∗1 : λc → λc∗
given by Sabry and Wadler [18], but not quite the same. For ∗1, the translations
of P M and V Q are simply

(P M)∗ ≡ let x be P ∗ in (xM)∗ (V Q)∗ ≡ let y be Q∗ in V ∗ y

while our embedding introduces additional redices so that the reduction steps
are strictly preserved.

8.3 Embedding λc∗ into the Linear Lambda Calculus

Now it is fairly easy to give a reduction-preserving translation (−)� from λc∗ into
the linear lambda calculus (the “call-by-value Girard translation”): let b� = b,
(σ1 → σ2)� = !σ�

1 	 !σ�
2 and

x† ≡ x

(λxσ .M)† ≡ λy!σ�
.let !xσ�

be y in M�

V � ≡ !V †

(V W )� ≡ V † W �

(let xσ be M in N)� ≡ let !xσ�
be M� in N�

Lemma 6 (type soundness). If Γ 1 M : σ is derivable in λc∗, so is Γ � ; ∅ 1
M� :!σ� in the linear lambda calculus [18,9]. ��

Lemma 7 (substitution lemma). M�[V †/x] ≡ (M [V/x])�. ��
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Proposition 7 (preservation of reduction). If M � N in λc∗, then M� �+

N� in the linear lambda calculus. ��

Corollary 3 (strong normalization). λc is strongly normalizing. ��

We note that a different proof of this result via the reducibility argument has
been given by Lindley and Stark [14].

Remark 5. For reasoning about commutative effects like non-termination and
non-determinism, it makes sense to add the commutativity axiom

com let x be L in let y be M in N = let y be M in let x be L in N

We conjecture that our translation also preserves reduction modulo the equiva-
lence relation generated by this com.

9 Concluding Remarks

We have given a rather simple-minded rewriting system on the linear lambda
calculus which enjoys strong normalization and Church-Rosser property modulo
trivial commuting conversion. We hope that this gives a reasonably understand-
able and feasible tool for reasoning about equivalence of terms in the linear
lambda calculus. We shall conclude this paper by a few additional remarks.

9.1 Call-by-Name, Call-by-Value, and the Linear Lambda Calculus

This work can be considered as a refinement of some of the results in [15] where
reduction-preserving translations between the (simply typed) call-by-name, call-
by-value, call-by-need and linear lambda calculi were discussed. In ibid., weaker
non-extensional theories without η-rules were considered. In contrast, here we
have studied the semantically complete theories (DILL-based linear lambda cal-
culus and the computational lambda calculus, as well as the simply typed βη-
lambda calculus) and the translations into the linear lambda calculus. We con-
jecture that the CPS translation from the computational lambda calculus into
the linear lambda calculus [9] also enjoys good property with respect to the
reduction theories.

9.2 Other Connectives

It is natural to ask if this approach would work well for other logical connectives
in DILL, i.e., tensor ⊗ and unit I. While the tensor does not seem to cause
any significant trouble, the unit is really problematic. For example we have
let ∗ be M in N = let ∗ be N in M and M ⊗N = N ⊗M for any M, N : I. For
overcoming this problem with unit, perhaps we need to use the η-expansions as
considered by Ghani [6].

Acknowledgements. This work was partially supported by the Japanese Min-
istry of Education, Culture, Sports, Science and Technology, Grant-in-Aid for
Young Scientists (B) 17700013.
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Abstract. We present an extension of the λ(η)-calculus with a case con-
struct that propagates through functions like a head linear substitution,
and show that this construction permits to recover the expressiveness
of ML-style pattern matching. We then prove that this system enjoys
the Church-Rosser property using a semi-automatic ‘divide and conquer’
technique by which we determine all the pairs of commuting subsystems
of the formalism (considering all the possible combinations of the nine
primitive reduction rules). Finally, we prove a separation theorem similar
to Böhm’s theorem for the whole formalism.

1 Introduction

Lambda-calculus has been introduced by Church in the 30’s [6] as a universal
language to express computations of functions. Despite its remarkable simplic-
ity, λ-calculus is rich enough to express all recursive functions. Since the rise
of computers, λ-calculus has been used fruitfully as the basis of all functional
programming languages, from LISP to the languages of the ML family. From the
theoretical point of view, untyped λ-calculus enjoys many good properties [3],
such as Church and Rosser’s property expressing determinism of computations.
In Logic, λ-calculus is also a fundamental tool to describe the computational
contents of proofs via the Curry-Howard correspondence.

Although arbitrarily complex data structures can be encoded in the pure λ-
calculus, modern functional programming languages provide primitive constructs
for most data structures, for which a purely functional encoding would be inef-
ficient. One of the most popular extensions of λ-calculus is pattern-matching on
constructed values (a.k.a. variants), a problem that has been widely investigated
in functional programming [12,10,13] and in rewriting [14,7,5,11,9].

However, introducing objects of different kinds—functions and constructed
values—in the same formalism raises the problem of their interaction. What does
it mean to apply a constructed value to an argument? Should the constructed
value accumulate the extra argument? Or should it produce an error? Similarly,
what does it mean to perform case analysis on a function?

Unfortunately, these problems are usually not addressed in the literature be-
cause they are irrelevant in a typed setting—applications go with functions, case

F. Pfenning (Ed.): RTA 2006, LNCS 4098, pp. 181–196, 2006.
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analyses with variants. However, one should not forget that one of the reasons
of the success of the λ-calculus in computer science and in logic lies in its ex-
cellent operational semantics in the untyped case. The best example is given by
Böhm’s separation theorem [4] that expresses that two observationally equivalent
βη-normal λ-terms are intentionally equal. In the pure λ-calculus, a βη-normal
term is a canonical form not only because it cannot be further reduced, but also
because its computational behaviour cannot be expressed by another βη-normal
term.

The situation is far from being as clear when we add pattern-matching to
the untyped λ-calculus. As far as we know, there is no generalisation of Böhm’s
theorem for this kind of extension. One reason for that is that the notion of
normal form is not as clear as in the pure λ-calculus, precisely because the tra-
ditional operational semantics says nothing about the computational behaviour
of ill-typed constructions, such as a case analysis over an abstraction.

An extended operational semantics of case analysis. In this paper, we propose an
extension of the untyped λ-calculus with constructors and case analysis that fills
the holes of the traditional operational semantics. Technically, the main novelty
is that we let application and case analysis (written {|θ|}. M) commute via the
(ill-typed1) reduction rule

(CaseApp) {|θ|}. (MN) → ({|θ|}. M)N .

(Here, θ denotes a case binding, that is a finite map from constructors to terms.)
Symmetrically, we introduce a reduction rule

(CaseLam) {|θ|}. (λx . M) → λx . ({|θ|}. M) (x /∈ FV (θ))

to let case analysis go through abstractions. In this way, case analysis can be
understood as a form of head linear explicit substitution. . . of constructors.

Surprisingly, the system we obtain is not only computationally sound—we
will show (section 3) that it is confluent and conservative over the untyped λη-
calculus—but it also permits to decompose ML-style pattern matching (with
patterns of any arity) from the construction {|θ|}. M that only performs case
analysis on constant constructors (section 2).

Finally, we will show (section 4) a theorem of weak separation for the whole
calculus, using a separation technique inspired by Böhm’s [4,3]. For this reason,
the formalism provides a special constant written 
 and called the daimon (fol-
lowing the terminology and notation of [8]) that requests the termination of the
program—something like an exit system call—and which will be used as the
main technical device to observe normal forms and separate them.

Proofs and technical details are omitted from this extended abstract, but are
available in the long version of the paper [1].
1 Observe that M is treated as a function in the l.h.s. of the rule whereas it is treated

as a constructed value in the r.h.s. This rule should not be confused with the rule of
commutative conversion ({|θ|}. M)N = {|θN |}. M that comes from logic, a rule which
is well-typed. . . but incompatible with the reduction rules of our calculus!
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2 Syntax and Reduction Rules

2.1 Syntax

The λ-calculus with constructors distinguishes two kinds of names: variables
(written x, y, z, etc.) and constructors (written c, c′, etc.) The set of variables
and the set of constructors are written V and C, respectively. In what follows,
we assume that both sets V and C are denumerable and disjoint.

The terms (written M , N , etc.) and the case bindings (written θ, φ, etc.) of
the λ-calculus with constructors are inductively defined as follows:

Terms M, N ::= x (Variable)
| c (Constructor)
| 
 (Daimon)
| MN (Application)
| λx . M (Abstraction)
| {|θ|}. M (Case construct)

Case bindings θ, φ ::= c1 $→ M1; . . . ; cn $→ Mn (ci �= cj for i �= j)

The sets of terms and case bindings are denoted by ΛC and B, respectively,
and their disjoint union by ΛC+B.

Constructor Binding. Each case binding θ is formed as a finite unordered list
of constructor bindings of the form (c $→ M) whose l.h.s. are pairwise distinct.
We say that a constructor c is bound to a term M in a case binding θ if the
binding (c $→ M) belongs to the list θ. From the definition of case bindings, it is
clear that a constructor c is bound to at most one term in a given case binding θ.
When there is no such binding, we say that the constructor c is unbound in θ.

The size of a case binding θ = (c1 $→ M1; . . . ; cn $→ Mn) is written |θ| and
defined by |θ| = n.

We also introduce an (external) operation of composition between two case
bindings θ and φ, which is written θ ◦ φ and defined by:

θ ◦ (c1 $→ M1; . . . ; cn $→ Mn) ≡ c1 $→ {|θ|}. M1; . . . ; cn $→ {|θ|}. Mn

(where φ ≡ (c1 $→ M1; . . . ; cn $→ Mn)). Notice that this operation is not syntac-
tically associative, since:

(θ ◦ φ) ◦ (ci $→ Mi)i=1..n ≡ (ci $→ {|θ ◦ φ|}. Mi)i=1..n

whereas

θ ◦ (φ ◦ (ci $→ Mi)i=1..n ≡ (ci $→ {|θ|}. {|φ|}. Mi)i=1..n

However, composition of case bindings only makes sense in the presence of the
case conversion reduction rule {|θ|}. {|φ|}. M → {|θ ◦ φ|}. M (see 2.2), for which
both right hand sides above are convertible.
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Free Variables and Substitution. The notions of bound and free occurrences
of a variable are defined as expected. The set of free variables of a term M (resp.
a case binding θ) is written FV (M) (resp. FV (θ)).

As in the (ordinary) λ-calculus, terms are considered up to α-conversion (i.e.
up to a renaming of bound variables). Notice that the renaming policy of the
λ-calculus with constructors is strictly the same as in the λ-calculus: it only
affects (bound) variable names, but leaves constructor names unchanged.

The external substitution operation of the λ-calculus, written M{x := N}, is
extended to the λ-calculus with constructors as expected. The same operation
is also defined for case bindings (notation: θ{x := N}).

2.2 Reduction Rules

The λ-calculus with constructors has 9 primitive reduction rules that are de-
picted in Fig. 1.

Beta-reduction

AppLam (AL) (λx . M)N → M{x := N}
AppDai (AD) 
 N → 


Eta-reduction

LamApp (LA) λx . Mx → M (x /∈ FV (M))

LamDai (LD) λx . 
 → 


Case propagation

CaseCons (CO) {|θ|}. c → M ((c �→ M) ∈ θ)

CaseDai (CD) {|θ|}. 
 → 

CaseApp (CA) {|θ|}. (MN) → ({|θ|}. M)N

CaseLam (CL) {|θ|}. λx . M → λx . {|θ|}. M (x /∈ FV (θ))

Case conversion

CaseCase (CC) {|θ|}. ({|φ|}. M) → {|θ ◦ φ|}. M

Fig. 1. Reduction rules of the λ-calculus with constructors
.

In what follows, we will be interested not only in the system induced by the
9 reduction rules taken together, but more generally in the subsystems formed
by all subsets of these 9 rules. We write λBC the calculus generated by all rules
of Fig. 1, and BC the calculus generated by all rules but AppLam (a.k.a. β).

Notice that AppLam (a.k.a β) and LamApp (a.k.a. η) are the only reduction
rules that may apply to an ordinary λ-term in λBC .
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2.3 An Example

In λBC , the predecessor function (over unary integers) is implemented as

pred ≡ λn . {|0 $→ 0; s $→ λz . z|}. n

(where 0 and s are two distinct constructors). From the rules AppLam (=β) and
CaseCons it is obvious that

pred 0 → {|0 $→ 0; s $→ λz . z|}. 0 → 0 .

More interesting is the case of pred (s N) (where N is an arbitrary term)

pred (s N) → {|0 $→ 0; s $→ λz . z|}. (s N)
→ ({|0 $→ 0; s $→ λz . z|}. s) N → (λz . z) N → N

which shows how the case construct captures the head occurrence of the construc-
tor s via the reduction rule CaseApp. More generally, ML-style pattern-matching
(on disjoint patterns) is translated in λBC as follows:

match N with
| c1(x1, . . . , xn1) $→ M1
| c2(x1, . . . , xn2) $→ M2
| · · ·

becomes

{|c1 $→ λx1 · · ·xn1 . M1 ;
c2 $→ λx1 · · ·xn2 . M2 ;
· · ·

|} ·N

3 The Church-Rosser Property

In this section, we aim to prove that λBC is confluent. For that, we will prove a
much more general result by characterising among the 29 = 512 possible subsets
of the 9 primitive reduction rules which subsets induce a subsystem of λBC which
is confluent, and which ones do not.

3.1 Preliminary Definitions

Let us first recall some classic definitions.

Definition 1. — An Abstract Rewriting System (ARS) is a pair A = (|A|,→A)
formed by an arbitrary set |A| (called the carrier of A) equipped with a binary
relation →A on |A|. We denote by →∗

A the reflexive-transitive closure of →A,
and by →=

A the reflexive closure of →A.

Given an ARS A, the set SN(A) of strongly normalising elements of A is defined
as the least subset SN(A) ⊂ |A| which is closed under the rule

If for all y ∈ |A|, x →A y entails y ∈ SN(A), then x ∈ SN(A).

Intuitively, an element x of A is strongly normalising if there is no infinite re-
duction sequence of the form x = x0 →A x1 →A x2 →A · · ·
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Definition 2. — An ARS A is strongly normalising (SN) if all the elements
of A are strongly normalising, i.e. SN(A) = |A|.

Definition 3. — Let A = (S,→A) and B = (S,→B) be two ARSs defined on
the same carrier set S. We say that:

– A weakly commutes with B, written A //w B, if for all M, M1, M2 s.t.
M →A M1 and M →B M2 there exists M3 s.t. M1 →∗

B M3 and M2 →∗
A M3.

– A commutes with B, written A // B, if for all M, M1, M2 s.t. M →∗
A M1

and M →∗
B M2 there exists M3 s.t. M1 →∗

B M3 and M2 →∗
A M3.

An ARS A is said to be weakly confluent or weakly Church-Rosser (WCR)
(resp. confluent, or Church-Rosser (CR)) if A //w A (resp. if A // A).

Given two ARSs A and B defined on the same carrier set, we write A + B the
(set-theoretic) union of both relations. The confluence proof of λBC relies on
standard results of rewriting [2], and in particular in the following two lemmas:

Lemma 1. — If A //w B and A + B is SN, then A // B.

Proof: Same proof-technique as for Newman’s lemma [2]. �

Lemma 2. — If A // B and A // C then A // (B + C).

3.2 Critical Pairs and Closure Conditions

Each of the 9 primitive reduction rules of λBC describes the interaction between
two syntactic constructs of the language, which is reflected by the name of the
rule: AppLam for ‘Application over a Lambda’, etc. These reduction rules induce
13 different critical pairs, that are summarised in Fig. 2 and 3.

Critical pairs occur for all pairs of rules of the form FooBar/BarBaz. A quick
examination of Fig. 2 and 3 reveals that each time we have to close such a critical
pair, we need to use the third rule FooBaz when this rule exists. This occurs for
the 6 critical pairs (2), (4), (5), (6), (7) and (8) of Fig. 2; in the other cases, the
critical pair is closed by the only rules FooBar and BarBaz.

This remark naturally suggests the following definition:

Definition 4 (Closure conditions). — We say that a subset s of the 9 rules
given in Fig. 1 fulfils the closure conditions and write s |= CC if:

(CC1)
(CC2)
(CC3)
(CC4)
(CC5)
(CC6)

AppLam ∈ s ∧ LamDai ∈ s ⇒ AppDai ∈ s
LamApp ∈ s ∧ AppDai ∈ s ⇒ LamDai ∈ s
CaseApp ∈ s ∧ AppLam ∈ s ⇒ CaseLam ∈ s
CaseApp ∈ s ∧ AppDai ∈ s ⇒ CaseDai ∈ s
CaseLam ∈ s ∧ LamApp ∈ s ⇒ CaseApp ∈ s
CaseLam ∈ s ∧ LamDai ∈ s ⇒ CaseDai ∈ s

Intuitively, a subset that fulfils the 6 closure conditions defines a system in
which all critical pairs can be closed, and thus constitutes a good candidate for
Church-Rosser. The aim of this section is to turn this intuition into the
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(1) AppLam/LamApp (2) AppLam/LamDai

(λx . Mx)N [x/∈FV (M)]

AppLam



��
��

�� LamApp

���
��

��
�

MN MN

(λx . 
)N
AppLam



��
��

��
� LamDai

���
��

��
��




�
�

�
�

�
�

�
� 
 N

AppDai





(3) LamApp/AppLam (4) LamApp/AppDai

λx . (λy . M)x [x/∈FV (M)]

LamApp



��
��

�� AppLam

���
��

��
�

λy . M λx . M{y := x}

λx . (
 x)
LamApp



��
��

�� AppDai

���
��

��
�




�
�

�
�

�
�

�
� λx . 


LamDai





(5) CaseApp/AppLam (6) CaseApp/AppDai

{|θ|}. ((λx . M)N) [x/∈FV (θ)]

CaseApp



��
��

�� AppLam

���
��

��
�

({|θ|}. λx . M)N

CaseLam




{|θ|}. (M{x := N})

�
�
�
�
�
�

�
�
�
�
�
�

(λx . {|θ|}. M)N

AppLam ��
({|θ|}. M){x := N}

{|θ|}. (
 N)
CaseApp



��
��

�� AppDai

���
��

��
�

({|θ|}. 
)N

CaseDai




{|θ|}. 


CaseDai

��


 N

AppDai ��



(7) CaseLam/LamApp (8) CaseLam/LamDai

{|θ|}. λx . (Mx) [x/∈FV (M,θ)]

CaseLam



��
��

�� LamApp

���
��

��
�

λx . {|θ|}. (Mx)

CaseApp




{|θ|}. M

�
�
�
�
�
�

�
�
�
�
�
�

λx . ({|θ|}. M)x

LamApp ��
{|θ|}. M

{|θ|}. λx . 

CaseLam



��
��

�� LamDai

���
��

��
�

λx . {|θ|}. 


CaseDai




{|θ|}. 


CaseDai

��

λx . 


LamDai ��



Fig. 2. Critical pairs 1–8 (/13)
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(9) CaseCase/CaseCons (10) CaseCase/CaseDai

{|θ|}. {|φ|}. c [(c �→M)∈φ]

CaseCase



��
��

�� CaseCons

���
��

��
�

{|θ ◦ φ|}. c

CaseCons ��

{|θ|}. M

�
�

�

�
�

�

{|θ|}. M

{|θ|}. {|φ|}. 

CaseCase



��
��

�� CaseDai

���
��

��
�

{|θ ◦ φ|}. 


CaseDai ��

{|θ|}. 


CaseDai





(11) CaseCase/CaseApp (12) CaseCase/CaseLam

{|θ|}. {|φ|}. (MN)
CaseCase



��
��

�� CaseApp

���
��

��
�

{|θ ◦ φ|}. (MN)

CaseApp

��

{|θ|}. ({|φ|}. M)N

CaseApp




({|θ|}. {|φ|}. M)N

CaseCase


({|θ ◦ φ|}. M)N

{|θ|}. {|φ|}. λx . M

CaseCase



��
��

�� CaseLam

���
��

��
�

{|θ ◦ φ|}. λx . M

CaseLam

��

{|θ|}. λx . {|φ|}. M

CaseLam




λx . {|θ|}. {|φ|}. M

CaseCase


λx . {|θ ◦ φ|}. M

(13) CaseCase/CaseCase

{|θ|}. {|φ|}. {|ρ|}. M

CaseCase



��
��

�� CaseCase

���
��

��
�

{|θ ◦ φ|}. {|ρ|}. M

CaseCase

��

{|θ|}. {|φ ◦ ρ|}. t

CaseCase




{|θ ◦ (φ ◦ ρ)|}. M

CaseCase∗


{|(θ ◦ φ) ◦ ρ|}. M

Fig. 3. Critical pairs 9–13 (/13)

Theorem 1 (Church-Rosser). — For each of the 512 subsystems s of λBC
the following propositions are equivalent:

1. s fulfils the closure conditions (CC1)–(CC6);
2. s is weakly confluent;
3. s is confluent.
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Since the full system (i.e. λBC) obviously fulfils all closure conditions, we will
get as an immediate corollary:

Corollary 1 (Church-Rosser). — λBC is confluent.

The proof of theorem 1 relies on a systematic analysis of the commutation proper-
ties of all pairs of subsystems (s1, s2) of λBC . For that, we first have to generalise
the notion of closure condition to any pair (s1, s2) of subsystems. This leads us
to adopt the following definition:

Definition 5 (Binary closure conditions). — We say that a pair (s1, s2) of
subsystems fulfils the binary closure conditions and write (s1, s2) |= BCC if

(BCC1)
(BCC2)
(BCC3)
(BCC4)
(BCC5)
(BCC6)
(BCC7)
(BCC8)
(BCC9)

AppLam ∈ s1 ∧ LamDai ∈ s2 ⇒ AppDai ∈ s1
LamApp ∈ s1 ∧ AppDai ∈ s2 ⇒ LamDai ∈ s1
CaseApp ∈ s1 ∧ AppLam ∈ s2 ⇒ CaseLam ∈ s2
CaseApp ∈ s1 ∧ AppDai ∈ s2 ⇒ CaseDai ∈ (s1 ∩ s2)
CaseLam ∈ s1 ∧ LamApp ∈ s2 ⇒ CaseApp ∈ s2
CaseLam ∈ s1 ∧ LamDai ∈ s2 ⇒ CaseDai ∈ (s1 ∩ s2)
CaseCase ∈ s1 ∧ CaseDai ∈ s2 ⇒ CaseDai ∈ s1
CaseCase ∈ s1 ∧ CaseApp ∈ s2 ⇒ CaseApp ∈ s1
CaseCase ∈ s1 ∧ CaseLam ∈ s2 ⇒ CaseLam ∈ s1

as well as the 9 symmetric conditions (obtained by exchanging s1 with s2).

Again, the 9 binary closure conditions come from an analysis of critical pairs.
For example (BCC1) comes from the observation that critical pair (2) of Fig. 2
can be formed as soon as s1 contains AppLam and s2 contains LamDai, and that
it can be closed only if s1 contains AppDai.

We can also remark that when we take s1 = s2 = s, the binary closure con-
ditions (BCC1)–(BCC6) degenerate to the (simple) closure conditions (CC1)–
(CC6) whereas (BBC7)–(BCC9) become tautologies, so that:

Fact 1. — For all subsystems s of λBC: s |= CC iff (s, s) |= BCC.

We first show that:

Proposition 1. — For all pairs (s1, s2) of subsystems of λBC the following
propositions are equivalent:

1. (s1, s2) |= BCC (binary closure conditions);
2. s1 //w s2 (weak commutation).

Proof: (1 ⇒ 2) By structural induction on the reduced term, closing critical
pairs using BCCs. (2 ⇒ 1) By contraposition, exhibiting a suitable counter-
example for each BCC that does not hold. �

Now it remains to be shown that all weakly commuting pairs commute.
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3.3 Strong Normalisation of the BC-Calculus

The first step is to check that the subsystem BC = (λBC \ AppLam) is SN.

Proposition 2 (SN of BC-calculus). — The BC-calculus is SN.

Proof: Consider the function h : ΛC + B → N recursively defined by

h(x) = h(c) = h(
) = 1 h({|θ|}. M) = h(θ) + (|θ| + 2)h(M)
h(λx . M) = h(M) + 1

h(MN) = h(M) + h(N) h((ci $→ Mi)i=1..n) =
∑n

i=1 h(Mi)

It is routine to check that h decreases at each BC-reduction step. �

From Lemma 1 and Prop. 1 we get:

Proposition 3. — If (s1, s2) |= BCC and AppLam /∈ (s1 + s2), then s1 // s2.

3.4 Propagation of Commutation Lemmas

Let us now consider the 512× 512 matrix formed by all
(512

1

)
+
(512

2

)
= 131, 328

(unordered) pairs of subsystems of λBC
2. With the help of a small computer

program3, we easily check that 13, 396 of the 131, 328 pairs of systems fulfil
BCCs—and thus weakly commute. Moreover 5, 612 of these 13, 396 weakly com-
muting pairs do not involve AppLam—and thus we know that they commute.

The situation is summarised in the following table:

Pairs (s1, s2) s1 = s2

SN + commuting (=¬AppLam + BCC) 5,612 160
Weakly commuting (= BCC) 13,396 248
Total 131,328 512

The problem is now to check that the 13, 396 − 5, 612 = 7, 784 remaining
weakly commuting pairs commute too. For that, we notice that:

Fact 2. — If the 12 pairs of subsystems of Table 1 commute, then all 13, 396
weakly commuting pairs of systems commute.

Again, this fact can be mechanically checked by considering the set formed by
all 5, 612 SN-commuting pairs extended with the 12 pairs of Table 1, and by
checking that the closure of this set of 5, 624 pairs under Lemma 2 yields the set
of all 13, 396 pairs that fulfil BCCs. To conclude, it suffices to prove:

Proposition 4. — The 12 pairs of Table 1 commute.

The details of the 12 commutation proofs can be found in [1].
From that we deduce that all pairs of subsystems that fulfil BCCs commute,

and the proof of Theorem 1 is now complete.
2 In what follows, we count (s1, s2) and (s2, s1) as a single pair of systems.
3 This program can be downloaded from the web pages of the authors.
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Table 1. The 12 initial commutation lemmas

(1) AppLam // AppLam
(2) AppLam // AppDai
(3) AppLam // LamApp
(4) AppLam // CaseCons
(5) AppLam // CaseDai
(6) AppLam // CaseLam
(7) AppLam // CaseCase
(8) AppLam + AppDai // LamDai
(9) AppLam + AppDai // LamApp + LamDai
(10) AppLam + CaseLam // CaseApp
(11) AppLam + CaseLam // LamApp + CaseApp
(12) AppLam + AppDai + CaseDai + CaseLam //

LamApp + LamDai + CaseDai + CaseApp

Corollary 2. — λBC is conservative over λη-calculus, in the sense that:

∀M1, M2 ∈ Λ (λBC |= M1 = M2 ⇒ λη |= M1 = M2) .

Proof: Follows from Cor. 1 using the concluding remark of subsection 2.2. �

4 Separation

The aim of this section is to establish the theorem of (weak) separation, ex-
pressing that observationally equivalent normal terms are syntactically equal.
For that, we will show that for all normal terms4 M1 �≡ M2 of λBC there exists a
context C[] such that C[M1] converges whereas C[M2] diverges—or vice-versa—
using notions of convergence and divergence that will be precised.

Separation [4] can be understood as some kind of completeness of the formal-
ism. Intuitively, it expresses that the calculus provides sufficiently many reduc-
tion rules to identify observationally equivalent terms, or—which is the same
dually—that it provides sufficiently many syntactic constructs (i.e. observers) to
discriminate different normal forms.

4.1 Quasi-normal Forms

Let us first analyse the shape of normal forms in the calculus.

Definition 6 (Head term). — We call a head term (and write H, H1, H ′,
etc.) any term that has one of the following four forms:

Head term H ::= x | c | {|θ|}. x | {|θ|}. c (c /∈ dom(θ))
4 Actually, we will prove our separation theorem only for completely defined normal

terms (cf subsection 4.2).
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When a head term H is of one of the first three forms (variable, constructor,
case binding on a variable), we say that H is defined. When H is of the last
form (case binding on an unbound constructor), we say that H is undefined.

Definition 7 (Quasi-head normal form). — A term M is said to be in
quasi-head normal form (quasi-hnf) if it has one of the following two forms

Quasi-hnf M ::= 
 | λx1 · · ·xn . HN1 · · ·Nk (n, k ≥ 0)

where H is an arbitrary head term, called the head of M , and where N1, . . . , Nk

are arbitrary terms.

Here, the prefix ‘quasi-’ expresses that such terms are in head normal form w.r.t.
all reduction rules, but (possibly) the rule LamApp (= η). In what follows, ‘quasi-’
systematically refers to ‘all reduction rules but LamApp’.

As for head terms, we distinguish defined quasi-hnfs from undefined ones.
We say that a quasi-hnf M is defined when either M ≡ λx1 · · ·xn . HN1 · · ·Nk

with H defined, or when M ≡ 
; and we say that M is undefined when M ≡
λx1 · · ·xn . ({|θ|}. c)N1 · · ·Nk with c /∈ dom(θ).

More generally, we call a defined term (resp. an undefined term) any term that
reduces to a defined (resp. undefined) quasi-hnf. The class of defined terms is
closed under arbitrary reduction, as for the class of undefined terms. Moreover,
the class of undefined terms is closed under arbitrary substitution.

Definition 8 (Quasi-normal form). — A term (resp. a case binding) is said
to be in quasi-normal form when it is in normal form w.r.t. all the reduction
rules but LamApp (= η).

Terms (resp. case bindings) that are in quasi-normal form are simply called
quasi-normal terms (resp. quasi-normal case bindings). In particular, we call a
quasi-normal head term any head term H which is in quasi-normal form. These
notions have the following syntactic characterisation:

Proposition 5. — Quasi-normal terms, quasi-normal head terms, and quasi-
normal case bindings are (mutually) characterised by the following BNF:

Q.n.-terms

Q.n.-head-terms
Q.n.-case bind.

N ::= 
 | λx1 · · ·xn . HN1 · · ·Nk

H ::= x | c | {|θ|}. x | {|θ|}. c (c /∈ dom(θ))
θ ::= c1 $→ N1; . . . ; cp $→ Np

4.2 Separation Contexts

The notion of context with one hole is defined in λBC as expected. The term
obtained by filling the hole of a context C[] with a term M is written C[M ], and
the composition of two contexts C[] and C′[] is written C′[C[]]. In what follows,
we will use contexts of a particular form, namely, evaluation contexts :

Evaluation contexts E[] ::= []N1 · · ·Nn | ({|θ|}. [])N1 · · ·Nn
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Notice that the composition E′[E[]] of two evaluation contexts E[] and E′[]
is not always an evaluation context, but that it always reduces to an evaluation
context using zero, one or several steps of the CaseApp rule, possibly followed
by a single step of the CaseCase rule.

The daimon 
 which represents immediate termination naturally absorbs all
evaluation contexts:

Lemma 3. — In any evaluation context E[] one has E[
] →∗ 
.

Symmetrically, each sub-term of the form {|θ|}. c (with c /∈ dom(θ)) blocks the
computation process at head position so that undefined terms “absorb” all eval-
uation contexts as well:

Lemma 4. — Given an undefined term U , the term E[U ] is undefined for all
evaluation contexts E[].

The daimon 
 and undefined terms are thus natural candidates to define the
notion of separability:

Definition 9 (Separability). — We say that two terms M1 and M2 are:

– weakly separable if there exists a context with one hole C[] such that either:
• C[M1] →∗ 
 and C[M2] is undefined, or
• C[M2] →∗ 
 and C[M1] is undefined;

– strongly separable if there exists two contexts C1[] and C2[] such that
• C1[M1] →∗ 
 and C1[M2] is undefined, and
• C2[M2] →∗ 
 and C2[M1] is undefined.

Since undefined terms cannot be separated from each other (because undefined
heads block all computations), we have to exclude them5 from our study:

Definition 10 (Completely defined quasi-normal term). — A term M in
quasi-normal form is said to be completely defined if it contains no sub-term of
the form {|θ|}. c, where c /∈ dom(θ).

4.3 Disagreement

The separation theorem is proved in two steps:

1. First we define a syntactic relation between terms, called disagreement at
depth d ∈ N, and we show that any pair of distinct normal forms have η-
expansions that disagree at some depth (this subsection).

2. Then we show (by induction on the depth of disagreement) that any pair of
disagreeing quasi-normal terms are weakly separable (subsection 4.5).

Definition 11 (Skeleton equivalence). — We say that two defined head
terms H1 and H2 have the same skeleton and write H1 ≈ H2 if either:
5 Semantically, this means that we identify undefined terms with non weakly normal-

ising terms, and thus interpret them as Ω (Scott’s bottom).
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– H1 ≡ H2 ≡ x for some variable x; or
– H1 ≡ H2 ≡ c for some constructor c; or
– H1 ≡ {|θ1|}. x and H2 ≡ {|θ2|}. x for some variable x and for some θ1, θ2 such

that dom(θ1) = dom(θ2).

Definition 12 (Disagreement at depth d). — For each d ∈ N, we define
a binary relation on the class of completely defined quasi-normal terms, called
the disagreement relation at depth d. This relation, written disd(M1, M2) (‘M1
and M2 disagree at depth d’), is defined by induction on d ∈ N as follows:

– (Base case) We write dis0(M1, M2) if either:
• M1 = 
 and M2 = λx1 · · ·xn . HN1 · · ·Nk; or
• M1 = λx1 · · ·xn . HN1 · · ·Nk and M2 = 
; or
• M1 = λx1 · · ·xn . H1N1,1 · · ·N1,k1 and

M2 = λx1 · · ·xn . H2N2,1 · · ·N2,k2 and
H1 �≈ H2.

– (Inductive case) For all d ∈ N, we write disd+1(M1, M2) if
M1 = λx1 · · ·xn . H1N1,1 · · ·N1,k1 and
M2 = λx1 · · ·xn . H2N2,1 · · ·N2,k2 and
H1 ≈ H2, and if either
• H1 = {|θ1|}. y and H2 = {|θ2|}. y for some case bindings θ1, θ2 and for

some variable y, and there is a constructor c ∈ dom(θ1) = dom(θ2) such
that disd(θ1(c), θ2(c)); or

• There is a position 1 ≤ k ≤ min(k1, k2) such that disd(N1,k, N2,k).

Lemma 5 (Cooking lemma). — If M1 and M2 are completely defined normal
terms (w.r.t. all reduction rules including LamApp = η) such that M1 �≡ M2, then
one can find two completely defined quasi-normal terms M ′

1 and M ′
2 such that

M ′
1 →∗

η M1, M ′
2 →∗

η M2, and disd(M ′
1, M

′
2) for some d ∈ N.

4.4 Ingredients for Separation

Separating disagreeing quasi-normal terms relies on definitions and techniques
that are fully described in [1]. Here we briefly present some of them.

Tuples. In order to retrieve arbitrary sub-terms of a given normal form (the so
called ‘Böhm-out’ technique), we need tuples that are encoded as in the pure
λ-calculus as 〈M1; . . . ; Mn〉 ≡ λe . eM1 · · ·Mn. In what follows, we use a more
general notation to represent partial application of the n-tuple constructor to its
first k arguments and waiting the remaining n − k arguments:

〈M1; . . . ; Mk; ∗n−k〉 ≡ λxk+1 · · ·xne . eM1 · · ·Mkxk+1 · · ·xn (0 ≤ k ≤ n)

With these notations, the n-tuple constructor is written 〈∗n〉.
Encoding names. Separation of distinct free variables is achieved by substituting
them by easily separable closed terms. For that, we associate to each variable
name x a unique Church numeral written x (using the same name written in
typewriter face), which we call the symbol of x.
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Substitutions. A substitution is a finite association list which maps pairwise
distinct variables to terms. A substitution σ can be applied to a term M , and
the result (which is defined as expected) is written M [σ].

Separation is achieved (Prop. 6) using a particular substitution σK
X parame-

terised by an integer K ≥ 0 and a finite set of variables X , namely, the substitu-
tion that maps each variable x ∈ X to the term 〈x; ∗K〉 representing the partial
application of the (K + 1)-tuple constructor to the symbol of x.

4.5 The Separation Theorem

Let M be a term in quasi-normal form. We call the application strength of M
the largest integer k ≥ 0 such that M has a sub-term of the form HN1 · · ·Nk.

Proposition 6 (Separation of disagreeing terms). — Let K ≥ 0 be a nat-
ural number, and M1 and M2 two completely defined quasi-normal terms whose
application strength is less than or equal to K and such that M1 and M2 disagree
at some depth d ∈ N. Then there exists an evaluation context E[] such that either

– E
[
M1[σK

X ]
]
→∗ 
 and E

[
M2[σK

X ]
]

is undefined, or
– E

[
M2[σK

X ]
]
→∗ 
 and E

[
M1[σK

X ]
]

is undefined;

where X is any finite set of variables that contains at least the free variables
of M1 and M2, and where σK

X is the substitution defined in subsection 4.4.

From this proposition and lemma 5 we easily conclude:

Theorem 2 (Separation). — Let M1 and M2 be completely defined terms in
normal form. If M1 �≡ M2, then M1 and M2 are weakly separable.

5 Conclusion

We have introduced an extension of λ-calculus, λBC , in which pattern matching
is implemented via a mechanism of case analysis that behaves like a head linear
substitution over constructors. We have shown that the reduction relation of λBC
is confluent and conservative over the λη-calculus, but also that it is complete
in the sense that it provides sufficiently many reduction rules to identify all
observationally equivalent normalising terms.

Using the divide-and-conquer method for other proofs of confluence. An original
aspect of this work is the way we proved confluence by systematically studying
the commutation properties of all pairs of subsystems of λBC . Surprisingly, the
mechanical propagation rule “if A // B and A // C then A // (B+C)” (combined
with the primitive knowledge of all commutation properties between subsystems
that do not involve AppLam) is sufficient to reduce the proof of the expected
7,784 non-trivial commutation lemmas to only 12 primitive lemmas, that are
established by hand. It would be interesting to investigate further to see whether
the same method can be used to prove the confluence of other rewrite systems
with many reduction rules—typically, systems with explicit substitutions.
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A notion of Böhm tree for λBC. The separation theorem we proved suggests
that head normal forms of λBC could be the adequate brick to define a notion
of Böhm-tree [4,3] for λBC—and more generally, for ML-style pattern-matching.
However, the fact that it is a weak separation theorem also suggests that the
observational ordering is non-trivial on the set of normal forms. Characterising
observational ordering on normal forms could be the next step to deepen our
understanding of both operational and denotational semantics of λBC .

Which type system for λBC? The reduction rules CaseApp and CaseLam which
are the starting point of this work deeply challenge the traditional intuition of
the notion of type, for which functions and constructed values live in different
worlds. However, the good operational semantics of the calculus naturally raises
the exciting question of finding a suitable type system for λBC .
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Abstract. The multiary version of the λ-calculus with generalized ap-
plications integrates smoothly both a fragment of sequent calculus and
the system of natural deduction of von Plato. It is equipped with re-
duction rules (corresponding to cut-elimination/normalisation rules) and
permutation rules, typical of sequent calculus and of natural deduction
with generalised elimination rules. We argue that this system is a suit-
able tool for doing structural proof theory as rewriting. As an illustra-
tion, we investigate combinations of reduction and permutation rules and
whether these combinations induce rewriting systems which are confluent
and terminating. In some cases, the combination allows the simulation
of non-terminating reduction sequences known from explicit substitu-
tion calculi. In other cases, we succeed in capturing interesting classes
of derivations as the normal forms w.r.t. well-behaved combinations of
rules. We identify six of these “combined” normal forms, among which
are two classes, due to Herbelin and Mints, in bijection with normal, or-
dinary natural deductions. A computational explanation for the variety
of “combined” normal forms is the existence of three ways of expressing
multiple application in the calculus.

1 Introduction

The study of proof systems by means of associated term calculi increases the
efficiency of the study and offers a computational perspective over logical phe-
nomena. This applies to the study of a proof system in isolation, and to the study
of the relationship between proof systems, typical in structural proof theory [10].

The multiary version of the λ-calculus with generalized applications (named
λJm-calculus [5,6]) integrates smoothly both a fragment of sequent calculus and
the system of natural deduction of von Plato, for intuitionistic implication. Its
unary fragment corresponds to the ΛJ-calculus of [8], whereas its cut-free frag-
ment captures the multiary cut-free sequent terms of [12]. The system λJm is
equipped with reduction rules (corresponding to cut-elimination/normalisation
rules) and permutation rules, typical of sequent calculus and of natural deduc-
tion with generalised elimination rules. This calculus offers the possibility of
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an integrated study of the relationship between sequent calculus and natural
deduction and is a suitable tool for doing structural proof theory as rewriting.

As an illustration, we investigate combinations of reduction and permutation
rules, in order to study the interaction between cut-elimination / normalisation
and permutative conversions. The relationship between sequent calculus and
natural deduction has very much to do with permutative conversions. Typically,
the fragments of sequent calculus closer to natural deduction are those whose
derivations are permutation-free [7,9,1], or, even better, those whose derivations
are the normal forms w.r.t. permutation rules of bigger fragments [2,12]. On
the other hand, systems of natural deduction closer to sequent calculus contain
general elimination rules and, therefore, “hidden convertibilities” [13]. However,
in the literature, the interaction between normalisation / cut-elimination and
permutative conversions is usually avoided. In [7] the cut-free derivations are
also permutation-free but the system does not include permutation rules. In
[2,12] permutation rules are studied in a cut-free system. In [13] the “hidden
convertibilities” are seen as belonging to the normalisation process.

We investigate whether the combinations of reduction and permutation rules
of λJm induce rewriting systems which are confluent and terminating. In some
cases, the combination allows the simulation of non-terminating reduction se-
quences known from explicit substitution calculi. In other cases, we succeed
in capturing interesting classes of derivations as the normal forms w.r.t. well-
behaved combinations of rules. We identify six “combined” normal forms, among
which are two classes, due to Herbelin and Mints, in bijection with normal nat-
ural deductions. In order to achieve this, we proceed the study, initiated in [6],
of the “overlaps” between the constructors of the calculus and the permutation
rules they generate. In particular, the “overlap” between the features of multi-
arity and generality is explained as a manifestation of the existence of various
ways of expressing multiple application in the system.

The paper is organised as follows. Section 2 recalls system λJm. Section 3
considers combined normal forms resulting from (slight modifications of) rules
introduced in [5]. These suffice to capture Herbelin normal forms. Section 4
offers a deeper study of λJm in order to capture Mints normal forms. Section 5
concludes, giving some computational interpretation of these results.

2 The System λJm

Expressions and typing rules: We assume a denumerable set of variables and
x, y, w, z to range over it. In the generalised multiary λ-calculus λJm there are
two kinds of expressions, terms and lists, described in the following grammar:

(terms of λJm) t, u, v ::= x | λx.t | t(u, l, (x)v)
(lists of λJm) l ::= t :: l | []

A term of the form t(u, l, (x)v) is called a generalised multiary application (gm-
application for short) and t is called the head of such term. In terms λx.v and
t(u, l, (x)v), occurrences of x in v are bound.
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Informally, a generalised multiary application t(u, l, (x)v) can be thought of
as the application of a function t to a list of arguments, whose head is u and
tail is l, explicitly substituted for x in term v. Multiarity is the capability of
applying a function t to more than one argument and generality is the capability
of specifying the term v where the result of applying t to its arguments is going
to be used.

Formulas (= types) A, B, C, ... are built up from propositional variables using
just ⊃ (for implication) and contexts Γ are finite sets of variable : formula pairs,
associating at most one formula to each variable. Sequents of λJm are of one of
two forms: Γ 1 t :A and Γ ;B1 l :C. The typing rules of λJm are as follows:

x :A, Γ 1x :A Axiom
x :A, Γ 1 t :B

Γ 1λx.t :A ⊃ B
Right

Γ 1 t :A ⊃ B Γ 1u :A Γ ;B1 l :C x :C, Γ 1v :D
Γ 1 t(u, l, (x)v) :D

gm− Elim

Γ 1u :A Γ ;B1 l :C
Γ ;A ⊃ B1u :: l :C

Lft
Γ ;C1 [] :C Ax

with the proviso that x �∈ Γ in Right and in gm-Elim. An instance of rule gm-
Elim is called a generalised multiary elimination (or gm-elimination, for short).

λJm corresponds to an extension, with cuts of a certain form, of Schwichten-
berg’s cut-free, multiary, sequent calculus of [12]. This view splits gm-applications
t(u, l, (x)v) into those where the head term t is a variable, called multiary-Left in-
troductions, and those where t is not a variable, called cuts. Thus cut-elimination
in λJm is about the elimination of cuts in this sense. The rules to perform cut-
elimination are called reduction rules.

Reduction rules: The reduction rules for λJm are as follows:

(β1) (λx.t)(u, [], (y)v) → s(s(u, x, t), y, v)
(β2) (λx.t)(u, v :: l, (y)v′) → s(u, x, t)(v, l, (y)v′)
(π) t(u, l, (x)v)(u′, l′, (y)v′) → t(u, l, (x)v(u′, l′, (y)v′))
(μ) t(u, l, (x)x(u′, l′, (y)v)) → t(u, a(l, u′ :: l′), (y)v), x �∈ u′, l′, v

The auxiliary operators of substitution s(t, x, v), called generalised multiary sub-
stitution (gm-substitution for short) and of appending a(l, u :: l′) are as follows:

s(t, x, x) = t a([], u :: l) = u :: l
s(t, x, y) = y, y �= x a(u′ :: l′, u :: l) = u ::a(l′, u :: l)

s(t, x, λy.u) = λy.s(t, x, u)
s(t, x, u(v, l, (y)v′)) = s(t, x, u)(s(t, x, v), s′(t, x, l), (y)s(t, x, v′))

s′(t, x, []) = []
s′(t, x, v :: l) = s(t, x, v) ::s′(t, x, l)
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At the typing level these two operations are associated to the admissibility in
λJm of certain cut rules [5]. Let β = β1 ∪ β2. The notation →β,π,μ stands
for the compatible closure of β ∪ π ∪ μ and the notations →+

β,π,μ and →∗
β,π,μ

stand for the transitive and the reflexive-transitive closure of →β,π,μ respec-
tively. In the sequel we use similar conventions and notations for reduction re-
lations. Normal forms w.r.t. →β,π (βπ-nfs for short) are the terms whose oc-
currences of gm-applications as sub-terms are of the form x(u, l, (y)v), i.e. the
head is a variable; they correspond exactly to Schwichtenberg’s multiary cut-
free sequent terms. βπμ-nfs in turn correspond to Schwichtenberg’s “multiary
normal forms”.

[6] shows that →β,π,μ enjoys properties of confluence, strong normalisation of
typable terms and subject reduction.

Permutative conversion rules: Permutative conversions correspond to cer-
tain oriented permutations in the order of inferences in derivations. They aim at
reducing gm-eliminations to a particular form that corresponds to the elimina-
tion rule of natural deduction.

In λJm we have two forms of permutative conversion (permutation for short):
p-permutation and q-permutation. p-permutation aims at converting every gm-
application to an application of the form t(u, l, (x)x), that is a form that makes
no real use of the generality feature. The p-permutation rules are:

(p1) t(u, l, (x)y) → y, x �= y
(p2) t(u, l, (x)λy.v) → λy.t(u, l, (x)v)
(p3) t1(u1, l1, (x)t2(u2, l2, (y)v)) →

t1(u1, l1, (x)t2)(t1(u1, l1, (x)u2),p′
3(t1, u1, l1, x, l2), (y)v) if x �∈ v,

where p′
3(t, u, l, x, []) = []

p′
3(t, u, l, x, u′ :: l′) = t(u, l, (x)u′) ::p′

3(t, u, l, x, l′) .

p = p1 ∪ p2 ∪ p3. q-permutation aims at converting every gm-application to an
application of the form t(u, [], (x)v)), that is a form that makes no use of the
multiarity feature. The unique q-permutation rule is

(q) t(u, v :: l, (x)v′) → t(u, [], (y)y)(v, l, (x)v′) .

Permutations preserve typing. →p, →q and →pq are confluent and terminating.
The p-nf (resp. q-nf, pq-nf) of a λJm-term t is denoted p(t) (resp. q(t), φ(t)).
These properties of permutations are proved in [5].

Subsystems of λJm: We present several subsystems of λJm obtained by con-
straining the construction t(u, l, (x)v) either by forcing l = [] or v = x or both.
The systems thus obtained correspond to previously known systems. They are
identified in the following commutative diagram, alongside with mappings to
interpret amongst them, defined in [5].
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λJm

λm

�
p

λJ

q
�

λ

φ

�� pq �

The terms of λJ are obtained by constraining l in t(u, l, (x)v) to be []. A
gm-application of the form t(u, [], (x)v) is called a generalised application (or g-
application, for short) and is abbreviated to t(u, (x)v). The reduction rules (resp.
permutative conversion rules) for λJ are β1 and π (resp. p1, p2 and p3). The β1, π-
nfs are the terms whose g-application sub-terms have the form x(u, (x)v), i.e. the
head term is a variable. Let ΛJ be the Curry-Howard counterpart to von Plato’s
system of natural deduction with generalised elimination [13]. This system was
studied by Joachimski and Matthes in [8]. The system λJ is isomorphic to ΛJ ,
if one disregards permutative conversion rules.

The terms of λm are obtained by constraining v in t(u, l, (x)v) to be x. A
gm-application of the form t(u, l, (x)x) is called a multiary application (or m-
application, for short) and is written as t(u, l).

In order to define the reduction rules of λm, we introduce the following aux-
iliary reduction rule in λJm, corresponding to a combination of π and μ:

(h) t(u, l, (x)x)(u′, l′, (y)v) → t(u, a(l, u′ :: l′), (y)v) (1)

The reduction rules for λm are β1, β2 and h. The unique permutative con-
version rule for λm is q. The β, h-nfs are the terms where all m-applications
occurring as subterms have the form x(u, l), i.e. the head is a variable. If we dis-
regard the permutative conversion rule, the system thus obtained is isomorphic
to the λPh-calculus defined in [3,4].

A gm-application of the form t(u, [], (x)x) is called a (simple) application and
is written as t(u). A λ-term is a term t such that every application occurring in
t is simple. The set of λ-terms is closed for rule β1, and λ-terms are exactly the
pq-nfs. We obtain thus an isomorphic copy of the λ-calculus inside λJm.

3 Combining Reduction and Permutation Rules I

We study the interaction between normalisation / cut-elimination and permu-
tative conversions, by combining reduction and permutation rules of λJm, and
by analysing the resulting normal forms, which we call combined normal forms.

Figure 1 shows how the system captures important classes that show up in
structural proof theory. Am represents the set of βπ-nfs of λJm, which are
precisely the multiary-cut-free forms of [12]. A represents the set of “usual” (or
unary) cut-free forms, which is the same as von Plato’s “fully-normal” forms,
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and correspond to the βπ-normal λJ-terms. The permutation-free multiary-cut-
free forms of [12] are precisely the βh-normal λm-terms, which in turn capture
Herbelin’s cut-free λ-terms. We call these Herbelin-nfs. Mint’s “normal” cut-free
derivation (or Mints-nfs, for short) are formalized, in the style of [2], as a subset
of the βπ-normal λJ-terms, as follows.

Definition 1. A term v ∈ λJm is x-normal if v = x or v = x(u, l, (y)v′), with
x /∈ u, l, v′ and v′ y-normal. A λJm-term is normal if, for every gm-application
t(u, l, (x)v) occurring in it, v is x-normal. A λJ-term is a Mints-normal form if
it is normal and a βπ-normal form.

The dotted arrows in the figure indicate the “place” of the permutation systems
studied in [2,12]. It is well-known that the sets of Herbelin-nfs, Mints-nfs, and
β-normal λ-terms (represented by B ) are in bijective correspondence.

λJm

λm
��

p

Am

βπ
��

λJ

q

��

λ
��

pq

��
A

βπ
��

Herbelin-nfs

βh

��
q��

��
....

....
....

....
....

....
....

....
....

....
....

....
....

..

B

β
��

�� ? Mints-nfs

��

.............

Fig. 1. Combining reduction and permutation in λJm

Combined nfs already available: Herbelin-nfs and β-normal λ-terms have
immediate characterisations in terms of combinations of reduction and permu-
tation rules of λJm.

Proposition 1. 1. t is a Herbelin-nf iff t is a βph-nf.
2. t is a β-normal λ-term iff t is a βpq-nf.

Some variants of these characterisations are possible. For instance, we may adjoin
the μ rule to each of the above combinations, without changing the set of normal
forms, since a μ-redex is also a p-redex.

Unfortunately, →βpq and →βph are non-terminating. Indeed, →βp is already
non-terminating. In order to prove non-termination of →βp, we need to recall
the λx-calculus [11], a λ-calculus with explicit substitution. Its terms are given
by
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M, N ::= x |λx.M |MN | 〈N/x〉M ,

and this set of terms is equipped with six reduction rules:

(B) (λx.M)N → 〈N/x〉M (x2) 〈N/x〉(λy.M) → λy.〈N/x〉M
(x0) 〈N/x〉x → N (x3) 〈N/x〉(MM ′) → (〈N/x〉M)〈N/x〉M ′

(x1) 〈N/x〉y → y (x4) 〈N/x〉〈N ′/y〉M → 〈〈N/x〉N ′/y〉M, x /∈ M

Theorem 1. There is a typed t ∈ λJ such that t is not βp-SN.

Proof: Let I = λx.x and A = λmn.I(n, (z)m(z)). Define ( )� : λx → λJ as
follows:

x� = x (MN)� = A(M�)(N�)
(λx.M)� = λx.M� (〈N/x〉M)� = I(N�, (x)M�)

This mapping has the following property: If R ∈ {B, x0, x1, x2, x3, x4} and M →R

N in λx, then M� →+
βp N�. Let M be a typed λ-term such that M is not

Bx0x1x2x3x4-SN (one such term exists - see for instance [11]). Then M� is a
typed λJ-term which is not βp-SN. �
Another permutation rule: In order to overcome non-termination, we replace
permutation rule p by a new permutation rule called s:

(s) t(u, l, (x)v) → s(t(u, l), x, v), v �= x

Naturally, if one replaces p by s in Proposition 1, one gets another character-
isation of Herbelin-nfs and β-normal λ-terms. This time, the characterisations
are in terms of combinations of rules that are both confluent and terminating
on typed terms.

Proposition 2 (Confluence). Any of the following kinds of reduction is con-
fluent: s, βs, βsq and βsh.

Proof: By confluence of β in λm or λ and βh in λm, together with the following
properties of p and φ: (1) p maps a β (resp h) step in λJm to zero or more β
(resp. h) steps in λm, and collapses s steps. (2) For all t ∈ λJm, t →∗

s p(t). (3)
φ maps a β step in λJm to zero or more β steps in λ, and collapses s and q
steps. (4) For all t ∈ λJm, t →∗

sq φ(t). �

The mapping ( )• : λJm → λm is given by

x• = x []• = []
(λx.t)• = λx.t• (u :: l)• = u• :: l•

(t(u, l, (x)v))• =

⎧⎨⎩ (λx.v•)(t•(u•, l•)) if v �= x

t•(u•, l•) if v = x

Proposition 3. 1. If t →β u in λJm, then t• →+
β u• in λm.

2. If t →s u in λJm, then t• →+
β u• in λm.

3. For all t ∈ λJm, if t• is β-SN, then t is βs-SN.
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Proof: 1. and 2. are straightforward inductions and use s(t, x, v)• = s(t•, x, v•).
3. is immediate from 1. and 2. �

Corollary 1 (SN). If t ∈ λJm is typable, then t is βs-SN.

Proof: If t ∈ λJm is typable, then so is t•. Hence t• is β-SN and, by the previous
proposition, t is βs-SN. �
Let R ∈ {q, h}. The next Proposition, together with termination of →R, reduce
termination of →βsR to termination of →βs.

Proposition 4 (Postponement). Let R ∈ {q, h} and S ∈ {β, s}. If t1 →R

t2 →S t3, then there is t4 such that t1 →S t4 →∗
R t3.

Corollary 2 (SN). If t ∈ λJm is typable, then t is βsq-SN and βsh-SN.

A consequence of Proposition 4 is that βsq-reduction or βsh-reduction can al-
ways be split into two stages: first, a βs stage; next, a q or h stage . An illustration
of this fact is in the following diagram.

t

t1

βs
��

Herbelin-nfs 3 t2

�
β
sh

�� h

β
sq

�q ��
t3 ∈ B

(2)

A βs-nf (i.e. a λm-term in β-nf) is a term whose applications are of the form

x(u1, l1)...(un, ln) (3)

for some n ≥ 1. In addition, a βsh-nf requires that n = 1, whereas a βsq requires
each li to be []. For instance, the βs-nf x(u1, [v11, v12])(u2, [v21]) has a h-nf of
the form x(u′

1, [v
′
11, v

′
12, u

′
2, v

′
21]) and a q-nf of the form x(u′′

1)(v′′11)(v
′′
12)(u

′′
2)(v′′21).

A βsq or βsh reduction splits into a βs-stage, followed by a q- or h-stage. The
later stage simply organizes in a certain way the arguments of applications of
the form (3).

4 Combining Reduction and Permutation Rules II

Now we study Mints-nfs and obtain a characterisation for them in terms of a
well-behaved combination of reduction and permutation rules. It turns out that
this result requires a deeper understanding of the constructors of λJm and their
“overlaps”, together with the rules that manifest such “overlaps”. This leads to a
systematic study of combined normal forms and, in particular, to a clarification
of the relationship between Mints-nfs, Herbelin-nfs and β-nfs of the λ-calculus.
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The overlap between multiarity and generality: In [6] one can find a study
of the “overlap” between the multiarity and generality features of λJm. Con-
sider the following particular case of μ−1, which we call ν: t(u, u′ :: l, (y)v) →
t(u, (x)x(u′, l, (y)v)) (x fresh). Repeated application of this rule eliminates uses
of multiarity (i.e. occurrences of cons) at the expense of uses of generality. Con-
versely, rule μ shows that we may use cons as a shorthand for specific uses of
generality.

The following mapping calculates the μ-normal form of each λJm-term:

μ(x) = x
μ(λx.t) = λx.μ(t)

μ(t(u, l, (x)v)) =

⎧⎨⎩μ(t)(μ(u),a(μ′(l), u′ :: l′), (y)v′),
if μ(v) = x(u′, l′, (y)v′) and x �∈ u′, l′, v′

μ(t)(μ(u), μ′(l), (x)μ(v)), otherwise

μ′([]) = []
μ′(u :: l) = μ(u) ::μ′(l)

In op. cit. it is proved that this mapping is a bijection between the set of λJ-
terms and the set of μ-normal forms (which is another manifestation of overlap).
The inverse of μ is called ν and is given by:

ν(x) = x
ν(λx.t) = λx.ν(t)

ν(t(u, l, (x)v)) = ν(t)(ν(u), (z)ν′(z, l, x, ν(v))), z fresh
ν′(z, [], x, v) = s(z, x, v)

ν′(z, u :: l, x, v) = z(ν(u), (w)ν′(w, l, x, v)), w fresh

Actually, still according to [6], this bijection can be turned into an isomor-
phism. First consider the variant π′ of rule π, given by

t(u, l, (x)v)(u′, l′, (y)v′) → t(u, l, (x)v@x(u′, l′, (y)v′)) , (4)

where v@x(u′, l′, (y)v′) = x(u, l, (z)v@z(u′, l′, (y)v′)), if v = x(u, l, (z)v) and x �∈
u, l, v; and v@x(u′, l′, (y)v′) = v(u′, l′, (y)v′), otherwise.

Notice that t is a π-nf iff is a π′-nf. From now on we consider λJ equipped with
π′ instead of π. Second, for R ∈ {β, π}, equip the set of μ-normal forms with
relation →Rμ , defined as →R followed by reduction to μ-normal form. Then, μ,
ν establish an isomorphism between →βμ (resp. →πμ), in the set of μ-nfs, and
→β (resp. →π′), in λJ.

A refined analysis of the overlap between multiarity and generality:
We now aim at refining this isomorphism. It may be helpful to have Figure 2 in
mind.

Consider the set of normal λJm-terms (recall Definition 1). This set is closed
for →β and →π′ , hence naturally equipped with these rules. We obtain the
system λnm. Also the set of normal λJ-terms is naturally equipped with →β and
→π′ . The latter system is denoted λn. It is, simultaneously, the unary (=cons-
free) fragment of λnm and the normal fragment of λJ. On the other hand:
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λJm

μ-nfs �
μ, ν

�

�

μ γ

λJ

ν

�

λnm
�

λm

γ

�
�

μ, ν
�

�

μ

λn

γ

�

ν

�

λ
�

rq �

Fig. 2. Another view of the internal structure of λJm

Lemma 1. 1. For all t ∈ λm: t →βμ t′ iff t′ ∈ λm and t →β t′ in λm.
2. For all t ∈ λm: t →πμ t′ iff t′ ∈ λm and t →h t′ in λm.

Notice that in λm there is no distiction between →πμ and →π′
μ
.

Now, the restriction of μ to λn-terms and the restriction of ν to λm-terms
are mutually inverse. From the previous lemma follows that these restrictions of
μ and ν establish an isomorphism between →β, →h in λm and →β , →π′ in λn,
respectively.

Theorem 2 (Isomorphism). Let R be β (resp. h) and let S be β (resp. π′).

1. t →R t′ in λm iff ν(t) →S ν(t′) in λn.
2. t →S t′ in λn iff μ(t) →R μ(t′) in λm.

In particular, μ, ν establish a bijection between the set of normal λJ-terms that
are βπ-nfs and the set of λm-terms that are βh-nfs. That is:

Corollary 3. The appropriate restriction of mapping μ is a bijection between
the set of Mints-nfs and the set of Herbelin-nfs, whose inverse is the appropriate
restriction of mapping ν.

A more systematic analysis of overlaps in λJm: Consider the following
diagram:

t(u, a(l, u′ :: l′), (y)v) � μ

ν
� t(u, l, (x)x(u′, l′, (y)v))

proviso:
x /∈ u′, l′, v

t(u, l)︸ ︷︷ ︸
t(u,l,(x)x)

(u′, l′, (y)v)
�

rq

�
(5)
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Any of the terms in this diagram consists of a function t, a first argument u, at
least another argument u′ and a “continuation” (y)v. The diagram shows three
alternative ways of accommodating the extra argument u′: either by using the list
facility (top left corner), or by using a restricted form of the generality feature,
sometimes called normal generality (top right corner), or by iterated application.
So the diagram illustrates three ways of expressing multiple application in λJm.

We adopt the extensions to rules q and ν suggested in the diagram, e.g.:

(q) t(u, a(l, u′ :: l′), (y)v) → t(u, l, (x)x(u′, l′, (y)v)) . (6)

The versions of these rules considered so far correspond to the case l = []. Also
a new rule r is defined in λJm:

(r) t(u, l, (x)v@x(u′, l′, (y)v′)) → t(u, l, (x)v)(u′, l′, (y)v′) , (7)

where v is x-normal, v′ is y-normal and x /∈ u′, l′, v′. The particular case v = x
gives the version of the rule in diagram (5).

The example t(u, (x)x(u′, (y)y(u′′, (z)v))) →r t(u, (x)(x(u′)(u′′, (z)v))) shows
that neither λnm nor λn is closed for →r. The problem is that the contracted
r-redex (the underlined term) is x-normal, but the reduct is not. Similar obser-
vations apply to rule q. In order to overcome this fact, we define, for R ∈ {r, q},
a new relation �R⊆→R that “respects” the normal fragment: in �R, reduction
is allowed in the sub-expressions of an application t(u, l, (x)v) (that is in t, u, l,
v) only if v is x-normal; moreover, if v is the sub-expression where the reduction
happens, the redex contracted is not v itself.

Not all occurrences of cons are eliminated by �q. This is why rule q has to
be supplemented with

t(u, l, (x)t′@x(u′,a(l′, u′′ :: l′′), (y)v))→t(u, l, (x)t′@x(u′, l′, (z)z))(u′′, l′′, (y)v) ,
(8)

where t′ is x-normal and x does not occur outside t′. We consider this rule in
reverse to belong to rule h.

λnm and λn are closed for �r and λnm and λm are closed for �q. In λm,
�q=→q. In λn �r has also a simple, alternative characterisation: t �r t′ in λn
iff μ(t) →q μ(t′). So μ and ν establish an isomorphism between →q in λm and
�r in λn.

Since →q in λm is terminating and confluent, so is �r in λn. For each t ∈ λn,
let r(t) denote the normal form of t w.r.t. �r. Mappings μ, ν establish a bijection
between q-normal λm-terms (i.e λ-terms) and λn-terms normal w.r.t �r. Since
ν leaves λ-terms invariant, the λn-terms normal w.r.t �r are exactly the λ-
terms. Hence, we have the commutation of the lower triangle in Figure 2.

Proposition 5. r ◦ ν = q and q ◦ μ = r.

Proof: If t ∈ λm, then ν(q(t)) = r(ν(t)), by the isomorphism between the
→q reduction of t and the �r reduction of ν(t). But ν(q(t)) = q(t). Hence
q(t) = r(ν(t)). The other statement follows from ν ◦ μ = id. �
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Corollary 4. 1. If t →β t′ in λn then r(t) →β r(t′) in λ.
2. If t →π′ t′ in λn then r(t) = r(t′).

Proof: From Theorem 2, the previous proposition and the facts: (i) if t →βi t′

in λm then q(t) →β1 q(t′) in λ; (ii) if t →h t′ in λm then q(t) = q(t′). �
Six combined nfs: We can now converge towards our ultimate goal, which is
the diagram in Figure 3. From now on, R-reduction refers to �R and not to
→R, when R ∈ {q, r, h, π′}. For instance, t is a βr-nf if t is irreducible for both
→β and �r.

t

t0

βγ

�

t1
��

r

t4

q ��

t3
��

rq ��

Am ⊇ Herbelin-nfs 	 t2

h = q−1

��
� μ, ν � t5

π′ = r−1

��
∈ Mints-nfs ⊆ A

t3 ∈ B
��

rq
��

Fig. 3. Six combined normal forms

The results obtained so far give us another view of the internal structure of
λJm and contribute to the diagram in Figure 3. Corollary 4 guarantees the com-
mutation of the triangles with vertices t1, t2, t3 and t3, t4, t5, whereas Proposition
5 gives the commutation of triangle t2, t3, t5 (by the way, the latter commuta-
tion extends Corollary 3). The last ingredient required by the diagram is the
following rule:

(γ) t(u, l, (x)v) → s(t(u, l), x, v), v is not x-normal.

Notice that a λJm-term is γ-normal iff is a λnm-term. Also observe that γ ⊂ s.
On the other hand, s ⊂ γ ∪ r, and t is s-normal iff t is γr-normal. So we do not
need s anymore.

In order to guarantee Proposition 6 below, we will have to restrict several of
the rules considered so far. But, since the aim is to combine those rules with γ,
the restrictions will be harmless (the normal forms do not change). First, rule
β is from now on restricted to the case where a redex (λx.t)(u, l, (y)v) satisfies:
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t is normal and v is y-normal. Notice that, in the context of λnm (hence of
λ-calculus), this restriction is empty. Moreover, a λJm-term is βγ-normal in the
old sense iff is βγ-normal in the new sense. Second, we impose v y-normal in
rule h (see (1) and (8) in reverse) and in rule q (see (6) and (8)); and impose v
x-normal and v′ y-normal in rule π′ (see (4)). In this way, h = q−1 and π′ = r−1.

Theorem 3. 1. t is a Herbelin-nf iff t is a βγq−1r-nf.
2. t is a Mints-nf iff t is a βγqr−1-nf.
3. t is a β-normal λ-term iff t is a βγqr-nf.

Proposition 6 (Postponement). In λJm:

1. Let R ∈ {r, q, h, π′}. If t1 �R t2 →β t3 then there is t4 s.t. t1 →β t4 �∗
R t3.

2. Let R ∈ {r, q, h, π′}. If t1 �R t2 →γ t3 then there is t4 s.t. t1 →γ t4 �∗
R t3.

3. Let R ∈ {r, π′}. If t1 �R t2 �q t3 then there is t4 s.t. t1 �q t4 �R t3.
4. Let R ∈ {q, h}. If t1 �R t2 �r t3 then there is t4 s.t. t1 �r t4 �R t3.

Corollary 5 (SN). Every typable λJm-term is βγq−1r-SN, βγqr−1-SN and
βγqr-SN.

Proof: It is easy to prove that �R is terminating, when R ∈ {q, r, h, π′}. These
four termination results, together with Proposition 6 reduce strong normalisation
for βγq−1r, βγqr−1 and βγqr to strong normalisation for βγ. Now, every typable
λJm-term is βγ-SN, by Corollary 1. �

Proposition 7 (Confluence). Any of the following kinds of reduction is con-
fluent: βγq−1r, βγqr and βγqr−1.

Proof: For βγq−1r and βγqr, the proof is very similar to the proof of Proposition
2. Observe that γ ⊂ s, p and φ collapse r-steps, and every λJm-term t can be
γrq-reduced to φ(t).

As to confluence of βγqr−1, we could use the properties of mapping ν ◦ p,
but we prefer to offer a proof of a different style. Suppose u0 βγqr−1-reduces
to u1 and u2. By Proposition 6, there are v1, v2 such that u0 βγq-reduces to
vi and vi r−1-reduces to ui, (i = 1, 2). u0, v1 and v2 have the same βγqr-nf,
say t. Again by Proposition 6, there are v′1 and v′2 such that vi βγq-reduces to
v′i and v′i r-reduces to t. Now, by the same proposition, r-reduction postpones
over βγq-reduction. As such, there is u′

i such that ui βγq-reduces to u′
i and v′i

r−1-reduces to u′
i. Let ti be a r−1-nf of u′

i. By Corollary 4, r(ti) = r(v′i), hence
r(ti) = t. Since t1 and t2 are Mints-nfs, r(t1) = r(t2) entails t1 = t2. But ui

βγqr−1-reduces to ti. �
Proposition 6 gives, in particular, for Herbelin-nfs and Mints-nfs, results analo-
gous to those illustrated in diagram (2), saying that reduction to normal form
splits into two stages:
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t t

t1

βγr
��

t4

βγq
��

Herbelin-nfs 3 t2

�
β
γ
rq

−
1

�� q
−1

β
γ
rq

�q ��
t3 ∈ B 3 t3

�
β
γ
qr

�� r

β
γ
qr −

1
�r −

1
��

t5 ∈ Mints-nfs
(9)

A λn-term in β-nf (like t4) is a term whose applications are of the form

x(u1, (y1)v1)...(un, (yn)vn) (10)

for some n ≥ 1, and each vi yi-normal. The additional requirement of π′-
normality imposes n = 1, whereas the additional requirement of normality w.r.t.
�r imposes each vi to be yi. For instance, if t4 is

x(u1, (y1)y11(v11, (y12)y12(v12, (z)z)))(u2, (y2)y2(v2, (w)w)) ,

then t5 is of the form

x(u′
1, (y1)y11(v′11, (y12)y12(v12′ , (z)z(u′

2, (y2)y2(v′2, (w)w)))))

and t3 is of the form x(u′′
1 )(v′′11)(v

′′
12)(u

′′
2 )(v′′21). So t3, t4 and t5 differ only in the

organization of the multiple arguments of applications (10).
The consequences of Proposition 6 are illustrated in a fuller way in the diagram

of Figure 3. In this diagram, t is an arbitrary λJm-term, t0 is a λnm-term, t1,
t2 and t3 are λm-terms and t3, t4 and t5 are λn-terms. Hence t3 is a λ-term. All
of them (except t) are in β-nf. Each term ti (0 ≤ i ≤ 5) is a representative of
one among six classes of combined normal forms: βγ, βγr, βγq, βγq−1r, βγqr−1

and βγqr. For instance, t4 is a βγq-nf. The most inclusive of these classes is the
class of βγ-nfs. A βγ-nf (like t0) is a β-normal λnm-term, that is, a term whose
applications are of the form

x(u1, l1, (y1)v1)...(un, ln, (yn)vn)

for some n ≥ 1, and each vi yi-normal. The remaining five combined normal
forms are characterized by restrictions placed on n, li or vi, as explained above
when diagrams (2) and (9) were analyzed.

5 Conclusions

This study shows the level of systematization one achieves by doing proof-
theoretical studies by means of term calculi. At the computational level, the
insight one gains is this: all the interesting classes we identify relate to different
ways of organizing the arguments of multiple application. Some ways of doing
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this organization are homogeneous, in the sense of making use of a single feature
(multiarity, “normal” generality, or iterated application) in order to construct a
multiple application. The classes determined by homogeneous organization are
exactly the classes previously known, that is, the classes due to Herbelin and
Mints, as well as the class of normal, ordinary natural deductions. Moreover, the
computation to normal form can be organised in two stages, so that the second
stage consists of choosing the way of representing multiple application. This sug-
gests a new classification of rules, according to the stage they are involved in,
which does not fit the division into reduction and permutation rules.

Acknowledgments. We thank the detailed comments provided by the anony-
mous referees. Diagrams in this paper were produced with Paul Taylor’s macros.
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Abstract. Overloading in the context of higher-order logic has been
used for some time now. We define what we mean by Higher-Order Logic
with Conservative Overloading (HOLCO). HOLCO captures how over-
loading is actually applied by the users of Isabelle.

We show that checking whether definitions obey the rules of HOLCO
is not even semi-decidable.

The undecidability proof reveals strong ties between our problem and
the dependency pair method by Arts and Giesl for proving termination
of TRSs via the notion overloading TRS. The dependency graph of over-
loading TRSs can be computed exactly. We exploit this by providing
an algorithm that checks the conservativity of definitions based on the
dependency pair method and a simple form of linear polynomial inter-
pretation; the algorithm also uses the strategy of Hirokawa and Mid-
deldorp of recursively calculating the strongly connected components of
the dependency graph. The algorithm is powerful enough to deal with all
overloaded definitions that the author has encountered so far in practice.

An implementation of this algorithm is available as part of a package
that adds conservative overloading to Isabelle. This package also allows
to delegate the conservativity check to external tools like the Tyrolean
Termination Tool or the Automated Program Verification Environment.

1 Introduction

Higher-order logic (HOL) is widely used in the mechanical theorem proving
community. There are several implementations of it available, among them HOL
4 [10], HOL-light [11] and Isabelle/HOL [4].

HOL has two theory extension mechanisms:

– It allows to introduce new constants that are either defined in terms of
already known ones or uninterpreted. The name of the new constant must
be different from the names of all already defined constants.

– New types can be introduced either by defining them as corresponding to
a non-empty subset of an already existing type or by leaving them uninter-
preted.

� Supported by the Ph.D. program “Logik in der Informatik” of the “Deutsche
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HOL theories created using only these two mechanisms possess a set theoretic
standard model [10]; this property implies consistency.

Isabelle/HOL inherits from its meta logic [2] two additional features, ax-
iomatic type classes and overloaded constant definitions, both of which have
been introduced in [3]. Overloading is most useful together with axiomatic type
classes or a similar mechanism but it really is an orthogonal feature of the logic
that can be studied separately. We therefore will focus on overloading alone.

In order to provide overloading as it is currently used in the proof-assistant
Isabelle we cannot make the assumption that when defining a new constant the
name of the constant has never been used before, especially not on the right
hand side of the definition. Without this assumption, we are in trouble as the
following example shows:

consts
A :: α → bool

defs
A (x :: α list × α) ≡ A (snd x# fstx)
A (x :: α list) ≡ ¬ A (tlx, hdx) .

There are two definitions for A. The two definitions do not overlap, that is A ::
α list×α → bool and A :: β list → bool do not unify. Nevertheless they lead
to an inconsistent theory via

A [x] = ¬ A ([], x) = ¬ A [x].

Note that this example is accepted by Isabelle 2005! Isabelle treats overloaded
definitions just as axioms, merely ensuring that different definitions of the same
constant do not overlap.

The trouble with the above example is that while we want to allow a limited
recursion over types, the constant definition mechanism is not meant to imple-
ment recursion over values. The latter form of recursion is provided in HOL
systems by safe fix point constructions from which the recursive equations are
proven, not defined.

Thus we need a criterion for legal definitions. The one we will introduce in
the next section is composed of two restrictions:

1. Two definitions may not overlap, that is the defined constants (including
their respective types) do not unify (after renaming).

2. The process of unfolding definitions always terminates.

Under these two conditions overloading is safe. This will be made precise in the
next section under the notion conservative overloading. The safety is then stated
in Theorem 2.

While our main interest is the extension of theories by defining constants, we
also have to take into account the definition of types in order to get a proper
statement about the safety of overloading. Because a new constant could first
be declared and partially defined, then a new type could be defined depending
on this constant, then the definition of the constant is augmented by new over-
loaded definitions, and so on. So Theorem 2 tells us that it is OK to mix theory
extensions in any order. This is a major improvement over the results in [3].
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2 Higher-Order Logic with Conservative Overloading

The terms and types of higher-order logic (HOL) are those of simply-typed,
polymorphic λ-calculus.

A type is either a type variable α, or a type constructor c of arity n applied to
n type arguments τ1, . . ., τn, written c (τ1, . . . , τn). The type variables occurring
in a type τ are denoted by tvars (τ). Type substitutions σ are defined as usual,
and for two types τ1 and τ2 we write τ2 ≤ τ1 if there is a substitution σ such
that τ2 = σ τ1. Two types τ1 and τ2 are called overlapping if there is a type τ
such that τ ≤ τ1 and τ ≤ τ2.

A term is either a term variable x :: τ of type τ and with name x, or a constant
C :: τ , or an application f g of two terms f and g, or an abstraction λx :: τ. b
where x :: τ is a variable and b is a term. Of course we consider only well-typed
terms. The type of a term t is denoted by ty (t), the type variables occurring in
t by tvars (t). Note that the inclusion tvars (ty (t)) ⊆ tvars (t) can be strict! The
set of all constants in t is denoted by consts (t). We call two constants C1 :: τ1
and C2 :: τ2 overlapping if τ1 and τ2 are overlapping and C1 = C2.

A signature is a finite pool consisting of type constructors c together with
their arities ι (c), and constant names C together with their most general type
ctype (C).

A type τ is well-formed for a signature S if all type constructors c in τ are
from S and applied to ι (c) arguments. A term t is well-formed for S if it contains
only well-formed types and if for all constants C :: τ in t the name C is from S
and also τ ≤ ctype (C). We denote the well-formed terms of S by Term (S).

The initial signature SI contains at least the nullary type prop of propositions,
the binary type τ → τ ′ of functions, the constant ≡ :: α → (α → prop) denoting
equality, and the two constants rep :: α → β, abs :: β → α used for converting
between an abstract type and its representation.

We call a term t a proposition iff ty (t) = prop; therefore every equation u ≡ v
is a proposition.

A type definition is a triple (c, [α1, . . . , αn], p) such that c is a type constructor
name (not necessarily in the signature!), αi �= αj for i �= j, p is a well-formed
term of type ty (p) = τ → prop for some type τ , p has no free variables and
tvars (p) ⊆ {α1, . . . , αn}. This defines a new type such that the universal set of
all elements of this new type is in bijection with the set {x :: τ | p x}.

A constant definition is a well-formed proposition C :: τ ≡ u such that u has
no free variables, tvars (u) = tvars (τ) and ty (u) = τ . Two constant definitions
C1 :: τ1 ≡ u1 and C2 :: τ2 ≡ u2 are said to overlap iff C1 :: τ1 and C2 :: τ2 overlap.

A theory T is a quadruple (S, Axioms0, AxiomsT , AxiomsD) consisting of a
signature S, a set of well-formed propositions Axioms0, a set of type definitions
AxiomsT and a set of constant definitions AxiomsD.

A theorem is a triple written Γ 1T t such that the well-formed proposition t
can be deduced in the theory T from the base theorems of T and the finitely many
assumptions (well-formed propositions) Γ by the inference rules of higher-order
logic [2,10,11]. We will use the shorter notation 1T t for ∅ 1T t.
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The base theorems of T arise from the theory T in the following way:

– for each p ∈ Axioms0 ∪ AxiomsD we have the theorem 1T p,
– for each type definition (c, [α1, . . . , αn], p) ∈ AxiomsT and any variable name

x we have the two theorems

{p (x :: τ)} 1T (rep :: τr) ((abs :: τa) (x :: τ)) ≡ x :: τ,

1T (abs :: τa) ((rep :: τr) (x :: τ ′)) ≡ x :: τ ′,

where ty (p) = τ → prop, τ ′ = c (α1, . . . , αn), τr = τ ′ → τ , and τa = τ → τ ′.

2.1 Theory Extensions

Starting from an initial theory, new axioms, type and constant definitions are
added to the theory. This is where it gets interesting for us: how do we for
example ensure that the definition of possibly overloaded constants does not
endanger the consistency of our theory?

A theory T′ is called an extension of a theory T if one can arrive at T′ from
T by a series of theory extensions.

The initial theory is given by (SI , AxiomsI , ∅, ∅) where SI is the initial sig-
nature, and AxiomsI the set of axioms specific for HOL (or a weaker logic like
Isabelle/Pure). The initial signature must also include all constants that appear
in any of the inference rules of the logic.

A well-formed theory is a theory that is an extension of the initial theory.
In the following, T = (S, Axioms0, AxiomsT , AxiomsD) denotes the theory

that gets extended, and T′ = (S′, Axioms′0, Axioms′T , Axioms′D) denotes the re-
sulting extension. We only write down those resulting theory components which
change.

(E1) Extending a theory by declaring a new constant
Declare (T, C :: τ) � S′ = S ∪ {C with ctype (C) = τ} succeeds iff C :: τ is a
constant, τ a well-formed type and C not from S.

(E2) Extending a theory by defining a constant
Define (T, C :: τ ≡ u) � Axioms′D = AxiomsD ∪ {C :: τ ≡ u} succeeds iff

1. C :: τ ≡ u is a constant definition (as defined earlier) with respect to T such
that no τ ′ exists with τ and τ ′ overlapping and C :: τ ′ ∈ CritT, where

CritT = {C :: ctype (C) | C is from SI} ∪⋃
{consts (p) | p ∈ Axioms0} ∪ {C :: τ | ∃u. C :: τ ≡ u ∈ AxiomsD} .

2. the reduction system (see Section 2.2) induced by the set of constant defin-
itions Axioms′D is terminating.

(E3) Extending a theory by declaring a type
TypeDecl (T, c, n) � S′ = S ∪ {c with ι (c) = n} succeeds iff c is not from S.
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(E4) Extending a theory by declaring and defining a type
TypeDef (T, d,1T p t) � S′ = S ∪ {c with ι (c) = n}, Axioms′T := AxiomsT ∪
{d} succeeds iff d = (c, [α1, . . . , αn], p) is a type definition with respect to T and
also c is not from S. Note that you have to provide a theorem 1T p t which
states that the defined type is non-empty.

(E5) Extending a theory by asserting an axiom
AssertAxiom (T, p) � Axioms′0 = Axioms0∪{p} succeeds iff p is a well-formed
proposition and if for all c ∈ consts (p) and all c′ ∈ CritD we have that c and c′

do not overlap, where

CritD = {C :: τ | ∃u. C :: τ ≡ u ∈ AxiomsD} .

2.2 The Reduction System Induced by a Set of Definitions

For a signature S let D be a non-overlapping set of constant definitions; that is,
no two different constant definitions d1, d2 ∈ D overlap.

We define the abstract reduction system [5] RS (D) = (Term (S),→D) by

t
(p, d)−−−→D t′ iff

there is d = C :: τ ≡ u ∈ D and a type substitution
σ such that C :: σ τ occurs in t at position p and t′

can be obtained by replacing this specific occurrence
in t with σ u.

We just write t →D t′ if (p, d) is of no importance to us.
The reduction system is terminating iff there is no infinite chain

t →D t′ →D t′′ →D . . . .

The reduction system is confluent iff for t →∗
D t′ and t →∗

D t′′ we can always
find s with t′ →∗

D s and t′′ →∗
D s. As usual, →∗

D denotes the reflexive and
transitive closure of →D.

Theorem 1. RS (D) is confluent.

Proof. See [1, Theorem 1]. ��

Note that confluence depends critically on the restriction on constant definitions
C :: τ ≡ u that there may be no type variables in u that do not also occur in τ .

Therefore every terminating RS (D) is convergent and hence

ND(t) = s iff t →∗
D s and there is no s′ such that s →D s′

is a total and uniquely defined function on Term (S). Note that ND is type
preserving, that is ty (ND(t)) = ty (t) holds for all t ∈ Term (S).

For a given well-formed theory T = (S, Axioms0, AxiomsT , AxiomsD) we
know by the definition of well-formedness that AxiomsD is non-overlapping
and RS (AxiomsD) terminating. Therefore NAxiomsD

is well-defined; we use the
shorter notation NT for this function, as well as the notation RS (T) instead of
RS (AxiomsD).
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2.3 Overloading Is Conservative

We are now in a position to state that adding overloading to higher-order logic
as described in the previous sections is conservative in the sense that every
well-formed theory T = (S, Axioms0, AxiomsT , AxiomsD) can be reduced to a
well-formed theory T− = (S, Axioms0, Axioms−T , ∅). We achieve this reduction
by setting

Axioms−T = {(c, [α1, . . . , αn],NT (p)) | (c, [α1, . . . , αn], p) ∈ AxiomsT } .

Theorem 2. Assume that T is a well-formed theory. Then so is T− and if
{h1, . . . , hn} 1T t then also {NT (h1), . . . ,NT (hn)} 1T− NT (t). On the other
hand, if {h1, . . . , hn} 1T− t, then also {h1, . . . , hn} 1T t.

Proof. The theorem can be split in two parts that can be proved separately,
the first part by induction over the inference rules, the second one by induc-
tion over the theory extensions; for the proof we refer the interested reader
to [1, Corollary 1]. ��

The above Theorem 2 states that overloading is conservative. What are the
implications of this? Let us look for example at consistency preservation: Assume
that a well-formed theory T is inconsistent, that is for all well-formed t the
theorem 1T t is provable. Then Theorem 2 tells us that T− is well-formed and
inconsistent, too!

If we now fix Axioms0 = AxiomsI (that is, we do not use (E5)) and set
AxiomsI to the ordinary axioms of HOL, then this is not possible, because then
well-formedness of T− implies its consistency: T− is an ordinary HOL theory!

Note that conservativity in the sense of Theorem 2 is different from syntac-
tical conservativity which has been proposed in [3] as a mandatory property of
theory extensions. Our theory extensions (only considering (E1)-(E4), of course,
for (E5) this violation is clear anyway) actually violate this property which de-
mands that if S is an extension of T = (S, . . .) and p a well-formed proposition
from Term (S), then 1S p implies also 1T p. This violation is a natural conse-
quence of the fact that declaration and definition of constants are done separately
and that later definitions can give previously only declared constants additional
properties.

3 Proving Termination

3.1 Overloading Term Rewriting Systems

A first-order term rewriting system (TRS) is a pair (F, R) where F is the signa-
ture of the term rewriting system and R is the set of rules [5,6]. The signature
of a term rewriting system is a set of function symbols with an arity associated
with each symbol. A rule is a pair of first-order terms over the signature F ,
written t =⇒ t′, such that t is no variable and all variables of t′ appear also in t.
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Given a theory T = (S, Axioms0, AxiomsT , AxiomsD) we define the term
rewriting system TRS (T) induced by T by setting

F = {type constructor names of S} ∪ {constant names of S}

arity (f) =

{
ι (f) if f is a type constructor name
1 if f is a constant name

R = {C (τ)=⇒C′ (τ ′) | ∃u. C′ :: τ ′ ∈ consts (u) ∧ C :: τ ≡ u ∈ AxiomsD} .

In the above we assume that the set of type constructor names of S and the set
of constant names of S are disjoint.

TRS (T) is of special shape. Let us be more precise: we say that a TRS is an
overloading TRS if all of its rules ri, i = 1, . . . , n, have the form

ri : fi(ai) =⇒ gi(bi)

such that

1. neither fi nor gi appear in any of the terms a1, b1, . . . , an, bn,
2. if there are substitutions σ, ϑ such that σ(fi(ai)) = ϑ (fj(aj)), then ai = aj

(and of course also fi = fj); that is, unifiable left-hand sides are identical.

We call the fi’s and gi’s the head symbols of the overloading TRS.
Every TRS can be considered a reduction system on the first-order terms over

its signature. For this reduction relation we also write =⇒, for its reflexive and
transitive closure we write =⇒∗.

It is not difficult to show directly that RS (T) terminates iff TRS (T) termi-
nates.But we gain more insight by using a result that has been established in [7]
about the connection between dependency pairs and termination of term rewrit-
ing systems. This insight is later on put to further good use when we tackle the
question of how to practically prove termination of an overloading TRS.

So assume T = (F, R) is an overloading TRS. We call f ∈ F defined if there
is a rule f (. . .) =⇒ . . . ∈ R. Let us further assume that there is an injective
map from the set of defined symbols to the set of not defined symbols which
preserves the arity, so that a defined C ∈ F is assigned a not defined C̃ which
appears in none of the rules. This is no restriction since we could just add new
symbols to F .

We call 〈C̃1 (τ1), C̃2 (τ2)〉 a dependency pair if C1 (τ1) =⇒ C2 (τ2) ∈ R and
C2 is defined. For an overloading TRS this notion of dependency pair actually
coincides with the notion found in [7,6].

A chain is a (finite or infinite) sequence 〈s1, t1〉, 〈s2, t2〉, . . . of dependency
pairs such that there are substitutions (with respect to F ) σi with σi ti =⇒∗

σi+1 si+1 for all i = 1, 2, . . .. The following theorem has been stated and proven
in [7, Theorem 6]:

Theorem 3. A TRS is terminating iff no infinite chain of dependency pairs
exists.
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In general it is not decidable to check whether even only two dependency pairs
form a chain; the next theorem teaches that in the case of an overloading TRS
this check is just mere syntactic unification. We call a substitution σ simple iff
the range of σ consists only of terms that contain no head symbols.

Theorem 4. A simple chain is a sequence 〈s1, t1〉, 〈s2, t2〉, . . . of dependency
pairs such that there are simple substitutions σi with σi ti = σi+1 si+1.

In an overloading TRS, the notions chain and simple chain coincide.

Proof. We refer the reader to [1, Theorem 8]. ��

One of the anonymous referees pointed out that an overloading TRS belongs to
the class of TRSs for which innermost termination implies termination, and that
for overloading TRSs, simple chains are exactly the innermost chains. Instead
of using the above theorem, Theorem 16 of [20] could then be used.

Theorem 5. RS (T) is terminating iff TRS (T) is terminating.

Proof. The existence of an infinite reduction sequence in RS (T) is equivalent to
the existence of an infinite simple chain in TRS (T) [1, Theorem 4]. Theorems 4
and 3 then prove our claim.

Theorem 6. We can implement a checker for HOLCO iff we can decide termi-
nation of any overloading TRS.

Proof. The difficult part of checking if a theory development conforms to the
rules of HOLCO is to decide if RS (T) for a given theory T is terminating. The-
orem 5 shows that this can be rephrased as deciding if TRS (T) is terminating.

On the other hand, one can encode the termination problem for any over-
loading TRS as the termination problem of RS (T) for some theory T (see [1,
Theorem 6]). ��

3.2 Undecidability of Proving Termination

Because of Theorem 6 we can show the impossibility of checking HOLCO by
reducing Post’s Correspondence Problem for Prefix Morphisms (PCPP) to the
termination problem for overloading TRSs. An instance of the PCPP is the
following problem: Given pairs (a1, b1), . . . , (an, bn) of non-empty finite words
over the alphabet {0, 1} such that for i �= j neither ai is a prefix of aj nor bi is a
prefix of bj , decide if there is a solution, that is a finite sequence i1, . . . , im with

ai1ai2 . . . aim = bi1bi2 . . . bim .

The PCPP is undecidable [9].
For the above instance of the PCPP, we construct an overloading TRS. The

construction is basically the one that is used in [6] for reducing Post’s Corre-
spondence Problem, which is the PCPP without demanding that the ai’s and
bj’s cannot be prefixes of each other, to the termination problem of a general
TRS.
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Our TRS has five function symbols: a nullary symbol �, three unary symbols
0, 1, C, and one ternary symbol c. For a binary word p = q1q2 . . . qn (that is
q1, . . . , qn ∈ {0, 1}) we define the term

p (t) = q1(q2(. . . (qn(t)) . . .)).

For each pair (ai, bi) of the PCPP instance the TRS has a rule

C (c (ai (α), bi (β), γ)) =⇒ C (c (α, β, γ)),

furthermore it has the rules

r0 : C (c (�, �, 0 (α))) =⇒ C (c (0 (α), 0 (α), 0 (α))),
r1 : C (c (�, �, 1 (α))) =⇒ C (c (1 (α), 1 (α), 1 (α))).

Theorem 7. The TRS we just constructed is an overloading TRS, and it is
terminating iff the corresponding PCPP instance has no solution.

Proof. The left hand sides of no two rules unify, because for ai (α) and aj(α′)
to unify, ai would need to be a prefix of aj or the other way around. Therefore
the TRS is overloading.

If the PCPP instance has a solution i1, . . . , im, then for s = ai1 . . . aim =
bi1 . . . bim

C (c (s (�), s (�), s(�)))

starts a cyclic and therefore infinite reduction sequence.
If the TRS is not terminating, then there exists an infinite simple chain.

Because all the other rules reduce the size of the term, there must be two de-
pendency pairs in this chain that correspond to r0 or r1. The dependency pairs
between these two pairs form a solution of the PCPP instance, after throwing
away those pairs that correspond to r0 or r1. That the solution is not empty is
ensured because directly after r0 or r1 have been applied, neither of them can
be applied again. ��

Corollary 1. It is undecidable if an overloading TRS is terminating. Actually,
it is not even semi-decidable.

Proof. It is semi-decidable if any given PCPP instance has a solution. Consid-
ering that the PCPP is undecidable [9], Theorem 7 tells us that the termination
of an overloading TRS cannot be semi-decidable. ��

3.3 Practically Proving Termination

Corollary 1 shows that any check a proof-assistant might employ for deciding if
a set of definitions is associated with a reduction system that terminates will be
incomplete: there will always be definitions that should pass but won’t pass.

On the other hand overloading has proven to be a very useful technique which
is regularly taken advantage of by users of the proof-assistant Isabelle. Until now
the use of overloading in Isabelle was an act of faith; experienced users “knew”
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how to use overloading only in a sound way. Therefore it is worthwhile to examine
how to devise a check that can give definitive and reliable answers on almost all
overloaded definitions an experienced user would issue.

We have developed an add-on to the proof-assistant Isabelle that provides
functionality for checking if RS (D) terminates for the set D of definitions of an
Isabelle theory. The check can either be done by using external TRS termination
provers, or by using a built-in termination prover [1].

External Provers and the Dependency Pair Method. There are now
several tools available that can prove the termination of a wide range of term
rewriting systems, among them AProVE [12] and the Tyrolean Termination
Tool [13]. We have shown that checking definitions can be done by checking if
an overloading TRS is terminating. Therefore we can just give this overloading
TRS to one of these tools.

We have tested the viability of this approach by checking five formalizations
in Isabelle/HOL, all of which make use of overloading:

Main the starting point for Isabelle/HOL users,
Bali which has been concerned with the formalization of various aspects of the

programming language Java [16],
Mat a formalization of checking the bounds of real linear programs employing

matrices [14],
Nom the implementation of nominal techniques for Isabelle [15],
Ocl an embedding of OCL into HOL [19], example royals-and-loyals.

Our add-on extracts the overloading TRS that corresponds to the definitions
of the corresponding Isabelle theories. Note that all definitions of a theory are
collected for this purpose; this also recursively includes the definitions of the
parent theories of the theory.

Giving the generated TRS directly to either AProVE or TTT fails with a
time-out after several minutes. Can we somehow preprocess the TRS to provide
the checkers with easier input?

Both checkers use the dependency pair method invented in [7]. The basic idea
there is to calculate a dependency graph. This graph has the dependency pairs
of the TRS as its nodes and there is an edge from 〈a, b〉 to 〈c, d〉 if 〈a, b〉 〈c, d〉 is
a chain. Therefore in general the dependency graph is not computable and it is
necessary to use an approximation of the dependency graph. We can do better
for overloading TRSs. Chains are simple chains and therefore we can compute
the exact dependency graph which has an edge from 〈a, b〉 to 〈c, d〉 iff there are
substitutions σ, ϑ such that σ b = ϑ c.

An overloading TRS is not terminating iff it admits an infinite simple chain
of dependency pairs. Mapping this infinite chain to the exact dependency graph
yields an infinite path p in the graph. We call a maximal set N of nodes such
that for n, m ∈ N , there are non-empty paths from n to m and from m to n
a cyclic component of the graph. Each cyclic component is a strongly connected
component. If there is an infinite path p then there also must be an infinite path
p′ with all of its nodes belonging to the same cyclic component, because the
dependency graph is finite.
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Each cyclic component of the dependency graph is a set of dependency pairs,
and can therefore be considered a subset of the rules of the overloading TRS.
The overloading TRS is terminating iff all TRSs that correspond to a cyclic
component are terminating.

Therefore we have found a method to break up our big overloading TRS into
a couple of (much) smaller overloading TRSs whose dependency graphs consist
of exactly one cyclic component. AProVE can automatically solve all of these
systems; TTT time-outs for several of them in automatic mode but manages
to solve all of them in semi-automatic mode with polynomial interpretations
switched on. Both checkers only need a fraction of a second for all of the smaller
term rewriting systems combined.

An Algorithm For Proving Termination. For a proof-assistant it is some-
what unsatisfying and clumsy to have to rely on external TRS termination
provers. Therefore we present an algorithm for proving termination of an over-
loading TRS that is easy to implement and powerful: it can handle all of our
examples, that is Bali, Mat, Nom and Ocl (Main is dealt with trivially). It is a
variant of the dependency pair method [7] and uses the recursive calculation of
cyclic components from [8].

Let us look at a cyclic component of the DG and assume that the component
consists of the dependency pairs d1, . . . , dN where di = 〈si, ti〉. If we can find
relations �,+ ⊆ T ×T , where T is the set of first-order terms of the overloading
TRS, such that for all x, y, z ∈ T and substitutions σ

– � is well-founded, that is there is no infinite chain u0 � u1 � u2 � . . .,
– x � y and y + z implies x � z, and from x + y and y � z follows x � z,
– x � y implies σ x � σ y, and x + y implies σ x + σ y,

and such that si � ti for i = 1, . . . , M , where 1 ≤ M ≤ N and si + ti for
i = M +1, . . . , N , then we can drop the nodes d1, . . . , dM and start all over with
the cyclic components of this reduced graph.

Theorem 8. If we can continue this process until we have arrived at the empty
graph then we have successfully shown termination.

Proof. The whole overloading TRS terminates if each of its cyclic components
corresponds to a terminating overloading TRS. The TRS that corresponds to the
cyclic component we picked is not terminating iff there exists an infinite simple
chain of dependency pairs 〈u1, v1〉, 〈u2, v2〉, . . . where 〈ui, vi〉 ∈ {d1, . . . , dN}
for all i, which means that there are substitutions σi with

σ1 u1 �1 σ1 v1 = σ2 u2 �2 σ2 v2 = · · · .

In the above �i is either � or +, depending on if j ≤ M or j > M , respec-
tively, where 〈ui, vi〉 = dj . Here we have used the property of � and + to be
closed under substitutions. If any of the dj ’s for j ≤ M is equal to 〈ui, vi〉
for infinitely many i then �i is equal to � for infinitely many i. This allows
us to construct an infinite descending chain with respect to � by using the
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transitivity-like properties of � and +. But this contradicts the property of � to
be well-founded. Therefore there exists an infinite simple chain of dependency
pairs in {d1, . . . , dN} iff there exists an infinite simple chain of dependency pairs
in {dM+1, . . . , dN}. ��

Which relations � and + should we choose? This depends on the cyclic com-
ponent we are currently examining. We use a simple, efficient form of linear
polynomial interpretation to find these relations that has been inspired by the
method described in [18], but does not lead to combinatorial explosion.

Terms are interpreted as those linear polynomials that can be viewed as func-
tions from IR+ × · · · × IR+ to IR+. The set IR+ denotes the set of non-negative
real numbers.

To each symbol f of the overloading TRS we assign a real constant cf ≥ 0,
and to each variable α of the TRS we assign a real variable xi (α). The function
i converts variables into indices and is injective. A term t is interpreted as Θ (t):

Θ (α) = xi (α), Θ (f(t1, . . . , tn)) = cf + Θ (t1) + . . . + Θ (tn) .

For ε ≥ 0 we define the relation >ε on functions from IRn
+ to IR+ by

p >ε q ⇐⇒ p (x1, . . . , xn) ≥ ε + q (x1, . . . , xn) for all x1, . . . , xn ∈ IR+.

This relation is well-founded for ε > 0. We pull back this relation to the set of
terms and define

u �ε v ⇐⇒ Θ (u) >ε Θ (v).

We write + instead of �0. Can we choose ε > 0 such that by setting � to �ε

we obtain the pair of relations we are searching for?
Obviously �ε and + would have almost all of the desired properties we need

in order to apply Theorem 8. In order to get rid of the “almost” we have to
show that (after possibly reordering the dependency pairs) we have si �ε ti for
i = 1, . . . , M and M ≥ 1 and also si + ti for i = M + 1, . . . , N .

For two terms u and v the relation u �ε v holds iff

1. diff (u, v) = Θ (u)(0, . . . , 0) − Θ (v)(0, . . . , 0) ≥ ε,
2. and for all x1, . . . , xn ∈ IR+ and all i = 1, . . . , n the inequality

∂
∂xi

(Θ (u)(x1, . . . , xn) − Θ (v)(x1, . . . , xn)) ≥ 0 holds.

The second condition just means that for all α the inequality

varcount (u, α) ≥ varcount (v, α)

holds; varcount (t, α) denotes the number of occurrences of the variable α in the
term t. The first condition is also easy to check; the expression diff (u, v) does
not contain any variables any more.

If assignments f $→ cf and ε > 0 exist such that �ε and + fulfill all the re-
quirements of Theorem 8 then we can actually calculate them automatically. For
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this we view the cf ’s not any longer as fixed constants but treat them as vari-
ables. The expressions Di = diff (si, ti) are then linear homogeneous polynomials
in these variables. We restate our problem as a linear program:

maximize D = D1 + · · · + DN

subject to D1 ≥ 0
D2 ≥ 0

...
DN ≥ 0 .

It is understood that all variables of the linear program carry non-negativity
constraints. See [17] for background information on linear programming.

Theorem 9. There exist assignments f $→ cf and ε > 0 such that �ε and + ful-
fill the conditions of Theorem 8 (modulo a possible reordering of the dependency
pairs) iff

1. for all α and i = 1, . . . , N , varcount (si, α) ≥ varcount (ti, α),
2. the above real linear program is unbounded.

In that case those dependency pairs di can be dropped from the dependency graph
for which diff (si, ti) > 0 holds.

Proof. The linear program is either feasible with D assuming a maximum
Dmax = 0, or feasible with D being unbounded: it cannot be infeasible because
the zero vector is a feasible solution, and it cannot be feasible and bounded with
D assuming a maximum ∞ > Dmax > 0 because then one could just multiply
the solution vector with a constant k > 1 which would lead to an objective value
k Dmax > Dmax.

Assume Dmax = 0. Then also Di = 0 for all feasible solutions and all i =
1, . . . , N , so our method cannot be applied.

Assume Dmax = ∞. Then there must be a feasible solution with Di > 0 for
at least one i. For this solution define ε = min {Di |Di > 0, i = 1, . . . , N}.
Together with our previous explanations this concludes the proof. ��

Note that the simplex method together with a non-cycling pivoting rule like
Bland’s rule is well-suited to deal with the above linear program. The dictionary
can be obtained directly from our formulation by introducing N slack variables.
The normally necessary first phase for discovering a feasible solution can be
dropped because the zero vector is an obvious feasible solution. Confidence in
the result can be obtained by calculating with exact fractions instead of floating
point numbers. Important to note is that in all five examples no pivoting is
necessary at all; the starting dictionary already gives away the feasible ray. That
means that an even more easily implementable method could be used that works
by simply counting variables and constants.

The result of applying the above algorithm to our five example formalizations
is shown in Table 1. The algorithm is fast enough for our purposes; most time is
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Table 1. Termination Check Statistics (Isabelle 2005 on a 3GHz Pentium 4)

Main Bali Mat Nom Ocl
Number of nodes of dependency graph 2082 7078 2822 2710 11016
Number of cyclic components 0 5 6 1 16
Maximum number of nodes per component 0 4 1 10 4
Total number of nodes in components 0 12 6 10 20
Runtime for constructing initial components 10ms 60ms 20ms 20ms 180ms
Number of reduction iterations 0 10 6 7 19
Runtime of reduction 0ms 10ms 10ms 10ms 40ms
Total Runtime (in milli seconds) 10ms 70ms 30ms 30ms 220ms

spent in constructing the cyclic components of the dependency graph, less time
for the iterative reductions of these components by polynomial interpretation.

The check actually discovered a bug in the prerelease HOL-OCL [19] distrib-
ution; the checked theory files were non-conservative, and this was due to a bug
in the generator of these files; this bug has been fixed now.

4 Conclusion

We have presented the first theory extension mechanism that can cope with
overloading in higher-order logic as it is actually used in the proof-assistant
Isabelle and shown that this mechanism is safe.

Checking if overloaded definitions conform to HOLCO is not even semi-
decidable. We have proven this by revealing the ties of this with the problem of
checking the termination of a certain kind of term rewriting system.

Fortunately, most practical uses of overloaded definitions can be checked by
a simple algorithm. This algorithm incorporates several ideas of recent research
on termination of first-order term rewriting systems and has been implemented
as an add-on [1] to the proof-assistant Isabelle. Furthermore this add-on is able
to export the check in form of several TRSs to external termination provers as
TTT or AProVE.

It is now possible to use overloading as just another tool when working in
higher-order logic, without (too m)any doubts about its safety.
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Abstract. The paper reports on a formalization of a proof of well-
foundedness of the higher-order recursive path ordering (HORPO) in the
proof checker Coq. The development is axiom-free and fully constructive.
Three substantive parts that could be used also in other developments
are the formalizations of the simply-typed lambda calculus, of finite mul-
tisets and of the multiset ordering. The Coq code consists of more than
1000 lemmas and 300 definitions.

1 Introduction

A term rewriting system is terminating if all rewrite sequences are finite. Termi-
nation of first-order term rewriting, although in general undecidable, is consid-
ered to be an important problem in term rewriting. Several techniques have been
developed for dealing with this problem and also a number of tools that attempt
at proving termination automatically. One of the well-known techniques is the
recursive path ordering (RPO) introduced by Dershowitz [6]. It is a well-founded
reduction ordering and hence is suitable for proving termination.

In case of higher-order rewriting, a natural extension of first-order rewriting
where bound variables may be present, significantly less results are available.
Jouannaud and Rubio generalized RPO to higher-order case thus giving rise to
higher-order recursive path ordering (HORPO) [8]. Using the notion of com-
putability, introduced by Tait and Girard to prove termination of simply typed
lambda calculus (λ→), they succeeded in proving well-foundedness of the union
of HORPO and β-reduction of λ→. This is the essential part of the justification
why HORPO can be used for proving termination of higher-order rewriting. A
corollary of this result is termination of λ→ and well-foundedness of RPO which
is embedded in HORPO. Later in [9] they extended and improved the ordering.

Based on those developments we made a formalization of HORPO in the theo-
rem prover Coq, which is the subject of this paper. The formalization is complete
(i.e., it does not contain any axioms) and fully constructive. The definition of
HORPO is taken from [8] without extensions and improvements from [9], however
parts of the theory presented in the latter was formalized as well. The formal-
ization contains all the proofs required to justify the use of HORPO for proving
termination of higher-order rewriting. More information along with Coq proof
scripts can be found at:

F. Pfenning (Ed.): RTA 2006, LNCS 4098, pp. 227–241, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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http://www.win.tue.nl/~akoprows/coq-horpo.

To give the reader an impression of the size of this formalization we would
like to mention that the Coq scripts consist of 29 files with >25, 000 lines of code
and with > 700, 000 total characters. They contain > 1, 100 lemmas and > 300
definitions.

This formalization has become part of the CoLoR project1. CoLoR – Coq
library on rewriting and termination – is an initiative to formalize the theory
of term rewriting in Coq and ultimately to certify termination proof candidates
produced by existing termination proving tools. This work can be seen as a
contribution to the CoLoR project.

The structure of this paper is as follows. In Section 2 we shortly discuss
motivation of this development, its short history and related work. Then in Sec-
tion 3 we give a broad overview of the formalization. In Section 4 we introduce
some preliminaries and we continue with the definition of higher-order terms
and higher-order rewriting in Section 5. Section 6 is devoted to introduction of
computability predicate proof method and contains proofs of all the computabil-
ity properties required in Section 7 where we introduce HORPO ordering and
prove some of its properties the main one being well-foundedness. We conclude
in Section 8.

2 Motivation, History and Related Work

Formal theorem proving is rather time consuming and often requires enormous
amount of work to be completed. Thus one may wonder what is the motivation
behind this effort. We will mention three main motivational factors for this
development.

– Verification of the proof. Sometimes the goal may be simply to verify the
correctness of the proof. This is especially true for complicated proofs that
are not very well known such as the work in [8].
The results from [8,9] are impressive and complicated and as such are in-
evitably subject to some small slips. This justifies the effort of verification of
such results. Indeed in the course of formalization we were able to detect a
small flaw, concerning the use of multiset extension of an arbitrary relation,
that could be easily repaired (we will discuss it shortly in Sections 4 and
7.1). In general [8,9] turned out to be a very favorable subject for formal-
ization and the structure of the proofs could be followed to the letter in the
formalization process.2

– Theorem proving is still a rather laborious task. But with constantly im-
proving proof assistants this may not necessarily be so in the future and one

1 http://color.loria.fr
2 Obviously providing formal proofs requires to be more explicit and to include all the

results that in normal presentation would be omitted as considered to be straight-
forward or irrelevant.
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of the main stimulus for improvement and growth of theorem provers are big
developments accomplished with their use.

– The most pragmatic motivation is the CoLoR initiative. As described in in-
troduction, CoLoR is a project aiming at proving theoretical results from
term rewriting in the theorem prover Coq. The ultimate goal is to (auto-
matically) transform termination proof candidates produced by termination
tools into formal Coq proofs certifying termination. This requires formaliza-
tion of the term rewriting theory and this development has become part of
the CoLoR library and can be seen as a contribution to this project.

This development started in January 2004 as the author’s Master’s Thesis [10]
at the Free University Amsterdam, supervised by Femke van Raamsdonk. After
half a year it was completed only with computability properties left as axioms.
The eagerness of having axiom-free development resulted in another one and
half year of work at the Eindhoven University of Technology, was finished in
February 2006 and is the subject of this paper.

The ideas of formalizing λ→ and RPO are not new and there are some existing
formalizations. Persson [14] in his PhD thesis presents a constructive proof
of well-foundedness of a general form of recursive path relations. Leclerc [12]
presents a formalization in Coq of well-foundedness of RPO with the multiset
ordering. Murthy [13] formalizes a classical proof (due to Nash-Williams) of
Higman’s lemma in Nuprl 3. Berghofer [3] presents a constructive proof (due
to Coquand and Fridlender) of Higman’s lemma in Isabelle. Coupet-Grimal and
Delobel [5] recently formalized RPO within the CoLoR project using parts of our
development (for finite multisets and multiset ordering). Berger et al. [2] proved
termination of λ→ in three different theorem provers including Coq. They also
used the computability proof method but their work was completely indepen-
dent of this formalization and focuses on extraction of normalization algorithm.
However we would like to stress that we are not aware of any attempt at formal-
izing HORPO so, to the best of our knowledge, the main part of this work was
never before a subject of formalization.

3 Overview of the Formalization

The main result of this formalization is well-foundedness of the union of HORPO
and β-reduction relation of λ→. The formalization is complete and hence contains
development of all the dependant results, most notably formalization of λ→ and
of finite multisets and multiset extension of a relation. In this section we give
overview of those results.

The development can be divided into 4 main parts. Their very brief description
follows.

– Auxiliary results. A number of rather simple definitions and results that
were not present in the Coq standard library.

– Multisets. Since HORPO uses multiset extension to compare arguments
of functions some results about finite multisets and multiset ordering were
required.



230 A. Koprowski

• Finite multisets have been defined using abstract data type paradigm.
That is a number of primitive operations for multisets has been specified
along with their specifications.

• To show that this axiomatic specification can be fulfilled an implemen-
tation of multisets using lists has been provided.

• A number of abstract properties about multisets has been proven. Ab-
stract in the sense that the proofs rely only on abstract specification
of multisets. This ensures that given another (say more efficient) imple-
mentation of multisets all those results carry on automatically.

• Multiset extension of arbitrary relation has been defined and it has
been proven to preserve main properties of the relation, including well-
foundedness.

– Simply typed lambda calculus (λ→). Higher-order rewriting uses some
form of higher-order metalanguage (we will elaborate more on this subject
in Section 5). In this development we decided to use λ→ in its pure form due
to its universality and in the hope that this part of the development can be
useful not only for the purpose of this project.
• λ→ terms over arbitrary possibly many-sorted signature have been de-

fined using de Bruin indices [4].
• A number of properties concerning λ→ terms has been proven. This

includes some results concerning typing, including a constructive proof
of the decidability of typing and of the decidability of β-reduction from
which a certified code for normalization could be extracted.

• Typed substitution has been defined. Note that this is far from trivial as
the substitution operates on typed terms so essentially the entities being
substituted are typing judgements and one has to ensure that types and
environments do not clash.

• An equivalence relation on terms has been defined as an extension of α-
convertibility to free variables. Convertibility of terms that are equal up
to the names of free variables or irrelevant differences in environments
and of lifted terms is captured by this relation.

• Encoding of algebraic terms. As we will see in Section 5 the variant of
higher-order rewriting that is of interest for us uses algebraic terms which
have been encoded as λ→ terms.

• A corollary of the main result of this development is the termination of
λ→.

– HORPO. The definition of HORPO and proofs of its properties that consti-
tute the main part of this paper.
• Definition of HORPO as a slight variant of HORPO from [8].
• Proofs of computability properties required for the main proof using

computability predicate proof method due to Tait and Girard.
• Main result: well-foundedness of the union of HORPO and β-reduction

of λ→.
• A consequence of this fact is that HORPO is a higher-order reduction

ordering and hence is suitable for proving termination of higher-order
term rewriting systems.
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The part concerning HORPO will be treated in more details in the following
sections. The reader interested in other parts of the development is encouraged
to consult [11]. For introduction to λ→ we refer to [1].

4 Preliminaries

For a set A and a relation > we will say that a ∈ A is accessible, a ∈ Acc> if a
does not start any infinite reduction a > a′ > . . .. If the relation > is clear from
the context we will omit the subscript and write a ∈ Acc. Note that the relation
> is well-founded if ∀a ∈ A . a ∈ Acc>.

Given non-empty set A we define finite multiset over A in the usual way. Now
given an arbitrary relation > on A we define its extension to the relation >mul

on multisets over A as follows:

M >mul N ⇐⇒ ∃X, Y, Z .

⎧⎪⎪⎨⎪⎪⎩
Y �= ∅
M = X ∪ Y
N = X ∪ Z
∀z ∈ Z . ∃y ∈ Y . y > z

We will use following properties of this multiset ordering:

(M1) If M >mul N then ∀n ∈ N . ∃m ∈ M . m ≥ n.
(M2) If ∀m ∈ M . m ∈ Acc> then M ∈ Acc>mul

(so >mul preserves well-
foundedness).

(M3) If for every m ∈ M , n ∈ N problem whether m > n is decidable then the
problem whether M >mul N is decidable.

Note that in [8] alternative definition of multisets has been used. For orders
those definitions are equivalent (which we verified in Coq) however for arbitrary
relations with this alternative definition only a weaker variant of (M2) holds
where the conclusion is m >∗ n. This led to some difficulties as remarked in
Section 7.1. See [11] for details.

Given a set A and two relations >1 and >2 on A we define their lexicographic
extension (>1, >2)lex as:

(m1, m2)(>1, >2)lex(n1, n2) ⇐⇒ m1 >1 n1 ∨ (m1 = n1 ∧ m2 >2 n2)

We state the well-known property:

(L1) If >1 and >2 are well-founded then so is (>1, >2)lex.

5 Higher-Order Rewriting

There are several variants of higher-order rewriting. Here we use the algebraic-
functional systems (AFSs) introduced by Jouannaud and Okada [7]. The main
difference between AFSs and another popular format of higher-order rewriting
systems (HRSs) is that in the second we work modulo beta-eta (using pure λ→
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terms) whereas in AFSs we do not (and function symbols have fixed arity).
As a consequence rewriting for AFSs is defined using plain pattern matching
compared to rewriting modulo βη of λ→ in HRSs framework. For a broader
discussion on this subject we refer the reader to, for instance, [15].

Given a set of sorts S we inductively define a set of simple types T as:

– α ∈ T if α ∈ S (base type),
– α → β ∈ T if α, β ∈ T (arrow type).

We define a signature Σ as a set of function symbols with a fixed arity. For
declaration of f expecting n arguments of types α1, . . . , αn and an output type
β we will write f : α1× . . .×αn → β. Environment is defined as a set of variable
declarations, that is: Γ = {x1 : α1, . . . , xn : αn} with xi ∈ V and αi ∈ T for
every i and with xi �= xj for i �= j.

The set of preterms over given signature Σ and a set of variables V is generated
according to the following grammar:

Pt := V | @(Pt,Pt) | λV :T .Pt | Σ(Pt, . . . ,Pt)

denoting variable, application, abstraction and function application. As usually
application is left-associative.

Typed terms are identified with typing judgements of the form Γ 1 t : α
stating that in the environment Γ preterm t has type α. They conform to the
following type inference system:

x : α ∈ Γ

Γ 1 x : α

f : α1 × . . . × αn → β ∈ Σ
Γ 1 t1 : α1, . . . , Γ 1 tn : αn

Γ 1 f(t1, . . . , tn) : β

Γ 1 t : α → β Γ 1 u : α

Γ 1 @(t, u) : β

Γ ∪ {x : α} 1 t : β

Γ 1 λx :α.t : α → β

From here onwards we assume terms to be typed and often we will omit the
environments writing t : α or even only t instead of Γ 1 t : α.

Free variables occurring in term t are denoted as Vars(t). We define the re-
placement of term u in term t at position p in the usual way and denote it by
t[u]p. We define the strict subterm relation in the standard way and denote it
by �. It is well-founded and will be used for the induction on the structure of
terms. List of terms @(t, u1, . . . , ui), ui+1, . . . un is called partial left-flattening of
term @(t, u1, . . . , un) for 1 ≤ i ≤ n. We will say that a term t is neutral if it
is not an abstraction. By ∼ we denote the equivalence relation on terms that,
roughly speaking, extends α-convertibility to free variables. See [11] for details.

We will write substitution as γ = [x1/u1, . . . , xn/un] with its domain denoted
as Dom(γ) = {x1, . . . , xn} and the application of substitution γ to term t as tγ
resulting in a term in which all free occurrences of variables xi are replaced with
term ui for 1 ≤ i ≤ n. Note that substitution is defined on typing judgements.

The format of higher-order term rewriting systems and their rewrite relation
are of no direct interest in this paper and will be omitted here – they are defined
as in [9] (also see [11]).
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Note that in the formalization as a metalanguage the pure λ→ terms were
used. To avoid dealing with arities an assumption has been made that output
types of functions are base types and hence a functional f : α1 × . . .×αn → β is
encoded using λ→ constant f of type α1 → . . . → αn → β with its application
f(t1, . . . , tn) encoded as @(f, t1, . . . , tn).

Again for more throughout introduction to notions presented in this section
we refer the reader to [11].

6 Computability

In this section we present the computability predicate proof method due to Tait
and Girard. In Section 7 we will use computability with respect to a particular
relation (being union of HORPO and β-reduction) but we present computability
for an arbitrary relation satisfying given properties.

We begin by defining computability in 6.1, in 6.2 we prove some computability
properties and finally in 6.3 we make some remarks on the formalization of
computability predicate in Coq.

6.1 Definition of Computability

Definition 1 (Computability). A term t : δ is computable with respect to a
relation on terms �, denoted as t ∈ Cδ (or simply t ∈ C), if:

– δ is a base type and t is strongly normalizable (t ∈ Acc�) or
– δ = α → β and @(t, u) ∈ Cβ for all u ∈ Cα.

Note that it is usual to assume that variables are computable. We do not do
that, following the presentation in [8]. Computability of variables will follow
from computability properties.

6.2 Computability Properties

In the formalization we made an attempt at proving computability in an abstract
way, that is for an arbitrary relation �. Below we present the list of required
properties of � that we needed to complete all the computability proofs.

(P1) Subject reduction: t : α � u : β =⇒ α = β,
(P2) Preservation of environments: Γt 1 t : δ � Γu 1 u : η =⇒ Γt = Γu.
(P3) Free variables consistency: t � u =⇒ Vars(u) ⊆ Vars(t).
(P4) Normal form of variables: ¬(x � u).
(P5) Compatibility with ∼.3

(P6) Stability under substitution: t � u =⇒ tγ � uγ.
(P7) Monotonicity: u � u′ =⇒ t[u]p � t[u′]p.
(P8) Reductions of abstraction: λx :α.tb � u =⇒ ∃ub . u = λx :α.ub ∧ tb � ub.

3 Precise formulation of this property requires more detailed introduction of ∼ relation;
consult [11] for details.
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(P9) Reductions of application: t = @(tl, tr) � u implies
• u = @(ul, ur), tl 
 ul and tr 
 ur and tl � ul ∨ tr � ur or
• t � u is a β-reduction step, so t = @(λx :α.tl, tr) � tl[x/tr] = u.

All those properties but the last one are somehow standard. The last one
demands reductions of application to operate argument-wise or be a β-reduction
step. This property is specific for the � relation being union of HORPO and
β-reduction relation as we will use it in Section 7.

Let us recall that we did not assume variables to be computable. Variables
of a base type are computable due to the definition of computability and (P4).
Variables of a functional type are computable by property (C3) presented in the
following lemma which forbids us to prove the following computability properties
(C1), (C2) and (C3) separately.

Lemma 1. For all terms Γ 1 t : δ, Δ 1 u : δ we prove that:

(C1) t ∈ Cδ =⇒ t ∈ Acc
(C2) t ∈ Cδ ∧ t � u =⇒ u ∈ Cδ

(C3) if t-neutral then (∀w : δ . t � w =⇒ w ∈ Cδ) ⇐⇒ t ∈ Cδ

Proof. Induction on type δ. Note that ‘if’ part of (C3) is (C2) so below we only
prove the ‘only if’ part of this property.

– δ is a base type.
(C1) t ∈ Cδ and δ is a base type so t ∈ Acc by the definition of computability.
(C2) t ∈ Acc by the same argument as in (C1). t ∈ Acc and t � u hence

u ∈ Acc. By subject reduction for � (P1), u : δ, so u ∈ Cδ by the
definition of computability.

(C3) t : δ so to show t ∈ Cδ we need to show t ∈ Acc. But for every w such
that t � w we have w ∈ Cδ by assumption and hence w ∈ Acc by the
definition of computability and thus t ∈ Acc.

– δ = α → β
(C1) Take variable x : α which is computable by induction hypothesis (C3), as

variables are not reducible (P4). Now consider application @(t, x) which
is computable by the definition of computability. So @(t, x) ∈ Acc by
induction hypothesis (C1) and t ∈ Acc by monotonicity (P7).

(C2) By the definition of computability u ∈ Cα→β if for every s ∈ Cα,
@(u, s) ∈ Cβ . @(t, s) ∈ Cβ by the definition of computability and
@(t, s) � @(u, s) by monotonicity assumption (P7). Finally we conclude
@(u, s) ∈ Cβ by induction hypothesis (C2).

(C3) By the definition of computability t ∈ Cα→β if for every s ∈ Cα, @(t, s) ∈
Cβ . By induction hypothesis for (C1), s ∈ Acc so we continue by well-
founded inner induction on s with respect to �.
@(t, s) : β is neutral so we can apply induction hypothesis for (C3) and
we are left to show that all reducts of @(t, s) are computable. We do
case analysis using (P9). Since t is neutral and hence is not abstraction,
we can exclude the β-reduction case and we are left with the following
cases:
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- @(t, s) � @(t′, s) with t � t′. Then t′ is computable as so is every
reduct of t and application of two computable terms is computable
by the definition of computability.

- @(t, s)�@(t, s′) with s�s′. We observe that s′ ∈ C by induction hy-
pothesis for (C2) and since s�s′ we apply inner induction hypothesis
to conclude (t, s′) ∈ Cβ .

- @(t, s)�@(t′, s′) with t�t′ and s�s′. Every reduct of t is computable
so t′ ∈ Cα→β . By induction hypothesis for (C2) s′ ∈ Cα. Again
application of two computable terms is computable.

A simple consequence of (C3) and (P4) is (C4): all variables are computable.
The last computability property involves abstractions.

Lemma 2 (C5). Consider abstraction (λx :α.t) : α → β. If for every u ∈ Cα,
t[x/u] ∈ Cβ then (λx :α.t) ∈ Cα→β.

Proof. By the definition of computability λx : α.t is computable if for every
s ∈ Cα, @(λx : α.t, s) ∈ Cβ . Note that t ∈ C by assumption because t = t[x/x]
and variables are computable by (C4). So by (C1) both t ∈ Acc and s ∈ Acc
and we proceed by induction on a pair of computable terms (t, s) with respect to
the ordering 5= (�, �)lex. Now, since @(λx : α.t, s) is neutral, by (C3) we are
left to show that all its reducts are computable. Let us continue by considering
possible reducts of this application using (P9). So we have @(λx :α.t, s) � u and
the following cases to consider:

– u = t[x/s]. u ∈ C by the assumption.
– u = @(λx : α.t, s′) with s � s′. u ∈ C by induction hypothesis for (t, s′) 6

(t, s).
– u = @(w, s) with λx :α.t � w. By (P8) we know that the reduction is in the

abstraction body of λx :α.t so in fact w = λx :α.t′ with t � t′. We conclude
computability of u by induction hypothesis for (t′, s) 6 (t, s).

– u = @(w, s′) with λx : α.t � w and s � s′. As in above case, by (P8) we
observe that w = λx :α.t′ with t � t′ and we conclude computability of u by
induction hypothesis for (t′, s′) 6 (t, s).

6.3 Computability in Coq

Computability turned out to be by far the most difficult part of the development.
In its first version ([10]) computability properties were stated as axioms. Making
development axiom-free and proving all computability properties turned out to
be a very laborious task after which the size of Coq scripts tripled.

Strictly speaking in terms of script size, the part of the formalization deal-
ing with computability accounts for only slightly more than 5%. However, as
those properties are at the heart of proofs concerning HORPO relation, provid-
ing proofs for them triggered many other developments.

This difficulty can be partially explained by the real complexity of the com-
putability predicate proof method. Other factors that contributed to making this
task difficult include:
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– the fact that algebraic terms were encoded using pure λ→ terms,
– the necessity of defining computability modulo equivalence relation on terms.

For the clarity of presentation those issues are left implicit in the computability
proofs presented in this section but in Coq proofs all of them had to be taken
care of. Another difference is the use of de Bruijn indices [4] in the formalization
to represent terms.

7 HORPO

In this section we present the core of this work: the results concerning the higher-
order recursive path ordering (HORPO). We begin by presenting the definition
of HORPO in 7.1, then some of its properties in 7.2 and its main property –
well-foundedness – in 7.3. We conclude this section in 7.4 where we make some
remarks about the formalization of HORPO.

7.1 Definition of HORPO

As indicated in the introduction the subject of our formalization is a slight
variant of HORPO as presented in [8]. We begin by first presenting our version
of the definition and then we discuss the differences comparing to the original
definition by Jouannaud and Rubio.

Definition 2 (The higher-order recursive path ordering, �). Assume
a well-founded order � on the set of function symbols, called a precedence. We
define HORPO relation � on terms and in this definition by + we denote reflexive
closure of HORPO (that is + ≡ � ∪ =) and by �mul its multiset extension.

Γ 1 t : δ � Γ 1 u : δ iff one of the following holds:

(H1) t = f(t1, . . . , tn), ∃i ∈ {1, . . . , n} . ti + u,
(H2) t = f(t1, . . . , tn), u = g(u1, . . . , uk), f � g, t �� {u1, . . . uk},
(H3) t = f(t1, . . . , tn), u = f(u1, . . . , uk), {{t1, . . . tn}} �mul {{u1, . . . , uk}},
(H4) @(u1, . . . , uk) is a partial-left flattening of u, t �� {u1, . . . uk},
(H5) t = @(tl, tr), u = @(ul, ur), {{tl, tr}} �mul {{ul, ur}},
(H6) t = λx :α.t′, u = λx :α.u′, t′ � u′

where �� is a relation between a term and a set of terms, defined as:
t = f(t1, . . . , tk) �� {u1, . . . , un} iff ∀i ∈ {1, . . . , n} . t � ui ∨ (∃j . tj + ui).

Note that, following Jouannaud and Rubio, we do not prove HORPO to be an
ordering. In the following sections we will prove its well-foundedness and thus
its transitive closure will be a well-founded ordering. There are three major
differences between our definition and the definition from [8].

First let us note that in our variant only terms of equal types can be compared
whereas in the original definition this restriction is weaker and it is possible to
compare terms of equivalent types, where equivalence of types is a congruence
generated by equating all sorts (in other words two types are equivalent if they
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have the same arrow structure). The reason for strengthening this assumption is
that allowing to reduce between different sorts poses some technical difficulties.
In [8] this problem was solved by extending the typing rules with the congruence
rule which presence is basically equivalent to collapsing all sorts and which allows
typing terms that normally would be ill-typed due to a sort clash. Our goal was
to use λ→ in its purest form as a meta-language and hence we decided not to do
that. Note however that this remark is relevant only for many-sorted signatures
as for one sorted signatures type equality and type equivalence coincide.

The second difference is that the original definition of HORPO uses status and
allows arguments of function symbols to be compared either lexicographically or
as multisets, depending on the status, whereas we allow only for comparing ar-
guments of functions as multisets. This choice was made simply to avoid dealing
with status. Multiset comparison has been chosen as posing more difficulties. An
extension with status and possibility of comparing arguments lexicographically
should be relatively easy.

Finally we use different definition of multiset ordering. The property (M1)
will be crucial in lemmas preceding proof of well-foundedness of HORPO and for
alternative definition of multiset extension only its weaker variant holds. This
was the source of flaw in the approach of Jouannaud and Rubio we mentioned
in Section 2. For more details see [11].

7.2 Properties of HORPO

In this section we will prove some properties of HORPO.

Lemma 3. HORPO is stable under substitution, that is: t � u =⇒ tγ � uγ

Proof. Induction on pair (t, u) ordered by (�, �)lex followed by case analysis on
t � u.

(H1) t = f(t1, . . . , tn) and ti + u for some i ∈ {1, . . . , n}. But then tγ =
f(t1γ, . . . , tnγ) � uγ by (H1) since tiγ + uγ by the induction hypothesis.

(H2) t = f(t1, . . . , tn), u = g(u1, . . . , uk), f � g and t �� {u1, . . . , uk}. But then
to get tγ � uγ by (H2) we only need to show tγ �� {u1γ, . . . , ukγ}. For
every i ∈ {1, . . . , k} we have t � ui ∨ (∃j . tj + ui). In either case we have
tγ � uiγ or tjγ + uiγ by the induction hypothesis.

(H3) t = f(t1, . . . , tn), u = f(u1, . . . , uk) and {{t1, . . . tn}} �mul {{u1, . . . , uk}}
but then {{t1γ, . . . tnγ}} �mul {{u1γ, . . . , ukγ}} since for all i ∈ {1, . . . , n},
j ∈ {1, . . . , k}, ti � uj implies tiγ � ujγ by the induction hypothesis. So
we get tγ � uγ by (H3).

(H4) @(u1, . . . , uk) is a partial flattening of u and t �� {u1, . . . uk}. We use the
same partial flattening for uγ and get tγ �� {u1γ, . . . , ukγ} with the same
argument as in case (H2). We conclude tγ � uγ by (H4).

(H5) t = @(tl, tr), u = @(ul, ur) and {{tl, tr}} �mul {{ul, ur}}. Type considera-
tions show that tl + ul, tr + ur and tl � ul∨tr � ur. By induction hypoth-
esis on (tlγ, ulγ) and (trγ, urγ) we conclude {{tlγ, trγ}} �mul {{ulγ, urγ}}
and hence tγ � uγ by (H5).
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(H6) t = λx :α.t′, u = λx :α.u′ and t′ � u′. But then tγ = λx :α.t′γ, uγ = λx :
α.u′γ and t′γ � u′γ by the induction hypothesis. So tγ � uγ by (H6).

Lemma 4. HORPO is monotonous, that is: u � u′ =⇒ t[u]p � t[u′]p.

Proof. The proof proceeds by induction on p and essentially uses the following
observations:

– if wr � w′
r then @(wl, wr) � @(wl, w

′
r) by (H5).

– if wl � w′
l then @(wl, wr) � @(w′

l, wr) by (H5).
– if w � w′ then f(. . . , w, . . .) � f(. . . , w′, . . .) by (H3).
– if w � w′ then λx :α.w � λx :α.w′ by (H6).

So we presented proofs for computability properties (P6) and (P7). Properties
(P1), (P2), (P4), (P8) and (P9) are direct from the definition of HORPO. (P3) is
easy using induction on pair of terms ordered by (�, �)lex. For (P5) more detailed
presentation of equivalence relation∼ is needed and we refer the interested reader
to [11] for details.

We conclude this section with a result that is not present in [8], namely a
proof of the fact that � is decidable.

Theorem 1. Given terms t and u the problem whether t � u is decidable.

Proof. Induction on the pair (t, u) ordered by (�, �)lex followed by a case analy-
sis on t.

– t = x. Variables are in normal forms with respect to � so we cannot have
x � u.

– t = @(tl, tr). Only (H5) is applicable if u = @(ul, ur) and for that, taking
typing consideration into account, it is required that tl + ul, tr + ur and
tl � ul ∨ ul � ur all of which is decidable by induction hypothesis.

– t = λx :α.tb. Only (H6) is applicable for u = λx :α.ub and it is required that
tb � ub which we can decide by induction hypothesis.

– t = f(t1, . . . , tn). We have several cases to consider corresponding to appli-
cation of different clauses of HORPO:
• (H1): for every i ∈ {1, . . . , n} we check whether ti + u by application of

induction hypothesis.
• (H2): u needs to be of the shape u = g(u1, . . . , uk) with f � g (we

assume precedence to be decidable). We need to check whether t ��
{u1, . . . , uk}. So for every i ∈ {1, . . . , k} we check whether t � ui or
tj � ui for some j ∈ {1, . . . , n}. Typing consideration are helpful in
immediately discarding of many cases.

• (H3): comparison between all arguments of t and u is decidable by in-
duction hypothesis so to conclude whether multisets of arguments can
be compared we use (M3).

• (H4): we consider all the possible partial flattenings @(u1, . . . , uk) of
u (bounded by the size of u) and for each of them we check whether
t �� {u1, . . . , uk} in the same way as in the (H2) case.
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7.3 Well-Foundedness of HORPO

In this section we present the proof of well-foundedness of �∪→β . This relation
will play important role in this section so let us abbreviate it by � ≡ �∪→β .
For the proof we will use the computability predicate proof method due to Tait
and Girard (as in [8]) which was discussed in Section 6.

Note that we will use computability with respect to � and for that we need
to prove the properties (P1)-(P9) for �. We proved (P6) and (P7) for � in
Section 7.2. For the remaining properties of �, all properties for →β (which are
easy and standard) we refer to [11]. All those properties easily generalize to the
union if they hold for the components.

The crucial lemma states that if function arguments are computable then so
is the function application. We first need an auxiliary lemma for which the proof
is easy and can be found in [11].

Lemma 5. For any t = f(t1, . . . , tn) and u = g(u1, . . . , uk) if t �� {u1, . . . uk}
and ∀i ∈ {1, . . . , n} . ti ∈ C and ∀j ∈ {1, . . . , k} . t � uj =⇒ uj ∈ C then
∀j ∈ {1, . . . , k} . uj ∈ C.

Lemma 6. If t1, . . . , tn ∈ C then t = f(t1, . . . , tn) ∈ C.

Proof. The proof proceeds by well-founded induction on the pair of a function
symbol and a multiset of computable terms, (f, {{t1, . . . , tn}}), ordered lexico-
graphically by (�, �mul)lex. Note that all terms in the multiset are computable
and hence, by (C1), strongly normalizable. So (�, �mul)lex is well-founded by
(M2) and (L1) which justifies the induction argument.

Since t is neutral we apply (C3) and we are left to show that for arbitrary u,
such that t � u, u ∈ C. We will show that by inner induction on the structure
of u. We continue by case analysis on t � u. The first case corresponds to a
beta-reduction step and the following ones to applications of the clauses (H1),
(H2), (H3) and (H4) of the HORPO definition. Note that the clauses (H5) and
(H6) are not applicable.

(β) Let t →β u. The →β step is in one of the arguments, so for some j we have
u = f(t1, . . . t′j , . . . tn) with tj →β t′j . For every i, ti ∈ C by assumption and
t′j ∈ C by (C2) so we conclude u ∈ C by the outer induction hypothesis.

(H1) ti + u for some i ∈ {1, . . . , n}. By assumption ti ∈ C so u ∈ C by (C2).
(H2) u = g(u1, . . . uk) with f �g. All ui ∈ C for 1 ≤ i ≤ k by Lemma 5 and since

(f, {{t1, . . . tn}}) (�, �mul)lex (g, {{u1, . . . , uk}}) we conclude that u ∈ C

by the outer induction hypothesis.
(H3) u = f(u1, . . . uk) with {{t1, . . . , tn}} �mul {{u1, . . . , uk}}. We can conclude

u ∈ C by the outer induction hypothesis if we can prove that ui ∈ C for
1 ≤ i ≤ k. For arbitrary i, by (M1) we get tj + ui for some j and since
tj ∈ C by assumption we conclude ui ∈ C by (C2).

(H4) @(u1, . . . , uk) is some left-partial flattening of u and t �� {u1, . . . , uk}. By
Lemma 5 we get ui ∈ C for 1 ≤ i ≤ k and hence u ∈ C.
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The next step is to show that the application of a computable substitution gives
computable term, where we define computable substitution as a substitution
containing in its domain only computable terms.

Lemma 7. We say that γ = [x1/u1, . . . , xn/un] is a computable substitution if
for every i ∈ {1, . . . , n}, ui ∈ C. Let γ be computable substitution. Then for any
term t, tγ ∈ C.

Proof. We proceed by induction on the structure of term t.

– t = x. If x ∈ Dom(γ) then γ = [. . . , x/u, . . .] and tγ = u but u ∈ C since γ
is computable. Otherwise tγ = x ∈ C as variables are computable (C4).

– t = f(t1, . . . , tn) so tγ = f(t1γ, . . . , tnγ). We apply Lemma 6 and we are
left to show that for i ∈ {1, . . . , n}, tiγ ∈ C which easily follows from the
induction hypothesis.

– t = @(tl, tr) and tγ = @(tlγ, trγ). Both tlγ and trγ are computable by the
induction hypothesis so tγ ∈ C by the definition of computability.

– t = λx :α.tb so tγ = λx :α.tbγ. By application of (C5) we are left to show that
tbγ[x/u] ∈ C for any u ∈ Cα. But tbγ[x/u] = tb(γ∪ [x/u]) since x /∈ Dom(γ).
Since γ ∪ [x/u] is a computable substitution as so is γ and u ∈ C, we can
conclude tγ ∈ C by the induction hypothesis.

Now we are ready to present the main theorem stating that the union of HORPO
and THE β-reduction relation of THE simply typed λ-calculus, is a well-founded
relation on terms.

Theorem 2. The relation � is well-founded.

Proof. We need to show that t ∈ Acc for arbitrary t. Consider an empty substi-
tution ε, which is computable by definition. We also have t = tε so we conclude
t ∈ C by Lemma 7 and then t ∈ Acc by (C1).

7.4 HORPO in Coq

The definition of HORPO and proof of its well-foundedness are main subjects
of this work, however only less than 10% of Coqscripts is devoted to them.
The development of this part was going rather smoothly. Mostly problematic
were the computability properties but once they were there the proof of well-
foundedness and other properties of HORPO could be accomplished with relative
ease following closely the proofs from [8,9].

The definition of HORPO is slightly complicated and that is because �, �mul,
+ and �� all need to be combined in one mutually inductive definition as all of
them refer to each other.

8 Conclusions

We presented a formalization of the higher-order recursive path ordering in the
theorem prover Coq. This development took two years and resulted in a rather
big, complete, axiom-free Coq formalization that is a part of the CoLoR project.
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The development contains three parts that are completely autonomous: sim-
ply typed lambda calculus, multisets and the multiset ordering. These parts
will be submitted as Coq contributions so that hopefully they will be used in
other developments. In fact the formalization of multisets and multiset ordering
already have been used by Coupet-Grimal and Delobel in their recent formal-
ization of RPO [5]. As for the main results concerning HORPO they are integral
part of CoLoR library and hopefully will stimulate more developments in the
area of higher-order rewriting.

Acknowledgements. The author would like to thank the anonymous reviewers
for their useful comments.
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Dealing with Non-orientable Equations in
Rewriting Induction
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Abstract. Rewriting induction (Reddy, 1990) is an automated proof
method for inductive theorems of term rewriting systems. Reasoning by
the rewriting induction is based on the noetherian induction on some
reduction order. Thus, when the given conjecture is not orientable by the
reduction order in use, any proof attempts for that conjecture fails; also
conjectures such as a commutativity equation are out of the scope of the
rewriting induction because they can not be oriented by any reduction
order. In this paper, we give an enhanced rewriting induction which can
deal with non-orientable conjectures. We also present an extension which
intends an incremental use of our enhanced rewriting induction.

1 Introduction

Properties of programs are often proved by induction on the data structures
such as natural numbers or lists. Such properties are called inductive proper-
ties of programs. Inductive properties are indispensable in formal treatments of
programs. Thus automated reasoning of inductive properties is appreciated in
techniques such as the program verification and the program transformation.

Term rewriting systems (TRSs) is a computational model based on equational
logic. Equational inductive properties of TRSs are called inductive theorems, and
automated reasoning methods for inductive theorems have been investigated
many years [3,4,7,8,9,10,11,12,15]. In this paper, we extend rewriting induction
proposed by Reddy [12], which is one of such inductive theorem proving methods.

The rewriting induction falls in a category of implicit induction methods; in
implicit induction, induction scheme is not specified explicitly—such methods
are different from explicit induction methods that stem from [5]. Historically,
the implicit induction method has been investigated mainly in the context of
inductionless induction [7,8,9,11,15]. Usually inductionless induction methods
require (kinds of) the Church-Rosser property; while in the rewriting induction,
the termination property is needed instead—Koike and Toyama [10] revealed
that the rewriting induction1 and the inductionless induction have different un-
derlying principles. In this context, the underlying principle of (the inductive
theorem proving part of) the inductive theorem prover SPIKE [3,4] can be also

1 Renaming the original “term rewriting induction” [6,12] to “rewriting induction” is
proposed by them.

F. Pfenning (Ed.): RTA 2006, LNCS 4098, pp. 242–256, 2006.
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classified as a rewriting induction method. The rewriting induction is also useful
as a program synthesis [6,13].

Inductive proofs by the rewriting induction are based on the noetherian induc-
tion on some reduction order. Thus, when the given conjecture is not orientable
by the reduction order in use, any proof attempt for that conjecture fails; also
conjectures such as a commutativity equation are out of the scope of the rewrit-
ing induction because they can not be oriented by any reduction order.

To overcome this defect, several approaches have been proposed. One is to
use rewriting modulo equations [12]. Another is to use ordered rewriting tech-
nique [2,6] which rewrites a term by possibly non-oriented equations when it
simplifies (w.r.t. some ordering). The former appears only in a short remark in
[12], and, as far as the author knows, the idea is not explored since then. The
latter approach has been embodied in the inductive theorem prover SPIKE. In
this paper, we present an enhanced rewriting induction designed following the
first approach.

In our enhanced rewriting induction, a reduction order whose equational
classes are “coarser” is more suitable to prove non-oriented conjectures. On the
other hand, such a reduction order may fail to handle some equations orientable
by other reduction orders. This observation leads us to introduce incremental
rewriting induction in which already-proved lemmas can be applied more easily.

The rest of the paper is organized as follows. After fixing basic notations
(Section 2), we review the principle and the procedure of the rewriting induc-
tion (Section 3). In Section 4, we give an enhanced rewriting induction that
can deal with non-orientable conjectures and show its correctness. In Section 5,
we introduce incremental rewriting induction which intends an incremental use
of the enhanced rewriting induction. In Section 6, we conclude our result and
compare our approach and the ordered rewriting approach.

2 Preliminaries

Let us fix some notations in abstract reduction systems (ARSs). Let → be a
binary relation on a set A. The reflexive transitive closure (transitive closure,
symmetric closure, equivalence closure) of → is denoted by ∗→ ( +→, ↔, ∗↔, respec-
tively). The relation → is well-founded (denoted by SN(→)) when there exists
no infinite chain a0 → a1 → · · · . An element a ∈ A is said to be normal when
there is no b ∈ A such that a → b. The set of normal elements is denoted by
NF(→). The union →i∪→j of two binary relations →i and →j is abbreviated as
→i∪j . The composition is denoted by ◦. We denote by →i/→j the relation de-
fined by ∗↔j ◦ →i ◦ ∗↔j . The relation →i/→j is abbreviated as →i/j . We assume
/ associates stronger than ∪; /,∪ associate stronger than closure operations so
that, for example, ∗↔1∪2 stands for the equivalence closure of →1 ∪ →2.

We next introduce notations on term rewriting used in this paper. (See [1,14]
for details.) The sets of (arity-fixed) function symbols and variables are denoted
by F and V , respectively. T(F , V ) is the set of terms over F , V . We use ≡
to denote the syntactical equality on terms. The set of variables contained in
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t is denoted by V (t). root(t) is the root symbol of a term t. The domain of
a substitution σ is denoted by dom(σ). A term σ(t) is called an instance of
the term t; σ(t) is also written as tσ. We denote by mgu(s, t) the most general
unifier of terms s, t. A pair l → r of terms satisfying conditions (1) root(l) ∈ F ;
(2) V (r) ⊆ V (l) is said to be a rewrite rule. A term rewriting system (TRS) is
a set of rewrite rules. When the underlying set of function symbols is not clear,
we refer to a pair 〈F ,R〉 as a TRS—however, we assume that the set of function
symbols are those appearing in rewrite rules in this paper. The rewrite relation
of a TRS R is denoted by s →R t. An equation l

.= r is just a pair 〈l, r〉 of terms
in T(F , V ). When we write l

.= r, we do not distinguish 〈l, r〉 and 〈r, l〉.
Function symbols that are roots of some lhs of rewrite rules are called defined

function symbols; we write DR the set {root(l) | l → r ∈ R} of defined function
symbols (of a TRS R). When R is obvious from its context, we omit the subscript
R. The set of defined symbols appearing in a term t is denoted by D(t). The set
C = F \D of function symbols is the set of constructor symbols. Terms in T(C, V )
are said to be constructor terms; substitution σ such that σ(x) ∈ T(C, V ) for any
x ∈ dom(σ) is called a constructor substitution. A term of the form f(c1, . . . , cn)
for some f ∈ D and c1, . . . , cn ∈ T(C, V ) is said to be basic. We write u � s
to express that u is a subterm of s. The set {u � s | ∃f ∈ D. ∃c1, . . . , cn ∈
T(C, V ). u ≡ f(c1, . . . , cn)} of basic subterms of s is written as B(s).

A term t is said to be ground when V (t) = ∅. T(F) is the set of ground
terms. When tσ ∈ T(F), tσ is called a ground instance of t. Ground instances
of rewrite rules, equations, etc. are defined similarly. A ground substitution is
a substitution σg such that σg(x) ∈ T(F) for any x ∈ dom(σg). A TRS R is
said to be quasi-reducible if no ground basic term is normal. In this paper, we
assume w.l.o.g. that tσg is ground (i.e. V (t) ⊆ dom(σg)) when we speak of an
instance tσg of t by a ground substitution σg. An inductive theorem of a TRS R
is an equation that is valid on T(F), that is, s

.= t is an inductive theorem when
sσg

∗↔R tσg holds for any ground instance sσg
.= tσg.

A relation R on T(F , V ) is said to be closed under substitution when s R t ⇒
sσ R tσ for any substitution σ; closed under context when sR t ⇒ C[s]RC[t] for
any context C. A reduction order is a well-founded partial order that is closed
under substitution and context. A quasi-order � is a reduction quasi-order when
it is closed under substitution and context and its strict part � = � \ � is a
reduction order. We write the relation � ∩ � as ≈.

3 Rewriting Induction

Rewriting induction (RI, for short) is an automated inductive theorem proving
method proposed by Reddy [12]. The inference system of rewriting induction
deals with a set E of equations and a set H of rewrite rules. Intuitively, E is
a set of equations to be proved and H is a set of induction hypotheses and
theorems already proved. In Figure 1, we list the (downward) inference rules
of the rewriting induction. Here # denotes the disjoint union. We note that
the direction of each equation is not distinguished. R and > are a TRS and a



Dealing with Non-orientable Equations in Rewriting Induction 245

Simplify
〈E � {s

.= t}, H〉
〈E ∪ {s′ .= t}, H〉 s →R∪H s′

Delete
〈E � {s

.= s}, H〉
〈E, H〉

Expand
〈E � {s

.= t}, H〉
〈E ∪ Expdu(s, t), H ∪ {s → t}〉 u ∈ B(s), s > t

Fig. 1. Inference rules of the rewriting induction

reduction order given as inputs. The set Expdu(s, t) of equations is defined like
this:

Expdu(s, t) = {C[r]σ .= tσ | s ≡ C[u], σ = mgu(u, l), l → r ∈ R, l:basic}

The following property of Expd will be used later.

Lemma 1 (property of Expd). Let R be a quasi-reducible TRS and u ∈ B(s).
Then
(1) sσg →R ◦ ↔Expdu(s,t) tσg for any ground constructor substitution σg;
(2) v ↔Expdu(s,t) w ⇒ v

∗↔R∪{s
.=t} w.

Proof. (1) Since u is basic and σg is a ground constructor substitution, uσg is a
basic ground term. Thus, by the quasi-reducibility of R, there exists l → r ∈ R
such that uσg is an instance of l. W.l.o.g. we may assume V (l) ∩ V (s) = ∅ and
thus by extending σg one can let uσg ≡ lσg. Then σg is a constructor unifier
of u and l and thus we have σg = θg ◦ σ for some constructor substitution
θg, where σ = mgu(u, l). Then by letting s ≡ C[u], we have sσg ≡ C[u]σg ≡
Cσg[uσθg] ≡ Cσg [lσθg] →R Cσg[rσθg ] ≡ C[r]σθg ↔Expdu(s,t) tσθg ≡ tσg. (2)
Let v ↔Expdu(s,t) w. Then v ≡ Ĉ[C[r]σσ̂], w ≡ Ĉ[tσσ̂] (or w ≡ Ĉ[C[r]σσ̂],
v ≡ Ĉ[tσσ̂]) for some context Ĉ and substitution σ̂, where σ = mgu(u, l), s ≡
C[u], l → r ∈ R. Then we have v ≡ Ĉ[C[r]σσ̂] ←R Ĉ[C[l]σσ̂] ≡ Ĉ[Cσ[lσ]σ̂] ≡
Ĉ[Cσ[uσ]σ̂] ≡ Ĉ[C[u]σσ̂] ≡ Ĉ[sσσ̂] ↔{s

.=t}≡ Ĉ[tσσ̂] ≡ w. �

Definition 1 (rewriting induction). We write 〈E, H〉 �RI 〈E′, H ′〉 when
〈E′, H ′〉 is obtained from 〈E, H〉 by applying one of the inference rules of Figure
1. The reflexive transitive closure of �RI is denoted by ∗�RI. We sometimes put
superscripts s,d,e to indicate which inference rule is used.

The rewriting induction procedure starts by putting conjectures into E and
letting H = ∅. Then the procedure rewrites 〈E, H〉 by applying one of the
inference rules. If it eventually becomes of the form 〈∅, H ′〉 then the procedure
returns “success”—this means that the conjectures are inductive theorems of R.
On the other hand, when none of the rules are applicable, it reports “failure”,
or it also may run forever (“divergence”), which means the rewriting induction
fails to prove that the conjectures are inductive theorems.
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Koike and Toyama [10] revealed that the underlying principle of rewriting
induction can be formulated in terms of ARSs as below. The proof is by the
noetherian induction on >. Later, we will give a proof of a more general theorem.

Proposition 1 (principle of rewriting induction [10]). Let →1, →2 be
binary relations on a set A. Let > be a well-founded partial order on A. Suppose

(i) →1∪2 ⊆ >

(ii) →2 ⊆ →1 ◦ ∗→1∪2 ◦ ∗←1∪2.
Then ∗↔1 = ∗↔1∪2.

The following proposition states the correctness of the rewriting induction. The
proof basically proceeds by applying Proposition 1 to binary relations →R and
→H on the set T(F) of ground terms. Later, we will give a proof of a more
general theorem.

Proposition 2 (correctness of rewriting induction [12]). Let R be a quasi-
reducible TRS, E a set of equations, > a reduction order satisfying R ⊆ >. If
there exists a set H such that 〈E, ∅〉 ∗�RI 〈∅, H〉 then equations in E are inductive
theorems of R.

Example 1 (rewriting induction). Let R and E be a TRS and a set of equations
given as below.

R =
{

plus(0, y) → y
plus(s(x), y) → s(plus(x, y))

}
E =

{
plus(plus(x, y), z) .= plus(x, plus(y, z))

}
Let > be a lexicographic path order [1] based on precedence plus > s > 0. Below
we show how the rewriting induction for proving E proceeds based on the TRS
R and the reduction order >.〈{

plus(plus(x, y), z) .= plus(x, plus(y, z))
}

,
{}〉

�e
RI

〈{plus(y0, z) .= plus(0, plus(y0, z))
plus(s(plus(x1, y1)), z) .= plus(s(x1), plus(y1, z))

}
{

plus(plus(x, y), z) → plus(x, plus(y, z))
}

〉

�s
RI�s

RI�s
RI

〈{plus(y0, z) .= plus(y0, z)
s(plus(plus(x1, y1), z)) .= s(plus(x1, plus(y1, z))

}
{

plus(plus(x, y), z) → plus(x, plus(y, z))
} 〉

�s
RI�d

RI�d
RI

〈{}
,
{

plus(plus(x, y), z) → plus(x, plus(y, z))
}〉

The procedure ends in the form 〈∅, H〉. Thus from Proposition 2 it follows that
the equation in E is an inductive theorem of R.
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4 Proving Non-orientable Conjectures

A key of the rewriting induction is the Expand rule. But Expand rule is applicable
only to the equation that can be oriented by the input reduction order. Thus,
when the given conjecture is not orientable by the given reduction order, the
proof of that conjecture always fails.

Example 2 (failure of rewriting induction). Let R be a TRS for the addition of
natural numbers.

R =
{

plus(0, y) → y
plus(s(x), y) → s(plus(x, y))

}
The following equation e expresses the commutativity of addition.

e = plus(x, y) .= plus(y, x)

The equation e is an inductive theorem of R. However, because neither
plus(x, y) > plus(y, x) nor plus(y, x) > plus(x, y) holds, the rewriting induction
procedure starting with 〈{e}, ∅〉 stops immediately having no rules to apply.

To deal with non-orientable equations, Reddy proposed to use →R/→H instead
of →R∪→H (Remark 14 in [12]); however, he does not seem to elaborate on this.
In fact, a naive extension seems to lead unsound reasoning—this is illustrated
by the following proposition obtained by modifying Propsition 1 suitably for
→R/→H .

Conjecture 1 (incorrect conjecture). Let →1, →2 be binary relations on a set A.
Let � be a well-founded quasi-order on A. Suppose

(i) →1 ⊆ �
(ii) →2 ⊆ ≈

(iii) →2 ⊆ →1 ◦ ∗→1/2 ◦
∗←1/2.

Then ∗↔1 = ∗↔1∪2.

Example 3 (a counterexample to the Conjecture 1). Consider a set A = {a, b, c}
and relations →1 = {〈a, b〉} and →2 = {〈a, c〉} on A. Let � be a quasi-order such
that c ≈ a � b. Then conditions (i),(ii) clearly hold. Since a →1 b ←1 a ↔2 c,
condition (iii) holds also. But we have c

∗↔1∪2 b and c � ∗↔1 b.

In Figure 2, we list the inference rules in which R∪H is replaced by R/H . This
inference system is not sound as the following example shows.

Example 4 (incorrect inference). Let R be a TRS for the append of two lists:

R =
{

app(nil, ys) → ys
app(cons(x, xs), ys) → cons(x, app(xs, ys))

}
.

The append operation is not commutative, hence

app(xs, ys) .= app(ys, xs) (1)
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Simplify
〈E � {s

.= t}, H〉
〈E ∪ {s′ .= t}, H〉 s →R/H s′

Delete
〈E � {s

.= t}, H〉
〈E, H〉 s

∗↔H t

Expand
〈E � {s

.= t}, H〉
〈E ∪ Expdu(s, t), H ∪ {s

.= t}〉 u ∈ B(s), s ≈ t

Fig. 2. Inference rules with rewriting modulo equations(not sound)

is not an inductive theorem of R. However, by taking � as a recursive path order
[1] based on the precedence app � cons � nil, the inference of modified rewriting
induction successfully proves the conjecture (1).

In Expand rule in Figure 2, for v
.= w in Expdu(s, t), only v is “smaller” than

sσ while w is “just as big” as sσ. Hence, application of the inductive hypothesis
to w is unsound. This observation suggests a new kind of Expand rule for non-
orientable equations (Expand2, below), which expands both lhs and rhs of the
equation.

Simplify
〈E � {s

.= t}, H, G〉
〈E ∪ {s′ .= t}, H, G〉 s →(R∪H)/G s′

Delete
〈E � {s

.= t}, H, G〉
〈E, H, G〉 s

∗↔G t

Expand
〈E � {s

.= t}, H, G〉
〈E ∪ Expdu(s, t), H ∪ {s → t}, G〉 u ∈ B(s), s � t

Expand2
〈E � {s

.= t}, H,G〉
〈E ∪ Expd2u,v(s, t), H,G ∪ {s

.= t}〉 u ∈ B(s), v ∈ B(t), s ≈ t

Fig. 3. Inference rules of eRI

Here, Expd2u,v(s, t) is defined like this:

Expd2u,v(s, t) =
⋃{

Expdvσ(tσ, s′) | 〈s′, tσ〉 ∈ Expdu(s, t)
}

Definition 2 (enhanced rewriting induction). We write 〈E, H, G〉 �eRI
〈E′, H ′, G′〉 when 〈E′, H ′, G′〉 is obtained from 〈E, H, G〉 by applying one of the
inference rules of Figure 3. The reflexive transitive closure of �eRI is denoted
by ∗�eRI. We sometimes put superscripts s,d,e,e2 to indicate which inference rule
is used.
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Example 5 (application of Expand2 rule). Let

R =
{

plus(0, y) → y
plus(s(x), y) → s(plus(x, y))

}
,

s
.= t = plus(x, y) .= plus(y, x). Then we have

Expd2s,t(s, t) =

⎧⎨⎩0 .= 0
s(x1)

.= s(plus(x1, 0))
s(plus(x3, s(y3)))

.= s(plus(y3, s(x3)))

⎫⎬⎭ .

Note that an equation s(plus(x2, 0)) .= s(x2) which is also included in Expd2s,t(s, t)
is omitted, since this equation is same as the second one (as an equation).

Lemma 2 (property of Expd2). Let R be a quasi-reducible TRS and let
u ∈ B(s) and v ∈ B(t). Then
(1) sσg →R ◦ ↔Expd2u,v(s,t) ◦ ←R tσg for any ground constructor substitution
σg;
(2) q ↔Expd2u,v(s,t) w ⇒ q

∗↔R∪{s
.=t} w.

Proof. (1) Let l → r ∈ R, l: basic, σ = mgu(u, l), s ≡ C[u]. Then, by Lemma 1
(1), sσg →R C[r]σθg ↔{C[r]σ .=tσ} tσθg ≡ tσg for some 〈C[r]σ, tσ〉 ∈ Expdu(s, t)
and constructor substitution θg. Since σ is a constructor substitution and v ∈
B(t), we know vσ ∈ B(tσ). Thus applying Lemma 1 (1) once again, we have
tσθg →R ◦ ↔Expdvσ(tσ,C[r]σ) C[r]σθg . Thus sσg →R C[r]σθg ↔Expd2u,v(s,t)

◦ ←R tσθg ≡ tσg. (2) Suppose q ↔Expd2u,v(s,t) w. Then, by definition, there
exists 〈s′, tσ〉 ∈ Expdu(s, t) such that q ↔Expdvσ(tσ,s′) w, where σ = mgu(l, u),
l → r ∈ R, l: basic. Then σ is a constructor substitution and thus vσ ∈ B(tσ).
Then by Lemma 1 (2) q

∗↔R∪{s′ .=tσ} w. Therefore we have q
∗↔R∪Expdu(s,t) w.

By applying Lemma 1 (2) once again, we have q
∗↔R∪{s

.=t} w. �
The soundness of the enhanced rewriting induction is based on the following
alternative principle.

Lemma 3 (principle of enhanced rewriting induction). Let →i (1 ≤ i ≤
3) be binary relations on a set A, and � be a well-founded quasi-order on A.
Suppose

(i) →1∪2 ⊆ �
(ii) →3 ⊆ ≈

(iii) →2 ⊆ →1 ◦ ∗→(1∪2)/3 ◦
∗↔3 ◦ ∗←(1∪2)/3

(iv) →3 ⊆ →1 ◦ ∗→(1∪2)/3 ◦
∗↔3 ◦ ∗←(1∪2)/3 ◦←1

(v) ∀x, y ∈ NF(→(1∪2)/3). (x ∗↔3 y ⇒ x = y).

Then ∗↔1 = ∗↔1∪2∪3.

Proof. It suffices to show ⊇. For this, we first show by noetherian induction on
� that

for any x ∈ A [∀y ∈ A. (x ∗→(1∪2)/3 y ⇒ x
∗↔1 y)] (2)

holds.
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(Base Step) Then x = y and thus x
∗↔1 y trivially holds.

(Induction Step) The case when x ∈ NF(→(1∪2)/3) follows immediately; so,
suppose x

∗↔3 u →1∪2 v
∗↔3 z

∗→(1∪2)/3 y. Since x � z, it follows

z
∗↔1 y (3)

by induction hypothesis.
We now claim that

a →3 b ⇒ a
∗↔1 b for any a, b � x (4)

We note that it immediately follows from this that

x
∗↔1 u and v

∗↔1 z (5)

Suppose a →3 b. Then by condition (iv) we have

a →1 c
∗→(1∪2)/3 c′

∗↔3 d′
∗←(1∪2)/3 d ←1 b

for some c, c′, d, d′. By induction hypothesis we have c
∗↔1 c′ and d′

∗↔1 d. If
c′, d′ ∈ NF(→(1∪2)/3) then the claim follows from the condition (v). So, suppose

c′ /∈ NF(→(1∪2)/3). Then by conditions (i),(ii), c′
+→(1∪2)/3 n for some n ∈

NF(→(1∪2)/3). Then we have d′
∗↔3 c′

+→(1∪2)/3 n and hence d
∗→(1∪2)/3 n. Thus

we have
a →1 c

∗→(1∪2)/3 n
∗←(1∪2)/3 d ←1 b

Then by the induction hypothesis a →1 c
∗↔1 n

∗↔1 d ←1 b follows. Since the
case d′ /∈ NF(→(1∪2)/3) is shown similarly, the claim (4) has been shown.

It remains to show
u

∗↔1 v (6)

The case when u →1 v is trivial. So, suppose u →2 v. By condition (iii), we have

u →1 w
∗→(1∪2)/3 w′ ∗↔3 v′

∗←(1∪2)/3 v

Since x � w, v, we have w
∗↔1 w′ and v′

∗↔1 v by induction hypothesis. Then, as
above, one can suppose w.l.o.g. w′, v′ ∈ NF(→(1∪2)/3). Thus the claim follows
from the condition (v). Thus by (3), (5), (6), the proof of the claim (2) has been
completed.

Next we show →3 ⊆ ∗↔1. This can be proved same as the proof of the claim
(4), except that this time we use already proved claim (2) instead of the induction
hypothesis.

Finally, the statement of the lemma follows from the fact ∗→1∪2∪3 ⊆ ∗→(1∪2)/3∪
∗↔3. �

Below we prove the correctness of the enhanced rewriting induction. In remaining
lemmata in this section, we assume that the TRS R is quasi-reducible and that
� is a reduction quasi-order satisfying R ⊆ �.
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Lemma 4 (invariance). Let 〈En, Hn, Gn〉 �eRI 〈En+1, Hn+1, Gn+1〉. Then
∗↔R∪En∪Hn∪Gn = ∗↔R∪En+1∪Hn+1∪Gn+1 on T(F).

Proof. Use Lemma 1 (2) and Lemma 2 (2). �

Lemma 5 (property of En). Let 〈En, Hn, Gn〉
∗�eRI 〈∅, H�, G�〉. Then ↔En ⊆

∗→(R∪H�)/G� ◦ ∗↔G� ◦ ∗←(R∪H�)/G� on T(F).

Proof. By induction on the length of 〈En, Hn, Gn〉
∗�eRI 〈∅, H�, G�〉. �

Lemma 6 (property of H�). Let 〈En, Hn, Gn〉
∗�eRI 〈∅, H�, G�〉. Then →H�

⊆ →R ◦ ∗→(R∪H�)/G� ◦ ∗↔G� ◦ ∗←(R∪H�)/G� on T(F).

Proof. Suppose s → t ∈ H�, sg →{s→t} tg, and let sg ≡ Cg[sσg], tg ≡ Cg[tσg].
It suffices to consider the case when σg(x) ∈ NF(→R) for any x ∈ V (s). For,

by SN(→R), there exists a substitution σ̂g such that σg(x) ∗→R σ̂g(x) ∈ NF(→R)
for any x ∈ V (s). Thus if once we have shown Cg[sσ̂g]→R ◦ ∗→(R∪H�)/G� ◦ ∗↔G� ◦
∗←(R∪H�)/G�Cg[tσ̂g], then by Cg[sσg]

∗→R Cg[sσ̂g], Cg[tσg]
∗→R Cg[tσ̂g], we would

have Cg[sσg]→R ◦ ∗→(R∪H�)/G� ◦ ∗↔G� ◦ ∗←(R∪H�)/G�Cg[tσg].
Thus let us suppose that σg(x) ∈ NF(→R) for any x ∈ V (s). Then by

the quasi-reducibility of R, σg is a constructor substitution. For some n, we
have 〈E0, ∅, ∅〉

∗�eRI 〈En, Hn, Gn〉 �eRI 〈En+1, Hn+1, Gn+1〉
∗�eRI 〈∅, H�, G�〉,

Hn+1 = Hn ∪ {s → t} where En = E # {s .= t}, En+1 = E ∪ Expdu(s, t),
u ∈ B(s), s � t. Then by Lemma 1 (1) we have sσg →R ◦ ↔Expdu(s,t) tσg.
Thus sg ≡ Cg[sσg] →R ◦ ↔En+1 Cg[tσg] ≡ tg. Therefore, by Lemma 5, sg →R

◦ ∗→(R∪H�)/G� ◦ ∗↔G� ◦ ∗←(R∪H�)/G�tg. �

Lemma 7 (property of G�). Let 〈En, Hn, Gn〉
∗�eRI 〈∅, H�, G�〉. Then ↔G�

⊆ →R ◦ ∗→(R∪H�)/G� ◦ ∗↔G� ◦ ∗←(R∪H�)/G� ◦←R on T(F).

Proof. Similar to Lemma 6 using Lemma 2 (1) instead of Lemma 1 (1).

Theorem 1 (correctness of enhanced rewriting induction). Let R be a
quasi-reducible TRS, E a set of equations, � a reduction quasi-order satisfying
R ⊆ �. If there exist sets H, G (of rewrite rules and of equations, respectively)
such that 〈E, ∅, ∅〉 ∗�eRI 〈∅, H, G〉, then equations in E are inductive theorems
of R.

Proof. By repeatedly applying Lemma 4, from 〈E, ∅, ∅〉 ∗�eRI 〈∅, H, G〉, it follows
that ∗↔E∪R = ∗↔R∪H∪G on T(F). Therefore it suffices to show ∗↔R∪H∪G = ∗↔R
holds on T(F). We apply Lemma 3 for A = T(F), →1 = →R, →2 = →H , and
→3 = →G.

By R∪H ⊆ �, G ⊆ ≈, the conditions (i),(ii) of Lemma 3 hold. The condition
(iii) holds by Lemma 6 and (iv) by Lemma 7. Also by the side conditions of
Expand2 rule, we have B(s) �= ∅ and B(t) �= ∅ for any s

.= t ∈ G. Thus by the
quasi-reducibility of R, sg

+↔G tg ⇒ sg, tg /∈ NF(→R) for any sg, tg. Hence the
condition (v) holds. Therefore, by Lemma 3, ∗↔R = ∗↔R∪H∪G. �
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Example 6 (enhanced rewriting induction). Let R and E be as follows:

R =
{

plus(0, y) → y
plus(s(x), y) → s(plus(x, y))

}
E =

{
plus(x, y) .= plus(y, x)

}
Let � be a recursive path order based on the precedence plus � s � 0. Then the
eRI works as follows. 〈{

plus(x, y) .= plus(y, x)
}

,
{}

,
{}〉

�e2

〈{0 .= 0, s(x1)
.= s(plus(x1, 0))

s(plus(x2, s(y2)))
.= s(plus(y2, s(x2)))

}
{}

,
{

plus(x, y) .= plus(y, x)
}

〉

�d�s�d

〈{
s(plus(x2, s(y2)))

.= s(plus(y2, s(x2)))
}{}

,
{

plus(x, y) .= plus(y, x)
} 〉

�s�s�d
〈{}

,
{}

,
{

plus(x, y) .= plus(y, x)
}〉

By Theorem 1, the equation in E is an inductive theorem of R.

5 Incremental Proofs by Rewriting Induction

In the enhanced rewriting induction, a reduction order whose equational classes
are “coarser” is more suitable to prove non-oriented conjectures. On the other
hand, such a reduction order may fail to handle some equations orientable by
other reduction orders.

Example 7 (handling multiple conjectures). Let R and E be as follows:

R =

⎧⎪⎪⎨⎪⎪⎩
plus(0, y) → y
plus(s(x), y) → s(plus(x, y))
times(0, y) → 0
times(s(x), y) → plus(times(x, y), y)

⎫⎪⎪⎬⎪⎪⎭
E =

⎧⎨⎩plus(x, y) .= plus(y, x)
plus(x, plus(y, z)) .= plus(plus(x, y), z)
times(x, y) .= times(y, x)

⎫⎬⎭
The recursive path order can handle the commutativity equations but not the
associativity equation. To the contrary, the lexicographic path order can handle
the associativity equations but not the commutativity equations. As we will see,
we need both commutativity and associativity of plus to prove the commutativity
of times and thus eRI can not handle the commutativity of times.
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This observation leads us to introduce incremental rewriting induction in
which already-proved lemmas can be applied more easily. The incremental rewrit-
ing induction can employ different reduction orders in each phase so that it can
be also benefited from variations of reduction orders.

We first formulate abstract principle of incremental rewriting induction. The
proof is similar to that of Lemma 3.

Lemma 8 (principle of incremental rewriting induction). Let →i (1 ≤
i ≤ 4) be a relation on a set A, and � be a well-founded quasi-order on A.
Suppose (i) →1∪2 ⊆ �

(ii) →3 ⊆ ≈
(iii) →4 ⊆ ∗↔1 ∩ �
(iv) →2 ⊆ →1 ◦ ∗→((1∪2)/3)∪4 ◦ ( ∗↔3 ∪ ∗↔1) ◦ ∗←((1∪2)/3)∪4

(v) →3 ⊆ →1 ◦ ∗→((1∪2)/3)∪4 ◦ ( ∗↔3 ∪ ∗↔1) ◦ ∗←((1∪2)/3)∪4 ◦←1

(vi) ∀x, y ∈ NF(→(1∪2)/3). (x ∗↔3 y ⇒ x = y).
Then ∗↔1 = ∗↔1∪2∪3∪4.

In Figure 4, we list inference rules designed based on this abstract principle.

Definition 3 (incremental rewriting induction). We write 〈E, H, G〉 �iRI
〈E′, H ′, G′〉 when 〈E′, H ′, G′〉 is obtained from 〈E, H, G〉 by applying one of the
inference rules of Figure 4. The reflexive transitive closure of �iRI is denoted by
∗�iRI. We put superscripts s,s2,d,d2,e,e2 to indicate which inference rule is used.

The correctness of the incremental rewriting induction is proved similarly to the
enhanced rewriting induction by putting →1 = →R, →2 = →H , →3 = →G, and
→4 = ∗↔R∪E ∩ �.

Simplify
〈E � {s

.= t}, H, G〉
〈E ∪ {s′ .= t}, H, G〉 s →(R∪H)/G s′

Simplify2
〈E � {s

.= t}, H, G〉
〈E ∪ {s′ .= t}, H, G〉 s

∗↔R∪E s′, s � s′

Delete
〈E � {s

.= t}, H, G〉
〈E, H, G〉 s

∗↔G t

Delete2
〈E � {s

.= t}, H, G〉
〈E, H, G〉 s

∗↔R∪E t

Expand
〈E � {s

.= t}, H, G〉
〈E ∪ Expdu(s, t), H ∪ {s → t}, G〉 u ∈ B(s), s � t

Expand2
〈E � {s

.= t}, H, G〉
〈E ∪ Expd2u,v(s, t),H, G ∪ {s

.= t}〉 u ∈ B(s), v ∈ B(t), s ≈ t

Fig. 4. Inference rules of iRI
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Theorem 2 (correctness of incremental rewriting induction). Let R be a
quasi-reducible TRS, E, E sets of equations, � a reduction quasi-order satisfying
R ⊆ �. Suppose equations in E are inductive theorems of R. If there exist sets
H, G (of rewrite rules and of equations, respectively) such that 〈E, ∅, ∅〉 ∗�iRI
〈∅, H, G〉, then equations in E are inductive theorems of R.

Example 8 (incremental rewriting induction). Let R, E and E be as below. We
may suppose that equations in E has been already proved (Examples 1, 6).

R =

⎧⎪⎪⎨⎪⎪⎩
plus(0, y) → y
plus(s(x), y) → s(plus(x, y))
times(0, y) → 0
times(s(x), y) → plus(times(x, y), y)

⎫⎪⎪⎬⎪⎪⎭
E =

{
plus(x, plus(y, z)) .= plus(plus(x, y), z)
plus(x, y) .= plus(y, x)

}
E =

{
times(x, y) .= times(y, x)

}
Then the incremental rewriting induction by the recursive path order based on
precedence times � plus � s � 0 proceeds as follows:〈{

times(x, y) .= times(y, x)
}

,
{}

,
{}〉

�e2
iRI〈⎧⎨⎩0 .= 0

plus(times(x1, 0), 0) .= 0
plus(times(x1, s(y1)), s(y1))

.= plus(times(y1, s(x1)), s(x1))

⎫⎬⎭{}
,
{

times(x, y) .= times(y, x)
}

〉

�d
iRI�s

iRI�s
iRI�d

iRI〈{
plus(times(x1, s(y1)), s(y1))

.= plus(times(y1, s(x1)), s(x1))
}

{}
,
{

times(x, y) .= times(y, x)
}

〉
�s

iRI�s2
iRI�s

iRI�s
iRI�s2

iRI�s
iRI〈{

s(plus(y1, plus(times(x1, y1), x1)))
.= s(plus(x1, plus(times(x1, y1), y1)))

}
{}

,
{

times(x, y) .= times(y, x)
}

〉
�d2

iRI〈{}
,
{}

,
{

times(x, y) .= times(y, x)
}〉

Thus the commutativity of times has been proved.

6 Conclusion

We have presented an extension of the rewriting induction that can deal with
conjectures not orientable by the given reduction order. We gave inference rules



Dealing with Non-orientable Equations in Rewriting Induction 255

of the enhanced rewriting induction and proved its correctness. We have also
present incremental rewriting induction in which already-proved lemmas can be
applied more easily.

Our approach to deal with non-orientable equations is based on the rewrit-
ing modulo equations originally suggested in [12]. Another approach is to use
ordered rewriting technique [2,6]. The latter approach is embodied in the induc-
tive theorem prover SPIKE [3,4]. Below we list some results of inductive theorem
proving of non-orientable conjectures (in purely equational setting) by SPIKE
and our inference systems. It appears that results of these two approaches are
quite different even in simple examples. In particular, our system can not directly
deal with conjectures that are incomparable in the given reduction quasi-order,
although SPIKE can deal with such conjectures directly. On the other hand, our
system successfully handle commutativity equations that are hard for SPIKE.

(many-sorted) conjectures SPIKE Enhanced RI Incremental RI
max(x, y) .= max(y, x)

√ √ √
minus(minus(x, y), z) .= minus(minus(x, z), y)

√ √ √
len(app(xs, ys)) .= len(app(ys, xs))

√ √ √
len(qrev(xs, ys)) .= len(qrev(ys, xs)) × √ √

plus(x, plus(y, z)) .= plus(y, plus(x, z))
√ × ×⎧⎨⎩ plus(x, y) .= plus(y, x)

plus(x, plus(y, z)) .= plus(plus(x, y), z)
plus(x, plus(y, z)) .= plus(y, plus(x, z))

⎫⎬⎭ √ × √

⎧⎨⎩plus(x, plus(y, z)) .= plus(plus(x, y), z)
plus(x, y) .= plus(y, x)

times(x, y) .= times(y, x)

⎫⎬⎭ × × √

⎧⎨⎩
plus(x, plus(y, z)) .= plus(plus(x, y), z)

plus(x, y) .= plus(y, x)
sum(app(xs, ys)) .= sum(app(ys, xs))

⎫⎬⎭ × × √

To see the difference, we show how the process proving the commutativity of
times proceeds in SPIKE. First by expansion rule, it produces

0 .= times(0, 0) (7)
plus(times(x1, 0), 0) .= times(0, s(x1)) (8)

0 .= times(s(x1), 0) (9)
plus(times(x2, s(x1)), s(x1))

.= times(s(x1), s(x2)) (10)

In the presence of commutativity and associativity equations for plus (as proved
lemmas), the successive simplification procedure works as follows:

(7) ⇒ 0 .= 0 ⇒ deleted
(8) ⇒ plus(times(0, x1), 0) .= times(0, s(x1)) ⇒ 0 .= 0 ⇒ deleted

(9) ⇒ 0 .= plus(times(x1, 0), 0)
(10) ⇒ plus(times(s(x1), x2), s(x1))

.= times(s(x1), s(x1))
⇒ plus(plus(times(x1, x2), x2), s(x1))

.= plus(times(x1, s(x2)), s(x2))
⇒ plus(times(x1, x2), plus(x2, s(x1)))

.= plus(times(x1, s(x2)), s(x2))
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Thus, it results in a two elements set of remaining conjectures. On the other
hand, in our procedure, as shown in Example 8, one expansion and successive
simplifications successfully eliminate all equations.
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Abstract. TPA is a tool for proving termination of term rewrite systems
(TRSs) in a fully automated fashion. The distinctive feature of TPA is the
support for relative termination and the use of the technique of semantic
labelling with natural numbers. Thanks to the latter, TPA is capable
of delivering automated termination proofs for some difficult TRSs for
which all other tools fail.

1 Introduction

Termination is an important concept in term rewriting and, although in general
undecidable, several techniques have been developed for proving termination.
The present focus in this area is on automation of the proof searching process.
A number of tools have been developed to facilitate this and they are capable
of finding proofs that are often fairly complicated and unlikely to be found by
hand. To stimulate those developments an annual competition is being organized
in which all the participating tools compete on a set of termination problems [1].

The tool TPA developed by the author is such tool aiming at proving termina-
tion of TRSs in an automatic fashion. What makes it different from all the other
tools is the support for relative termination and the use of semantic labelling
with natural numbers.

TPA took part in the termination competition of 2005. Only after three months
of author’s work, participating among well-established tools like CiME [5], TTT
[11] or AProVE [8], each developed by a group of people, it got the 3rd place
there. Moreover, it succeeded in providing termination proofs for some systems
for which all other tools failed. Two of such systems we will see in Figure 2. In
particular it can solve the well-known SUBST [10] example encoding process of
substitution in combinatory categorical logic for which showing termination was
considered to be difficult. For a more throughout benchmark of TPA performance
compared to other tools we refer to results of [1].

The following techniques are used in TPA:

– polynomial interpretations [14],
– recursive path order [6] (also over infinite signatures [13]),
– semantic labelling [16] (also with natural numbers [13]),
– dependency pairs [3],
– dummy elimination [7] and
– reduction of right hand sides [18].

F. Pfenning (Ed.): RTA 2006, LNCS 4098, pp. 257–266, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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TPA is freely available and can be downloaded from its web page:

http://www.win.tue.nl/tpa

It is written in Objective Caml (OCaml)1 and is available in native code for
Linux platforms and as a byte code which can be run on any platform for which
OCaml interpreter is available.

2 Preliminaries

For a signature Σ and a set of variables V we denote the set of terms over Σ and V
by T (Σ,V). We denote by Var(t) a set of variables occurring in term t. A rewrite
rule is a pair (�, r), written � → r with �, r ∈ T (Σ,V), � /∈ V , Var(r) ⊆ Var(l). A
term rewriting system (TRS) is a set of rewrite rules. The rewrite relation →R

for a TRS R is defined as s →R t if there exists a rewrite rule � → r ∈ R, a
substitution σ and a context C such that s = C[lσ] and t = C[rσ]. A TRS R
is called terminating (SN(R)) is there is no infinite reduction t1 →R t2 →R . . .,
that is when →R is a well-founded relation. For two relations R, S we define
R/S ≡ S∗ ·R ·S∗ and we say that relative termination between R and S holds if
SN(→R / →S). We will then say that R terminates relative to S. Note that this
is equivalent to lack of infinite reduction in R ∪ S with infinitely many R-steps.
For relative termination problems we will refer to the rules from R as strict rules
and to the rules from S as non-strict rules.

3 Motivation

With that many available tools for proving termination automatically it seems
natural to ask why creating yet another one? There are three main reasons why
TPA has been developed and they are listed below in no particular order.

• Semantic labelling with natural numbers. Semantic labelling is a trans-
formational technique for proving termination of TRSs [16]. Its variant with
the model over two or three element sets is used in some tools. However the
infinite model variants were considered not to be suitable for automation so
far. Indeed they pose some difficulties as the labelled TRS and its signature
are usually infinite.

The author’s hope was that automation of semantic labelling over infinite
sets (natural numbers in particular) can be accomplished and that it will be
a fruitful technique for proving termination of TRSs. In fact TPA started as
a prototype to verify this conjecture. The experiment turned out to be rather
successful [13] and the prototype grew into a tool on its own. We will treat
semantic labelling with natural numbers in some more detail in Section 4.4.

1 http://www.ocaml.org
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• Relative termination. In our opinion the notion of relative termination is
very natural. First of all termination is the special case of relative termination
as we have SN(R) ≡ SN(R/∅). The concept of relative termination is also
very closely related to the top termination and hence to the dependency
pairs method [3].

Giesl and Zantema proposed a method for verification of liveness prop-
erties using rewriting techniques [9]. In continuation of this line of research
Koprowski and Zantema extended the framework to deal with fairness and
there relative termination turned out to be a very natural and needed con-
cept [12].

Lucas and Meseguer conducted research on termination of concurrent sys-
tems under fairness assumptions [15]. In their setting they again use the
notion of relative termination to establish the property of fair-termination.
They used TPA for proving relative termination.

Still up till now the support for relative termination was very limited.
TORPA [17] incorporates this notion but is limited to string rewriting.
TEPARLA is another tool capable of proving relative termination but it is not
actively developed anymore. So being able to deal with relative termination
problems for TRSs was one of the motivations for developing TPA.

• CoLoR. CoLoR2 stands for Coq library on rewriting and termination. It is an
initiative aiming at proving theoretical results from term rewriting in the
theorem prover Coq. The ultimate goal is to (automatically) transform the
termination proof candidates produced by termination tools into formal Coq
proofs certifying termination.

This will involve some cooperation between tool authors and CoLoR de-
velopers. Presently the output produced by termination tools is just an in-
formal, textual description of the termination proof. Certification of such
results will require more explicit output. The idea within the CoLoR project
is to provide a description of the proof output format in XML. Every tool
being able to generate output in this common proof format would potentially
be able to employ CoLoR to certify its proofs.

The author is involved in the CoLoR project and having his own tool is
helpful in bridging the gap between those two communities and propagating
the idea of formal verification of termination proofs. Hence it is the author’s
hope that TPA will be the first tool capable of producing formally certified
termination proofs.

4 Overview

We begin with a few remarks about the implementation of TPA in Section 4.1.
Then in Section 4.2 we give a description of our approach to proving termination.
Finally in the following sections we briefly present the theory behind techniques
used in TPA as well as some details of the way in which they are used.

2 http://color.loria.fr
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4.1 Implementation

TPA is implemented in Objective Caml (OCaml). It is written almost fully in a
functional programming style with only few fragments using imperative features
of OCaml. It does not use any third-party libraries and the source code of TPA
consists of about 10,000 lines of OCaml code. It is equipped with command line
interface. It is available in native code for Linux platform and as OCaml byte
code that can be run on any platform supported by OCaml (that includes all
the major platforms).

4.2 TPA Approach to Proving Termination

First we introduce the transformation used by TPA to eliminate all the function
symbols of arity greater than 2.

Definition 1. Given TRS R over Σ we define the transformed TRS R over
signature

Σ′ = {fi | f ∈ Σ, 1 ≤ i ≤ arity(f) − 1} ∪ {f | f ∈ Σ, arity(f) ≤ 2}

to consist of the rules R = {� → r | � → r ∈ R}, where · is defined as follows:

x = x

f(t1, . . . , tn) = f(t1, . . . , tn) if arity(f) ≤ 2
f(t1, . . . , tn) = f1(t1, f2(t2, . . . , fn−1(tn−1, tn))) if arity(f) > 2

The main result concerning this transformation states that SN(R) ⇐⇒ SN(R).
The (⇐) is crucial in this application and is easy to show. The (⇒), implying
completeness, of the transformation is more involved but can be shown using
Aoto’s theorem [2].

Note that in the transformed system only constants, unary and binary symbols
may occur; a fact that is heavily used in TPA as we shall see. On the other hand
the original structure of the TRS is somehow obscured by the transformation
which may in some cases make termination arguments more difficult.

TPA tries to use a modular approach to proving termination. Given an input
TRS it first applies the transformation from Definition 1 and then it tries to apply
different tactics according to the prover configuration that we will describe later
on. As soon as one of the tactics succeeds, resulting in simplification of the TRS,
the whole procedure is repeated until finally termination is proved, all tactics
fail or the maximum specified search time is used and TPA stops due to timeout.
For this modular approach the following theorem from [17] is essential.

Theorem 1. Let R, S, R′ and S′ be TRSs such that:

– R ∪ S = R′ ∪ S′ and R ∩ S = R′ ∩ S′ = ∅,
– SN(R′/S′) and SN((R ∩ S′)/(S ∩ S′)).

Then SN(R/S).
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The prover configuration is a description of the way TPA should employ different
tactics in order to prove termination. In the present version of the tool the
configuration is embedded in the source code but it is only a matter of providing
the user interface to let the user specify custom configurations. Below is a snippet
from the OCaml source code of TPA with a slightly simplified description of the
prover configuration.

type proverStep = ElimDummy
| ReduceRHS
| PolyInt of PolyInterp.configuration * bool
| SemLabBool of SemLabBool.semLabCfg
| SemLabNat of PolyInterp.configuration * proverConfig
| Rpo of Rpo.configuration
| DP of proverConfig
| Parallel of proverConfig list

and proverConfig = proverStep list

proverConfig corresponds to the prover configuration and consists of a list of
steps that should be taken successively in an attempt to prove termination. The
possible steps include:

– ElimDummy: dummy elimination transformation [7].
– ReduceRHS: reduction of right hand sides [18].
– PolyInt: polynomial interpretations [14] (see Section 4.3)
– SemLabBool: semantic labelling with boolean values [16] (see Section 4.4).
– SemLabNat: semantic labelling with natural numbers [13] (see Section 4.4).
– Rpo: recursive path order [6] (see Section 4.5).
– DP: a simple variant of dependency pairs method [3] (see Section 4.6).
– Parallel: this meta-tactic allows to try few different approaches in parallel

using threads. As soon as one of them succeeds the other are abandoned and
the termination procedure continues with the initial configuration.

Every transformational technique (like semantic labelling or dependency pair
method) is parameterized by the configuration to be used after the transfor-
mation. Hence such technique is considered to be successful if the TRS can be
simplified by applying transformation and all those techniques (for semantic la-
belling resulting system is subject to un-labelling at the end of this procedure).

Note that the proof search procedure in TPA is fully deterministic. The only
non-deterministic behavior can occur due to the use of threads for parallel com-
putations.

The present configuration of TPA is as follows:

– simple transformations: dummy elimination and reduction of right sides are
tried,

– then a simple argument of counting different symbols in left and right hand
sides of the rules is tried (which corresponds to the use of polynomial inter-
pretations with identity and successor as the only interpretation functions).

– then an attempt is made at direct termination proof with RPO.
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– If all of the above fail or cannot be applied anymore then the following tactics
are all executed in parallel:
• semantic labelling with natural numbers,
• semantic labelling with booleans with two different sets of default inter-

pretations and also with recursive labelling (see Section 4.4),
• polynomial interpretations method with an extended set of interpreta-

tions and
• the dependency pairs approach.

Now we will describe the main techniques used in TPA in some more detail.

4.3 Polynomial Interpretations

The idea of proving termination with polynomial interpretations goes back to
[14], [4]. We briefly present the theory for this approach.

Let Σ be a signature and let A be a non-empty set. Now for every function
symbol f ∈ Σ of arity n fix an interpretation function fA : An → A. Let
α : V → A be an assignment to variables. We define the term evaluation [·]α :
T (Σ,V) → A:

[x]α = α(x) [f(t1, . . . , tn)]α = fA([t1]α, . . . , [tn]α)

Theorem 2. Let A be a non-empty set, > be a well-founded order on A. Let
fA : An → A be strictly monotone for every f : Σ. Let R, S be disjoint TRSs
over Σ. If ∀α [�]α > [r]α for every � → r ∈ R and ∀α [�]α ≥ [r]α for every
� → r ∈ S then SN(R/S).

This approach of monotone algebras goes back to Lankford. If for the set A we
take N \ {0, 1}, for > usual comparison on N and all fA are polynomials then
this approach is called polynomial interpretations.

TPA uses a fixed (per arity) set of polynomial interpretations. To further
limit the search space for every arity there is a default interpretation and in
the search procedure only limited number (being a parameter of the search
procedure) of deviations from those standard interpretations is allowed. The
standard interpretations are 2 for constants, λx.x for unary symbols and λxy.x+
y − 2 for binary symbols (corresponding to zero, identity and summation in N).

4.4 Semantic Labelling

The technique of semantic labelling goes back to Zantema [16]. We present its
variant that is used in TPA.

Let A be a non-empty set. For every f ∈ Σ fix an interpretation function
fA : An → A, where n is the arity of f . We define the term evaluation function
[·] as in Section 4.3. We define the extended signature ΣL = {fl1,...,ln | f ∈
Σ; l1, . . . , ln ∈ A} and the labelling function on terms lab : T (Σ,V) × AV →
T (Σ,V) as:

lab(x, α) = x
lab(f(t1, . . . , tn), α) = f[t1]α,...,[tn]α(lab(t1, α), . . . , lab(tn, α))
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For TRS R we define its labelled version over ΣL as lab(R) = {lab(�) →
lab(r) | � → r ∈ R, for all α : V → A}. We define Decr to be the TRS con-
sisting of the rules: fs1,...,si,...,sn(x1, . . . , xn) → fs1,...,s′

i,...,sn
(x1, . . . , xn) for all

1 ≤ i ≤ n; s1, . . . , sn ∈ A; s′i ∈ A and si > s′i.
Now the main theorem for semantic labelling reads:

Theorem 3. Let R, S be two disjoint TRSs over Σ. Let > be a well-founded
order on a non-empty set A. Let fA : An → A for every f ∈ Σ be weakly
monotonic in all arguments and such that:

[�]α ≥ [r]α for all � → r ∈ R ∪ S and all α : V → A

Then SN(R/S) iff SN(lab(R)/(lab(S) ∪ Decr))

In a sense semantic labelling is a central technique for TPA. Its two variants
are used: one rather standard where A is the set {0, 1} and another, presently
implemented in no other tool except for TPA, where A = N. Note that it is
possible to label already labelled system and TPA makes use of this fact doing
recursive labelling with boolean models.

The difficulty posed by using semantic labelling with N is that the labelled
system has infinite signature and infinitely many rules. Hence all the standard
techniques may need to be somehow adopted in order to be applied to such
systems. In the present version of TPA two techniques are used in combination
with semantic labelling with natural numbers: RPO and polynomial interpreta-
tions. For details about using RPO on systems with infinite signature we refer
the reader to [13].

Polynomial interpretations are incorporated into this setting in a straight-
forward way. Denote by Φ0, Φ1 and Φ2 sets of polynomial interpretations for
constants, unary and binary symbols respectively. Constants get no label but
for unary and binary symbols after labelling the following interpretations are
used:

[fi(x)] = φ(x) or φ(x) + i with φ ∈ Φ1

[fi,j(x, y)] = φ(x, y) or φ(x, y) + i or φ(x, y) + j or φ(x, y) + i + j with φ ∈ Φ2

We will illustrate this approach on a simple relative termination problem.

Example 1. R = {T (I(x), y) → T (x, y)}, S = {T (x, y) → T (x, I(y))}.
There are two rules in this system: the rule from R allows to remove one I

symbol from the left argument of T and the rule from S allows introducing this
symbol in the right argument of T but it can be applied only finitely many times
and thus SN(→R / →S). Figure 1 shows the proof produced by TPA for this
system. TPA prints R-rules as l -> r and S-rules as l ->= r.

In Figure 2 we present two TRSs that can be solved by TPA with the use of
semantic labelling with natural numbers and presently no other tool can deal
with them. The first one is the SUBST TRS encoding the process of substitution
in combinatory categorical logic and the second one is the GCD TRS encoding
the computation of the greatest common divisor. For termination proofs of those
systems generated by TPA we refer the reader to its homepage.
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TPA v.1.0
Result: TRS is terminating
[1] TRS loaded from input file:

(1) T(I(x),y) -> T(x,y)
(2) T(x,y) ->= T(x,I(y))

[2] Label this TRS using following interpretation over N\{0,1}:
[T(x,y)] = 2
[I(x)] = x + 1
This interpretation is a model and yields the following TRS:
(1) T{i + 1,j}(I{i}(x),y) -> T{i,j}(x,y)
(2) T{i,j}(x,y) ->= T{i,j + 1}(x,I{j}(y))

[3] Use the following polynomial interpretation:
[T_{i,j}(x,y)] = x + y - 2 + i
[I_{i}(x)] = x
Remove rules with left hand side strictly bigger than right hand
side: (1)

[4] Since there are no remaining strict rules, relative termination is
proven.

Fig. 1. Proof generated by TPA for the system from Example 1. For the purpose of
the presentation the proof has been made slightly less verbose.

min(x, 0) → 0 λ(x) ◦ y → λ(x ◦ (1 · (y◦ ↑))))
min(0, y) → 0 (x · y) ◦ z → (x ◦ z) · (y ◦ z)

min(s(x), s(y)) → s(min(x, y)) (x ◦ y) ◦ z → x ◦ (y ◦ z)
max(x, 0) → x id ◦ x → x
max(0, y) → y 1 ◦ id → 1

max(s(x), s(y)) → s(max(x, y)) ↑ ◦id → 1
−(x, 0) → x 1 ◦ (x · y) → x

−(s(x), s(y)) → −(x, y) ↑ ◦(x · y) → y
gcd(s(x), s(y)) → gcd(−(s(max(x, y)),

s(min(x, y))), s(min(x, y)))

Fig. 2. TRSs: GCD(left) and SUBST (right)

4.5 RPO

Recursive path order (RPO) is an ordering introduced by Dershowitz [6].

Definition 2 (RPO). Given an order � on function symbols called precedence
and a status function τ associating every function symbol with either lexico-
graphic or multiset status, we define the RPO ordering �rpo as follows:

s = f(s1, . . . , sn) �rpo g(t1, . . . , tm) = t iff one of the following holds:

– si �rpo t for some 1 ≤ i ≤ n.
– f � g and s �rpo ti for all 1 ≤ i ≤ m

– f = g and (s1, . . . , sn) �τ(f)
rpo (t1, . . . , tm)

Theorem 4. If � is well-founded and � �rpo r for all � → r ∈ R then SN(R).
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In TPA RPO is implemented in this form with both lexicographic (left-to-right
and right-to-left) and multiset statuses. However due to the transformation from
Definition 1 the power of multiset status is limited and in the most recent config-
uration it is not even used. To avoid extensive branching in TPA it is also possible
to use a slightly weaker variant where the first clause of the RPO definition is
used only if t can be embedded in s.

RPO in its standard variant is not very suitable for proving relative termina-
tion since the equality part of the preorder it generates is rather small. Some
experiments have been made to make it more suitable for proving relative ter-
mination but they were not very successful.

Note that due to the use of semantic labelling with natural numbers also a
variant of RPO for infinite signatures is used in TPA. See [13] for more details.

4.6 Dependency Pairs

The technique of dependency pairs was introduced in [3] and since then is a
central technique for many termination provers. Due to that fact we decided to
concentrate on other techniques and in TPA dependency pairs play only a minor
role.

Definition 3 (Dependency pairs). Let R be TRS over Σ. We split Σ into
defined symbols ΣD = {root(�) | � → r ∈ R} and constructor symbols ΣC =
Σ \ ΣC . We extend signature Σ with fresh symbols for every defined symbol:
Σ′ = Σ ∪ {f | f ∈ ΣD}.

We define a TRS DP(R) over Σ′ to represent dependency pairs of R:

DP(R) = {f(s1, . . . , sn) → g(t1, . . . , tn) | g ∈ ΣD∧
f(s1, . . . , sn) → C[g(t1, . . . , tn)] ∈ R}

The main theorem, as it is used in TPA, relates termination of R with relative
termination of DP(R)/R.

Theorem 5. Let R be TRS over Σ. Then SN(R) iff SN(DP(R)/R).

So using the dependency pair method TPA transforms a termination problem
to a, hopefully easier, relative termination problem. Moreover it computes a
dependency graph approximation and treats its strongly connected components
separately but it does not use more involved refinements of dependency pairs
method such as argument filtering or narrowing.

5 Conclusions and Further Research

TPA is a new termination tool that got the 3rd place in the international ter-
mination competition in 2005. It also proved that the approach of semantic
labelling with natural numbers can be successfully used for proving termination
automatically; using this technique TPA could prove termination of systems for
which all other tools failed.
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Clearly there is plenty of room for improvement and further research. For
instance the idea of semantic labelling with natural numbers can be investigated
further and techniques other than only RPO and polynomial interpretations
can be adopted and applied on labelled systems. We also want to improve the
proving capabilities of TPA in the subject of relative termination, either by
developing new techniques devoted particularly to relative termination or by
refining existing termination techniques. Finally we want to propagate the idea
of certified termination by continuing developments in the CoLoR project.
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Abstract. Chiba et al. (2005) proposed a framework of program trans-
formation by template based on term rewriting in which correctness
of the transformation is verified automatically. This paper describes
RAPT (Rewriting-based Automated Program Transformation system)
which implements this framework.

1 Introduction

Chiba et al. [4] proposed a framework of program transformation by template
based on term rewriting in which correctness of the transformation is verified
automatically. In their framework, programs and program schemas are given by
term rewriting systems (TRS, for short) and TRS patterns. A program trans-
formation template consists of input and output TRS patterns and a hypothesis
which is a set of equations the input TRS has to satisfy to guarantee the cor-
rectness of transformation.

This paper describes RAPT (Rewriting-based Automated Program Transfor-
mation system) which implements this framework. RAPT transforms a many-
sorted TRS according to a specified program transformation template. Based
on the rewriting induction proposed by Reddy [14], RAPT automatically verifies
whether the input TRS satisfies the hypothesis of the transformation template.
It also verifies conditions imposed to the input TRS and generated TRS by
utilizing standard techniques in term rewriting. Thus, presupposing the program
transformation template is developed [4], the correctness of the transformation is
automatically verified so that the transformation keeps the relationship between
initial ground terms and their normal forms.

2 Transformation by Templates

Let P be a set of (arity-fixed) pattern variables (disjoint from the set F of
function symbols and the set V of variables). A pattern is a term with pattern
variables. A TRS pattern P is a set of rewriting rules over patterns. A hypoth-
esis H is a set of equations over patterns. A transformation template (or just
template) is a triple 〈P ,P ′,H〉 of two TRS patterns P , P ′ and a hypothesis H.
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The following template 〈P ,P ′,H〉 describes a well-known transformation from
the recursive form to the iterative (tail-recursive) form:

P

⎧⎪⎪⎨⎪⎪⎩
f(a) → b
f(c(u, v)) → g(e(u), f(v))
g(b, u) → u
g(d(u, v), w) → d(u, g(v, w))

P ′

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
f(u) → f1(u, b)
f1(a, u) → u
f1(c(u, v), w) → f1(v, g(w, e(u)))
g(b, u) → u
g(d(u, v), w) → d(u, g(v, w))

H
{

g(b, u) ≈ g(u, b)
g(g(u, v), w) ≈ g(u, g(v, w))

Here, the symbols f, a, b, g, . . . are pattern variables.
To achieve the program transformation by templates, we need a mechanism

to specify how a template is applied to a concrete TRS. For this we use a notion
of term homomorphism [4]. If we match the TRS pattern P to a concrete TRS
R with a term homomorphism ϕ, we obtain a generated TRS R′ by applying
ϕ to the TRS pattern P ′ (Figure 1). A matching algorithm to find all (most
general) term homomorphisms ϕ satisfying R = ϕ(P) from a given TRS R and
a TRS pattern P is presented in [4].

R P

template

R′ P ′

ϕ

matching

ϕ

instantiation

Fig. 1. TRS transformation

Definition 1 ([4]). Let 〈P ,P ′,H〉 be a template. A TRS R is transformed into
R′ by 〈P ,P ′,H〉 if there exists a term homomorphism ϕ such that R = ϕ(P)
and R′ = ϕ(P ′).

The following TRS Rsum computes the summation of a list using a recursive
call.

Rsum

⎧⎪⎪⎨⎪⎪⎩
sum([ ]) → 0
sum(x : y) → +(x, sum(y))
+(0, x) → x
+(s(x), y) → s(+(x, y))
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The following term homomorphism ϕ is used to transform the TRS Rsum.

ϕ =

⎧⎪⎪⎨⎪⎪⎩
f �→ sum(�1), b �→ 0,
g �→ +(�1, �2), c �→ �1:�2,
f1 �→ sum1(�1, �2), d �→ s(�2),
a �→ [ ], e �→ �1

⎫⎪⎪⎬⎪⎪⎭
Applying ϕ to P ′, we get the following output TRS R′

sum.

R′
sum

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
sum(x) → sum1(x, 0)
sum1([ ], x) → x
sum1(x : y, z) → sum1(y, +(z, x))
+(0, x) → x
+(s(x), y) → s(+(x, y))

R′
sum computes the summation of a list more efficiently without the recursion.

3 Design of RAPT

We assume that the set F of function symbols is divided into disjoint two sets:
the set Fd of defined function symbols and the set Fc of constructor symbols.
The following is a sufficient condition to guarantee the correctness of the trans-
formation from a TRS R on G to a TRS R′ on G ′ by a template 〈P ,P ′,H〉
through a term homomorphism ϕ (Theorem 2 of [4]):

– R is a left-linear confluent constructor system,
– 〈P ,P ′,H〉 is a developed template,
– ϕ is a CS-homomorphism,
– equations in ϕ(H) are inductive consequences of R for G ,
– R is sufficiently complete for G , and
– R′ is sufficiently complete for G ′,

where Fc ⊆ G , G ′ ⊆ F .
A key property of our framework is sufficient completeness, which has to be

satisfied by input and output TRSs [4]. Sufficient completeness is checked in
RAPT by the decidable necessary and sufficient condition for terminating TRSs
[9,11], and thus currently the target of program transformation by RAPT is
limited to terminating TRSs. A simple procedure to check confluence is also
available for terminating TRSs [1].

RAPT uses rewriting induction [14], in which termination plays an essential
role, to verify that the instantiated hypotheses of transformation template are
inductive consequences of the input TRS. Since RAPT handles only terminating
TRSs, rewriting induction is integrated keeping the whole system simple. Other
inductive proving methods [2,5] also can be possibly incorporated.

For the termination checking, RAPT detects a possible compatible precedence
for the lexicographic path ordering (LPO) [1]. The obtained reduction ordering
is used as a basis of rewriting induction. Other methods to verify termination of
TRSs [1] may well be incorporated.
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FUNCTIONS
sum: List -> Nat;
cons: Nat * List -> List;
nil: List;
+: Nat * Nat -> Nat;
s: Nat -> Nat;
0: Nat

RULES
sum(nil()) -> 0();
sum(cons(x,ys)) -> +(x,sum(ys));
+(0(), x) -> x;
+(s(x),y) -> s(+(x,y))

INPUT
?f(?a()) -> ?b();
?f(?c(u,v)) -> ?g(?e(u),?f(v));
?g(?b(),u) -> u;
?g(?d(u,v),w) -> ?d(u,?g(v,w))

OUTPUT
?f(u) -> ?f1(u,?b());
?f1(?a(),u) -> u;
?f1(?c(u,v),w) -> ?f1(v,?g(w,?e(u)));
?g(?b(),u) -> u;
?g(?d(u,v),w) -> ?d(u,?g(v,w))

HYPOTHESIS
?g(?b(),u) = ?g(u,?b());
?g(?g(u,v),w) = ?g(u,?g(v,w))

Fig. 2. Specification of input TRS and transformation template

4 Implementation

4.1 Specification of Input TRS and Transformation Template

Inputs of RAPT are a many-sorted TRS and a transformation template. The
input TRS is specified by the following sections.

1. FUNCTIONS: function symbols with sort declaration.
2. RULES: rewrite rules over many-sorted terms.

The transformation template 〈P ,P ′,H〉 is specified by the following sections.

1. INPUT: rewrite rules of P over patterns,
2. OUTPUT: rewrite rules of P ′ over patterns,
3. HYPOTHESIS: equations of H over patterns.

Figure 2 shows the many-sorted TRS Rsum and the template 〈P , P ′, H〉 which
appear in Section 2 prepared as an input to RAPT: rules, equations and sort
declarations are separated by ”;”; pattern variables are preceded by ”?”; and to
distinguish variables from constants, the latter are followed by ”()” .

4.2 Implementation Details

RAPT is implemented using SML/NJ. The source code of RAPT consists of
about 5,000 lines.

The TRS transformation and the verification of its correctness are conducted
in RAPT in 6 phases. In Figure 3, we describe these phases and dependencies
among each phases. Solid arrows represent data flow and dotted arrows explain
how information obtained in each phase is used.
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R
P ′P

Validation of
Input TRS

Precedence
Detection

TRS Pattern
Matching Instantiation

R′

Proving Confluence and
Sufficient Completeness �

Verification of HypothesisH �

Validation of Output TRSSort

Output
Fig. 3. Overview of RAPT

If these 6 phases are successfully passed then RAPT produces output TRSs.
The correctness of the transformation is guaranteed, provided the transformation
template is developed. RAPT can also report summaries of program transforma-
tion in a readable format (Figure 4).

We now explain operations of each phases briefly.

1. Validation of input TRS. In this phase, RAPT checks whether the input
TRS is left-linear and well-typed, and from rewrite rules divides function symbols
into defined function symbols and constructor symbols and checks whether the
input TRS is a constructor system. The information of function symbols will be
used in Phases 3 and 4.

2. Precedence detection. In this phase, RAPT checks the input TRS is termi-
nating by LPO and (if it is the case) detects a precedence. The suitable prece-
dence (if there exists one) for LPO is computed based on the LPO constraint
solving algorithm described in [7].

3. Proving confluence and sufficient completeness. In this phase, RAPT
proves whether the input TRS is confluent and sufficiently complete. This makes
use of the information of constructor symbols detected at Phase 1 and the fact
that the input TRS is left-linear and terminating verified at Phases 1 and 2,
respectively. For confluence, it is checked whether all critical pairs are joinable.
For sufficient completeness, quasi-reducibility of the TRS is checked; this part
is based on the (many-sorted extension of) complement algorithm introduced in
[10] that computes the complement of a substitution.
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Summary of Program Transformation
reported by RAPT

February 21, 2006

Transformation Template:

P

j
f(a) → b
f(c(u, v)) → g(e(u, v), f(v))

P ′

8<
:

f(u) → f1(u, b)
f1(a, u) → u

f1(c(u, v), w) → f1(v, g(w, e(u, v)))

H

8<
:

g(b, u) ≈ u

g(u, b) ≈ u

g(g(u, v), w) ≈ g(u, g(v, w))

Input TRS:

R

8>><
>>:

rev(nil) → nil
rev(cons(x, ys)) → app(rev(ys), cons(x, nil))
app(nil, x) → x

app(cons(x, y), z) → cons(x, app(y, z))

Termination of R is checked by LPO with the precedence {rev > app, rev >

nil, rev > cons, app > cons}. The set of critical pairs of R is {}.

A solution of matching (CS-homomorphisms):

ϕ =

8>>>>>><
>>>>>>:

b �→ nil
a �→ nil
e �→ cons(�1, nil)
g �→ app(�2, �1)
c �→ cons(�1, �2)
f �→ rev(�1)

9>>>>>>=
>>>>>>;

The instantiation of hypothesis:

ϕ(H)

8<
:

app(u, nil) ≈ u

app(nil, u) ≈ u

app(w, app(v, u)) ≈ app(app(w, v), u)

Output TRS:

R′

8>>>><
>>>>:

rev(u) → f1(u, nil)
f1(nil, u) → u

f1(cons(u, v), w) → f1(v, cons(u, w))
app(nil, x) → x

app(cons(x, y), z) → cons(x, app(y, z))

Fig. 4. Example of a program transformation report
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Fig. 5. Snapshot of TRS pattern matching

4. TRS pattern matching. In this phase, RAPT finds a combination of rewrite
rules to apply the transformation and the term homomorphism which instanti-
ates the input pattern TRS to these rewrite rules; the matching algorithm in [4]
is used in this part. Using information of function symbols detected in Phase 1, it
is also checked whether this term homomorphism is a CS-homomorphism. Pat-
tern matching of rewrite rules are carried out in order, and use the information
of matching solutions to limit next rewrite rules to perform the pattern match.
Since solving the patten matching of main function usually gives information
which subfunctions are used in sequel, this heuristics performs the TRS match-
ing relatively well. Visually, consider the case when P = {pi(x) → pi−1(x) | 1 ≤
i ≤ 9}∪{p0(x) → a} and R = {fi(x) → fi−1(x) | 1 ≤ i ≤ 9}∪{f0(x) → 0} where
the number of all possible combinations of rewrite rules becomes 10! = 3, 628, 800
while the number of matching performed becomes

∑10
i=0 i = 55.

5. Verification of hypothesis. In this phase, RAPT checks whether the input
TRS satisfies the hypothesis part of the template. This is done by (1) instan-
tiating the hypotheses through the term homomorphism found at Phase 4 and
(2) proving they are inductive consequences of the input TRS, using rewriting
induction. The latter uses LPO with the precedence detected at Phase 2.

6. Validation of output TRS. In this phase, RAPT checks whether the out-
put TRS is (1) terminating, (2) left-linear, (3) type consistent, and (4) suf-
ficiently complete. In (3), because the pattern TRS P ′ for the output may
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Table 1. Experimental result

Template I TRSs Template II TRSs
f(a) → b
f(c(u, v)) → g(e(u), f(v))
g(b, u) → u
g(d(u, v), w) → d(u, g(v, w))

,

f(u) → f1(u, b)
f1(a, u) → u
f1(c(u, v), w) → f1(v, g(w, e(u)))
g(b, u) → u
g(d(u, v), w) → d(u, g(v, w))

,

g(b, u) ≈ g(u, b)
g(g(u, v), w) ≈ g(u, g(v, w))

3

f(a) → b
f(c(u, v)) → g(f(v), e(u))
g(b, u) → u
g(d(u, v), w) → d(u, g(v, w))

,

f(u) → f1(u, b)
f1(a, u) → u
f1(c(u, v), w) → f1(v, g(e(u), w))
g(b, u) → u
g(d(u, v), w) → d(u, g(v, w))

,

g(b, u) ≈ g(u, b)
g(g(u, v), w) ≈ g(u, g(v, w))

3

Template III TRSs Template IV TRSs

f(a) → b
f(c(u, v)) → g(e(u, v), f(v)) ,

f(u) → f1(u, b)
f1(a, u) → u
f1(c(u, v), w) → f1(v, g(w, e(u, v)))

,

g(b, u) ≈ u
g(u, b) ≈ u
g(g(u, v), w) ≈ g(u, g(v, w))

11

f(x, y, z) → g(h(x, y), z)
g(a, y) → b(u)
g(c(x, y), z) → e(x, g(y, z))
h(a, y) → r(y)
h(c(x, y), z) → c(d(x), h(y, z))

,

f(a, y, z) → g(r(y), z)
f(c(x, y), z, w) → e(d(x), f(y, z, w))
g(a, y) → b(u)
g(c(x, y), z) → e(x, g(y, z))
h(a, y) → r(y)
h(c(x, y), z) → c(d(x), h(y, z))

,

{}

8

contain a pattern variable not occurring in the pattern TRS P for the input,
types may be unknown for some of function symbols in R′. Therefore, we need
to infer the type information together with the type consistency check. (4) is
proved based on the fact the output TRS is terminating which is verified at
(1) using LPO.

5 Experiments

We have checked operations of RAPT using several templates. Table 1 describes
some of transformation templates and numbers of TRSs succeeded in transfor-
mation by each template. Template I is the one which appears in Section 2. This
template represents a well-known transformation from recursive programs to it-
erative programs. A same kind of transformation is also described by Template
II. The main difference between Template I and II is the right-hand side of sec-
ond rule of input parts. In our experiments, there exist TRSs which cannot be
transformed by one of these templates but can be done by the other. Template
III is the one which overcomes this difference; unchanged rewrite rules of input
and output TRS patterns are removed and rewrite rules which are necessary to
develop the template are pushed into the hypothesis. Template IV represents
another transformation known as fusion or deforestation [16]. RAPT performs
transformations of these examples in less than 100 msec.
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6 Concluding Remarks

Program transformation techniques have been widely investigated in various
fields [3,12,13,16]. This paper describes the system RAPT, which implements the
program transformation based on term rewriting introduced in [4]. RAPT trans-
forms a term rewriting system according to a specified program transformation
template and automatically verifies correctness of the transformation. We have
described the design and implementation of RAPT. An experimental result for
several templates has been shown.

Another framework of program transformation by templates is the one based
on lambda calculus [6,8,15]. MAG system [6,15] is a program transformation
system based on this framework. MAG supports transformations which include
modification of expressions, matching with a help of hypothesis; its target also
includes higher-order programs. RAPT does not handle such refinements, and
cannot deal with most of transformations appearing in [15]. The advantage of
RAPT against MAG lies on the approach to the verification of hypothesis. Since
the correctness of transformation by MAG system is based on Huet and Lang’s
original framework [8], users are usually need to verify the hypothesis. In con-
trast, RAPT proves the hypothesis automatically without help of users.

Besides the limitation of the theoretical framework, several limitations are
imposed in the current implementation of RAPT:

– RAPT handles only terminating TRSs. In fact, termination of input and
output TRSs are not required in the theoretical framework on which RAPT
is based. The main reason to limit its target to terminating TRSs is to reduce
checking of sufficient completeness to that of quasi-reducibility, which can
be easily verified.

– RAPT allows only confluent TRSs for input. Theoretically, not confluence
but ground confluence is sufficient. Replacing confluence checking by ground
confluence checking might enlarge the scope of input programs.

– RAPT implements only a naive rewriting induction. Thus, incorporating
lemma discovery mechanism and other inductive theorem proving methods
may largely enhance the power of inductive theorem proving. Since verifi-
cation of the hypothesis of template is an important part of the correctness
verification, enhancing this part will increase the flexibility of the program
transformation.

Extending RAPT to make more flexible transformation possible remains as a
future work.
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Abstract. This paper presents an overview of the CL-Atse tool, an efficient and
versatile automatic analyser for the security of cryptographic protocols. CL-Atse
takes as input a protocol specified as a set of rewriting rules (IF format, produced
by the AVISPA compiler), and uses rewriting and constraint solving techniques
to model all reachable states of the participants and decide if an attack exists w.r.t.
the Dolev-Yao intruder. Any state-based security property can be modelled (like
secrecy, authentication, fairness, etc...), and the algebraic properties of operators
like xor or exponentiation are taken into account with much less limitations than
other tools, thanks to a complete modular unification algorithm. Also, useful con-
straints like typing, inequalities, or shared sets of knowledge (with set operations
like removes, negative tests, etc...) can also be analysed.

1 Introduction

Designing secure communication systems in open environments such as the Internet
is a challenging task, which heavily relies on cryptographic protocols. However, se-
vere attacks have been discovered on protocols even assuming perfect cryptographic
primitives. Also, a complete manual analysis of a security protocol is usually a very
difficult work. Therefore, many decision procedures have been proposed to decide se-
curity properties of protocols w.r.t. a bounded number of sessions [1,7,16,15] in the so
called Dolev-Yao model of intruder [13], the dominating formal security model in this
line of research (see [14] for an overview of the early history of protocol analysis). In
particular, among the different approaches the symbolic ones [15,10,12] have proved
to be very effective on standard benchmarks [11] and discovered new flaws on several
protocols.

The main design goals of CL-Atse1 are modularity and performance. These two fea-
tures proved crucial for i) easily extending the class of protocols that can be analysed
(modularity) and ii) obtaining results for a large number of protocol sessions (perfor-
mance). This appeared to be very useful for analysing protocols from the AVISPA [2]
project in which CL-Atse is involved since a few years (with OFMC [5], SATMC [3]
and TA4SP [6]), as well as for the RNTL Prouvé project that CL-Atse joined recently.
The CL-Atse tool can be freely used, either by binary download on the CL-Atse web
page2, or through on-line execution on the AVISPA web page3.

The protocol analysis methods of CL-Atse have their roots in the generic knowledge
deduction rules from casrul [10] and AVISPA. However, a lot of optimisations and

1 CL-Atse stands for Constraint-Logic-based ATtack SEarcher.
2 http://www.loria.fr/equipes/cassis/softwares/AtSe/
3 http://www.avispa-project.org/web-interface/

F. Pfenning (Ed.): RTA 2006, LNCS 4098, pp. 277–286, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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major extensions have been integrated in the tool, like preprocessing of the protocol
specifications of extensions to manage the algebraic properties of operators like xor4 or
exponentiation. In practice, the main characteristics of CL-Atse are:

– A general protocol language: CL-Atse can analyse any protocol specified as a set of
IF rewriting rules (no restriction). The following figure shows the standard process
of protocol analysis using the AVISPA tools, from a specification in HLPSL (role-
based, same idea as strands) to any of the four tools available at the moment.

Spec. in IF format
 (rewriting rules) TA4SPSATMCOFMCCL−Atse

Spec. in HLPSL HLPSL2IF

– Flexibility and modularity: CL-Atse structure allows easy integration of new de-
duction rules and operator properties. In particular, CL-Atse integrates an optimised
version of the well-known Baader & Schulz unification algorithm [4], with mod-
ules for xor, exponentiation, and associative pairing. To our knowledge, CL-Atse
is the only protocol analysis tool that includes complete unification algorithms for
xor and exponentiation, with no limitation on terms or intruder operations.

– Efficiency: CL-Atse takes advantage of many optimisations, like simplification and
re-writing of the input specification, or optimisations of the analysis method.

– Expressive language for security goals: CL-Atse can analyse any user-defined state-
based property specified in AVISPA IF format.

Since protocol security is undecidable for unbounded number of sessions, the analysis
is restricted to a fixed but arbitrary large number of sessions (or loops, specified by the
user). Other tools provide different features. The closest to CL-Atse are:

The OFMC tool [5], also part of AVISPA, solves the same problem as CL-Atse except
that loops and sessions are iterated indefinitely. However, OFMC proposes a differ-
ent method to manage algebraic properties of operators: instead of hard-coding these
properties in the tool, a language of operator properties is provided to the user. Equal-
ity modulo theories is solved through modular rewriting instead of direct unification
with state-of-the-art algorithms for CL-Atse. However, since this language covers all
theories, termination is only obtained by specifying bounds on message depths and
number of intruder operations used to create new terms. Hence, completeness cannot
be ensured. CL-Atse does not provide such flexibility on properties, but it also does not
have any limitation for the theories it can handle (xor, exponentiation, etc...). Moreover,
thanks to modularity in the unification algorithm and in knowledge deduction rules, it
is quite easy to include new algebraic (or cryptographic) properties directly in the tool.
Also, CL-Atse seems to be much faster than OFMC (see Section 3.3).

The Corin-Etalle [12] constraint-based system, which improves upon one developed
by Millen & Schmatikov, relies on an expressive syntax based on strands and some
efficient semantics to analyse and validate security protocols. Here, strands are extended
to allow any agent to perform explicit checks (i.e. equality test over terms). This makes
a quite expressive syntax for modelling protocols, that is however subsumed by IF rules.
Moreover, to our knowledge no implementation for xor and exponential is provided.

4 We specially thank Max Tuengal who largely contributed to the integration of xor in CL-Atse.
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2 The Internal of CL-Atse

We now describe how CL-Atse models protocols and states, and how these objects
are used in analysis methods. We start with term signature in CL-Atse used to model
messages sent by parties (honest or malicious):

T erm = Atom | Var | T erm.T erm | {T erm}s
T erm | {T erm}a

T erm

| inv(T erm) | T erm ⊕ T erm |Exp(T erm, Product)
Product = (T erm)±1 | (T erm)±1 × Product

Terms can be atoms, variables, concatenations (or pairing), and symmetric or asym-
metric encryption (marked by s or a). Also, inv(k) is the inverse of k for asymmetric
encryption5. The ⊕ and Exp(..) operators are presented in Section 3.1, and model the
xor and exponentiation operators.

The intruder capabilities in CL-Atse match the Dolev-Yao model [13], extended
for xor and exponentiation as in [8,9]. Following the formalism of [16,8,9], we write
Forge(E) for the infinite set of messages that the intruder can generate from a set
of ground terms E. In particular, the intruder can compose pairs, encryption, xor and
exponentiation terms, and decompose pairs, encryption (if possible), etc...

As usual, (ground) substitutions are (ground) term assignments to variables. See [9]
for a discussion about how to rewrite a protocol specification to avoid products as vari-
able values. Moreover, allowing agents to make tests of quadratic residuosity for the
exponential is an easy extension of CL-Atse planned for near future.

2.1 Protocol and System State in CL-Atse

For performance issues, various algorithms are implemented in CL-Atse to simplify
and optimise the input protocol specification, and also to guide the protocol analysis.
However, these methods require working on a protocol specification with some special
features. Listing these would be quite technical, but the most important ones are the
fact that all protocol steps and roles must be local to only one participant, and that CL-
Atse must eliminate all honest agents’ knowledge by converting them into a small set
of equality and inequality constraints over terms with global variables. This allows CL-
Atse to compute closures of the participant’s or intruder knowledge, unforgeable terms,
sets or facts, and to optimise each role instance accordingly (preprocessing). The way
CL-Atse converts an IF file is out of the scope of this paper.

An execution trace in CL-Atse is built over (protocol) steps and states, and represents
the list of state changes when running a list of steps, starting from the initial state. The
basic objects used by CL-Atse are defined as follows.

A system state in CL-Atse is a symbolic representation of an infinite number of “real”
(i.e. ground) states. Since honest agent’s states have been converted into constraints,
only the intruder state is relevant in the definition of states, here. Formally:

state = Subst, Sets, T oDec, Known
ToDec = (T erm, T erm)∗

Known = H(Var) � Known |D(T erm) � Known | ε
5 If k is a (random) term, then inv(k) exists but is unknown to every agent.
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with Subst a (partial) substitution, Sets a list of facts t ∈ set, with {t, set} ⊂ T erm,
saying that in this state the element t is present in the set named set, and ToDec a list
of opportunities of knowledge deductions: if (m, k) ∈ ToDec, then the intruder will
get m as soon as he will be able to forge k. Typically, a knowledge {m}s

k creates an
entry in ToDec if k in not known at the point {m}s

k is obtained. Finally, Known is a
list of elementary ’D’ecomposed knowledge D(t), and ’H’ypothesis H(v) (i.e. variable
constraints), ordered by creation time in the execution trace. For example:

Known = H(x) � H(y) � D({z}s
k) � H(z) � D(a) � D(b) � ε

means that the intruder knows {z}s
k, a, b but must forge the value of z from {a, b},

and the values of x and y from {{z}s
k, a, b}. We denote E|D the set of terms t such

that D(t) ∈ E. Naturally, a symbolic state as above models the infinite set of ground
states σ(Known|D, Sets) such that σ is a ground instance of Subst and σ(v) ∈
Forge(σ(F|D)), with Known = E � H(v) � F . The analysis methods of CL-Atse
use rewriting of symbolic states in order to filter or update the set of ground states that
it represents.

A protocol step in CL-Atse represents an elementary reaction of an agent: when receiv-
ing the message rcv, and provided that a list CtrList of constraints u = v or u �= v
over terms and a list SetT ests of constraints t ∈ set or t /∈ set over sets are satisfied,
the agent sends a message snd as a response and executes a list SetOperations of add
or remove operations over sets and set elements. That is:

step = iknows(rcv)& CtrList & SetT ests
⇒ iknows(snd)& SetOperations

Note that IF facts are converted into constraints over sets. The semantic of ground step
execution is defined as usual: given some intruder knowledge E, a populated list of
named sets, and a ground substitution σ, if σ(rcv) ∈ Forge(E), if σ(u) = σ(v) or
σ(s) �= σ(t) for any constraint u = v or s �= t in CtrList, and if σ(t) ∈ σ(set) (resp.
σ(t) /∈ σ(set)) for any test t ∈ set (resp. t /∈ set) in SetT ests, then σ(snd) is added
to E and all add or remove operations in SetOperations are performed modulo σ.

A role in CL-Atse is a tree-structured set of roles that captures the non-determinism of
the execution of IF rules. Formally:

role = Step(step, role) |Choice(role list) |EndRole

where Choice describes an agent’s choice point, i.e. from that point only one role in
role list may be run, like in A|B. Thanks to equality and inequality constraints, this
may model pattern matching. Moreover, thread creation is supported through tokens.
For example, A.(B||C) is modeled by 3 roles A, B, C where A send tok1 at its last
step and B and C wait for tok1 in their first steps. Same for confluence ((B||C).D),
with a pool of tokens.

A security property in CL-Atse is modeled as the negation of a list of attack states,
defined as follows:

attack_states = (iknows(rcv)& CtrList & SetT ests)∗
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with the same definitions as for step. An attack is found when at least one ground
state of a symbolic system state satisfies the constraints of one of the attack states. This
definition of security failure is quite versatile since it allows the user to use any IF
facts (self-made or not) to define any property based on states adapted to his protocol.
Standard properties like secrecy or authentication are naturally supported and an imple-
mentation of temporal security properties is planned for very near future. For example,
fairness6 in a two-party contract-signing protocol may be coded by:

fairness_atk = (i, Alice, text) ∈ play_together & iknows(ctr(text))
& ctr(text) /∈ ctr_list(Alice)& Alice ∈ finished

with text a contract text, ctr(text) a term representing the valid signed contract, and
play_together, ctr_list(Alice) and finished user-defined facts representing the lists
of initiated sessions, contracts of Alice, and terminated agent’s roles. Similar for Alice
playing with an honest agent.

A protocol specification in CL-Atse is simply a set of instantiated roles (one for each
participant) plus an initial state and a set of attack states:

protocol = RoleList, InitState, attack_state

2.2 Protocol Simplifications and Optimisations

During the AVISPA project, it became increasingly clearer that two important ingredi-
ents that may contribute to the efficiency of the CL-Atse tool would be protocol simpli-
fication strategies and optimisation operations on the protocol specification. Therefore,
without neglecting the importance of efficiency for the analysis algorithm, some impor-
tant efforts were devoted to the two axes of protocol simplification and optimisation.

Protocol simplifications reduce the overall size of the protocol, and specifically the
number of steps, by merging as many steps together as possible, or at least marking
them to be executed as soon, or as late, as possible. A step marked to be run as soon as
possible will be run in any trace immediately after its parent step. Since these marks or
merges put very restrictive constraints on the step interleaving, they greatly reduce CL-
Atse computing time (the analysis is necessarily exponential in the number of unmarked
steps). However, CL-Atse can only take such decisions when it can automatically build
a proof that it would not void the insecurity of the protocol, i.e., that if the protocol was
flawed then necessarily at least one attack remains. To do so, CL-Atse builds various
protocol-dependant objects like a set of unforgeable terms (atoms, keys, etc.. that the
intruder cannot create in any execution). Then, given a protocol step, CL-Atse tests its
elements for possibilities of merging (or marking).

To do so, set tests and operations are checked for possibilities of being executed
as soon, or as late, as possible. For example, if set is a set name unforgeable by the
intruder, then an operation that removes the term t from set can be performed as soon
as possible when either there exists no set operation that add t′ to set′ or tests t′ ∈ set′ in
any step of other roles that may be run before this operation; or the operation is useless

6 It intuitively requires that whenever a participant obtains a valid contract, there is a way for
it’s partner to also obtain one.
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or impossible (similar tests). Similar criteria are evaluated for each set operation or test,
and for both as soon, or as late, as possible executions.

Also, all other step elements are tested in similar ways, as well as attack states: for
example, marking a step to be run as soon as possible requires that if any attack state
is validated, then it is also validated either before the previous step, or after the current
step if no constraints could prevent running this step. When all tests are successful, the
step is marked and another one is analysed.

Optimisations: Protocol optimisations aim at rewriting some parts of the protocol in
order to accelerate the search for attacks. The acceleration can be significant, but the
protocol structure can be changed. The idea is to track all possible origins of ciphertexts
that the intruder must send but cannot create himself (i.e. necessarily obtained from an
agent). By building an exhaustive list of origins for such terms, CL-Atse can reduce
the future work of the analysis algorithm by unifying these terms with each of their
possible origins and generate choice points accordingly. Analysis acceleration comes
from a reduction of possible redundancy in step execution. Moreover, this strategy also
fixes the moment when steps holding such cipher terms must be run in the analysis.
The same must also be done on the awaited sets that the intruder cannot create himself
(same idea). For example, if we have some protocol steps

step1 = iknows({m}k) ⇒ ....
step2 = ... ⇒ iknows({m′}k′) ...
step3 = ... ⇒ iknows({m′′}k′′ ) ...

where CL-Atse computes that k is unforgeable by the intruder, and that step2 and step3
are the only origins of {m}k, then these steps may be replaced by:

step4 = Choice( step5, step6 )
step5 = iknows(token1)& equal({m}k , {m′}k′) ⇒ ....
step6 = iknows(token2)& equal({m}k , {m′′}k′′ ) ⇒ ....
step7 = ... ⇒ iknows({m′}k′ , token1) ...
step8 = ... ⇒ iknows({m′′}k′′ , token2) ...

The big difference is that only atoms are now awaited in step5 and step6. This gives
us the chance to optimise their execution (when possible) by running these steps imme-
diately as soon as token1 or token2 is added to the intruder knowledge. This strategy
allows CL-Atse to analyse rapidly some protocols that it could not analyse otherwise.

3 The Analysis Method

As said before, the analysis algorithm implemented in CL-Atse follows the general
ideas developed in the AVISPA Project, that is, to symbolically execute the protocol
in any possible step ordering. We saw in the previous section some of the important
optimisations of CL-Atse for step interleaving above this generic method. Moreover, in
order to perform this exploration of all possible execution traces, the analysis algorithm
relies on two major components: a (generic) unification algorithm modulo the properties
of the operators, like xor or exponentiation, that provide all term-specific computations;
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and the management of states and constraints when running a protocol step. This mod-
ular structure allowed us to code the tool extensions required by the AVISPA project
(like sets, properties, typing, etc..) in a direct and natural way. We now present the two
major components of CL-Atse and the analysis method.

3.1 Modular Unification (with Xor and Exponentiation)

The unification module provides a (generic) complete unification algorithm modulo the
algebraic or cryptographic properties of the CL-Atse operators (encryption, xor, exp,
pair, etc..), as well as related algorithms like term purification or normalisation. From
a general point of view, the problem that must be decided here is: given a (partial)
substitution σ and two terms u and v, generate a list of most general unifiers Mguσ

u,v ={
σ′

1, .., σ
′
p

}
of u and v that validate σ, i.e.:

∀σ′ ∈ Mguσ
u,v, σ′(u) = σ′(v) and σ′(Var) = σ′(σ(Var))

Since mgu(s) are used to generate new system states, a great care must be taken to
generate a list of mgu as small as possible. The latest implementation of CL-Atse man-
ages the properties of the xor operator, the exponentiation, and the associative concate-
nation. To manage these properties, the tool unifies terms thanks to an implementation
of an optimised version of the well-known Baader & Schulz unification algorithm [4],
which splits the unification problem into smaller unification problems, one for each the-
ory. Therefore, the unification algorithm is very modular, and we consider that it would
be reasonably difficult to add new operator properties to the previous ones. Currently,
we have:

The xor operator: Denoted ⊕, this is an associative (a ⊕ (b ⊕ c) = (a ⊕ b) ⊕ c) and
commutative (a ⊕ b = b ⊕ a) operator equipped with a unit element (a ⊕ 0 = a) and
nilpotent (a ⊕ a = 0);
The exponentiation: Denoted Exp(g, a), it represents ga in some fixed group of prime
order. Also, the product × on exponents models the multiplication in the corresponding
(abelian) multiplicative group. Properties include inverse (a×a−1 = 1), commutativity
(a × b = b × a), normalisation (Exp(Exp(g, M), N) = Exp(g, M × N)), ...
The associative concatenation: it represents the basic bit string concatenation, without
any header giving the splitting position: in this case, associativity models the chance (or
a risk) that an agent will not cut the concatenation correctly when parsing it. Naturally,
a non-associative pairing operator is also provided.

3.2 The Kernel: Running a Protocol Step

The second foundational element of the protocol analysis is the kernel module, which
aims at running a protocol step on a symbolic system state by adding new constraints,
reducing them to elementary constraints, testing their validity, etc... All these operations
are described as rewriting rules and follow carefully the IF semantics. For performance
issues all these rules are directly implemented in the tool as operations on constraints.
Therefore, adding new intruder deduction rules requires to implement them in the tool.
However, the recent extensions to algebraic properties proved that the tool is sufficiently
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modular to make such integration quite easy. In particular, the rewriting rules described
below correspond to matching in the tool very precisely.

Hypothesis reductions: We call non-reduced a hypothesis H(t) where t is not a vari-
able. This is the received message of a protocol step. Assume that s = (E � H(t) � F �
ε, td, set, σ) is a system state where t /∈ Var and F reduced already. Then, we reduce
H(t) depending on t with rewriting rules on E � H(t) � F � ε (and σ). For example:

– E � H(u, v) � F −→ E � H(u) � H(v) � F ;
– E � H(t) � F � D(t′) � G −→ σ′ (E � F � D(t′) � G ) with σ′ ∈ Mguσ

t,t′;
– E � H({t}s or a

k ) � F −→ E � H(t) � H(k) � F if k in not unforgeable;

These rules model respectively the creation of a pair, the redirection of a known mes-
sage, and the creation of a cipher. Also, similar but more complex rules allow us to
construct xor or exponentiation terms, by enumerating the possibilities available to an
adversary for constructing such terms, like building an xor by combining xor and non-
xor terms. If defined, σ′ is the new state’s substitution. These rules are naturally non-
deterministic (create a set of states), and are iterated until all variables are reduced.

Knowledge deductions: We increase Known with K(t), t ∈ T erm, for new non-
decomposed ’K’nowledge (sent message in a protocol step), and T (t) for a knowledge
being processed (i.e. ’T’emporary). Reducing an Known containing some K(t) is done
in two steps, similar to those for hypothesis. That is, the processing of a new knowledge
follows this scheme:

... � K(t) � ...
decompose K(t)−−−−−−−−−→ ... � T (t) � ...

analyse ToDec with t−−−−−−−−−−−−→ ... � D(t) � ...

The first set of rules decompose any K(t). For example:

– E � K(u, v) � F −→ E � K(u) � K(v) � F ; E � K(t) � F −→ E � T (t) � F ;
– E �K({m}s or a

k )�F −→ E �K(m)�T ({m}s or a
k )�H(k′)�F with k′ = inv(k)

(for asymmetric encryption) or k′ = k (for symmetric encryption);

These rules model respectively the decomposition of a pair, the fact that a term may
not be decomposable, and the decryption of a cipher. Rules in CL-Atse include vari-
ous optimisations and variations of the techniques described above (like state filtering
depending on key availability, ...). Moreover, rules for ⊕ or Exp are also included (to
get a from a ⊕ t, or g from Exp(g, M)). The second set of rules can analyse ToDec
to add or remove deduction opportunities depending on T (..). That is, assuming that
Known = E � T (t) � F , we:

– Add (m, k) to ToDec when t = {m}k;
– Remove {(m′

i, k
′
i)}i∈1..n from ToDec when we can reduce the hypothesis H(k′

1)�
.. � H(k′

n) � E � D(t) � F to some G such that D(t) is used at least once for each
k′

i, and create a new state with K(m′) � G. This is again non-deterministic. Also,
create a new state with E � D(t) � F , in case no k′

i may be computed.

These rules, too, are significantly optimised in CL-Atse. Moreover, the last rule guar-
antee that we won’t ever build k′ is a way that has already been tried before, which is
critical for tool performance.
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Other operations: To run a protocol step, we need to perform other operations on states
than the two above, like adding (and validating) new equality or inequality constraints,
managing sets, etc.. Since they are quite straightforward and coded in a similar way as
the two above, they are not detailed here.

3.3 Search for Attacks

Using the previously described kernel module, we are now able to run a protocol step on
a system state and get the resulting set of new states. Therefore, we can easily explore
all possible runs of a protocol by iteratively running steps in any possible ordering,
starting from the initial state. Moreover, we reduce step interleaving by using the step
marking described in the simplification and optimisation Section 2.2. Finally, each time
a protocol step is run, we test the non-satisfiability of each attack state.

Performances: The analysis algorithm of CL-Atse gives very good performances in
practice, as shown in the small benchmark table that follows. Times are computing
times of the latest versions (feb. 20, 2006) of OFMC and CL-Atse, and protocol speci-
fications are taken from AVISPA. Note also that (2) is CL-Atse without some optimisa-
tions. The “Timeout” for QoS in that case is due to an explosion of the number of states.
Both binaries and on-line tool execution are available (see introduction for URLs).

Protocol Name Alg. theory Result OFMC CL-Atse CL-Atse(2)

ASW - Abort part Secrecy failure 3.94s 0.03s 0.16s
EAP with Archie method Safe 0.70s 0.07s 5.94s
EAP TTLS with CHAP Safe 1.27s 0.18s 0.19s
Fair Zhou-Gollmann Auth. failure Timeout 0.13s 0.13s
Fair Zhou-Gollmann (fixed) Safe 7.65s 4.57s 5.34
IKEv2 with MAC auth. - Exp. Safe 20.29s 7.62s 7.62s
Kerberos, cross-realm ver. - Exp. Safe 5.83s 0.42s 0.42s
Kerberos, forwardable tickets - Exp. Safe 15.40s 0.14s 0.15s
Purpose Built Keys protocol Auth. failure 0.35s 0.00s 0.00s
PEAP with MS-CHAP auth. Safe 14.25s 0.18s 0.18s
Next Steps In Signaling, QoS Safe 15.53s 0.86s Timeout
SET - Purchase Request Secrecy failure 1.17s 0.14s 0.15s
Diameter Session Init. Prot. Safe 1.80s 0.01s 0.02s
SPEKE, with strong pwd. - Exp. Safe 2.75s 0.04s 0.04s
SSH Transport Layer Prot. - Exp. Safe 33.96s 2.12s 2.16s

4 Conclusion

As mentioned before, the analysis algorithm implemented in CL-Atse proposes a solu-
tion to the NP-Complete protocol insecurity problem w.r.t. a bounded number of ses-
sions, and with (or without) the algebraic or cryptographic properties of operators, like
xor, exponentiation, or associative pairing. The methods of CL-Atse include many im-
portant optimisations for step interleaving, either by preprocessing or by optimised data
structures and deduction rules. This allows CL-Atse to reduce redundancies and limit
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the overall number of elementary actions needed at each step (performance). Moreover,
the tool proved to be sufficiently flexible to support major improvements and extensions
of the past few years (modularity). For example, extensions to inequalities, set opera-
tions, state-based properties, or typing required only little recoding of previous works.
Also, while the recent implementation of the Baader & Schulz unification required a
significant amount of work, the extension of CL-Atse with new operator properties,
like Cipher block chaining, is now largely facilitated, as well as planned extensions to
temporal security properties of heuristics for unbounded analysis.
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Abstract. A Knuth-Bendix completion procedure is parametrized by a
reduction ordering used to ensure termination of intermediate and result-
ing rewriting systems. While in principle any reduction ordering can be
used, modern completion tools typically implement only Knuth-Bendix
and path orderings. Consequently, the theories for which completion can
possibly yield a decision procedure are limited to those that can be ori-
ented with a single path order.

In this paper, we present a variant on the Knuth-Bendix completion
procedure in which no ordering is assumed. Instead we rely on a mod-
ern termination checker to verify termination of rewriting systems. The
new method is correct if it terminates; the resulting rewrite system is
convergent and equivalent to the input theory. Completions are also not
just ground-convergent, but fully convergent. We present an implementa-
tion of the new procedure, Slothrop, which automatically obtains such
completions for theories that do not admit path orderings.

1 Introduction

A Knuth-Bendix completion procedure is a technique for solving the word prob-
lem for a finite set of identities. In this procedure, the user provides the set of
identities as well as a reduction order on terms.

Using unfailing completion [3], ground-convergent completions can be dis-
covered even when no compatible reduction order exists. However, successful
completions may contain unoriented equations along with oriented rewrite rules.
The resulting system is convergent only for ground terms and often contains
more rules than a fully convergent completion.

Nonetheless, many theories are easily oriented by a few useful classes of re-
duction orderings, such as Knuth-Bendix and recursive path orderings (KBO
and RPO, respectively). The wide applicability of KBO and RPO has led to the
success of completion procedures. While in principle any reduction ordering can
be used, modern completion tools like Waldmeister [9] typically implement
only these two classes of orderings. (However, the tool CiME also implements
polynomial orderings [4].) Consequently, the theories for which completion can
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possibly yield a decision procedure in the form of a convergent rewrite system
are limited to those with completions that admit such a path order.

In this paper, we present a new variant on the standard Knuth-Bendix comple-
tion procedure in which no ordering is explicitly provided. Instead a constraint
rewriting system is constructed during execution, and its reduction relation is
used for an ordering. Termination of the constraint system then implies termi-
nation of the intermediate rewrite systems. In the implementation, we rely on
modern termination-checking methods to verify the termination of the constraint
systems.

The new method is correct if it terminates; the resulting rewrite system is
convergent and equivalent to the input theory. In addition, the completions are
not just ground-convergent, but fully convergent. The method is also complete
for finite executions in that if there exists a successful, finite execution of a
standard Knuth-Bendix completion procedure with some reduction ordering,
then an equivalent execution in the modified system exists.

We begin in Sect. 2 with a presentation of standard Knuth-Bendix completion
and statements of correctness. In Sect. 3 we introduce our new completion variant
in which the reduction order is left implicit and prove its correctness. In Sect. 4,
we present an implementation of the new procedure called Slothrop, and in
Sect. 5 we discuss its performance and results, including convergent completions
automatically obtained for the first time. Finally in Sect. 6, we discuss areas of
future interest with respect to the new technique.

2 Knuth-Bendix Completion

In this section, we review the basic definition and properties of completion pro-
cedures. We use standard notation for terms and term rewriting systems, as
presented in [1].

A Knuth-Bendix completion procedure [8] is an algorithm that takes as input
a reduction ordering > and a finite set of equations E and attempts to produce a
decision procedure for the word problem for E in the form of a rewriting system.
Completion algorithms attempt to construct a convergent rewriting system R
that is equivalent to E (i.e., with the same equational theory, ∗↔E= ∗↔R) by
generating a possibly infinite sequence of intermediate rewriting systems which
yield approximations of the equational theory of E.

Bachmair formulated Knuth-Bendix completion as an equational inference
system [2]. We refer to this standard system as C because it serves as the basis
of a correctness condition for our refinement of the procedure. The rules of the
inference system C are shown in Fig. 1. A deduction of C, written (E, R) �C
(E′, R′), consists of finite sets of identities E, E′ and rewrite systems R, R′. A
finite execution γ of the system C is the pair (E0, ∅) followed by a finite sequence
of deductions

(E0, ∅) �C (E1, R1) · · · �C (En, Rn),

where E0 is the input theory provided by the user, and each deduction results
from an application of one of the inference rules of C. (We consider only finite
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orient:
(E ∪ {s

.= t}, R)
(E, R ∪ {s → t}) if s > t

deduce:
(E, R)

(E ∪ {s = t}, R) if s ←R u →R t

delete:
(E ∪ {s = s}, R)

(E, R)

simplify:

(E ∪ {s
.= t}, R)

(E ∪ {u
.= t}, R) if s →R u

compose:
(E, R ∪ {s → t})
(E, R ∪ {s → u}) if t →R u

collapse:
(E, R ∪ {s → t})
(E ∪ {v = t}, R) if s

�→R v

Fig. 1. Standard Knuth-Bendix Completion (C)

executions of C in this paper; the infinite case is discussed briefly in Sect. 6.)
The length of γ, written |γ|, is the number of deductions in γ. A finite execution
γ of C succeeds if E|γ| = ∅ and R|γ| is a convergent rewrite system equivalent to
E as described above; otherwise it fails. Elsewhere ([2], [1]), C is proved correct
in that any successful, finite execution γ results in a convergent rewrite system
R|γ| equivalent to the input identities E.

The main difficulty with the standard completion procedure is in finding an
appropriate reduction order. Choosing a suitable RPO, KBO or polynomial in-
terpretation (the only options available in known tools) is difficult even for ex-
perienced users, and for many theories no such path ordering exists. In the next
section, we solve this problem with a variant on the standard completion pro-
cedure which discovers a suitable reduction ordering without input from the
user.

3 Completion with Termination Checking

We now present a modification of the standard Knuth-Bendix completion pro-
cedure. The primary difference is that no reduction order is explicitly provided
as input, only a finite set of identities. Lacking any specific reduction order to
guide the search, we preserve termination of each intermediate rewrite system
Ri by ensuring that some reduction order �i compatible with Ri exists. The
orders �i are constructed using terminating rewrite systems Ci, specifically as
the transitive closure of the reduction relation on Ci, written +→Ci . This rela-
tion is a well-founded order exactly when the system Ci is terminating. While
in the standard system C a rule s → t is added by orient to Ri only if s > t
with the user-specified reduction order, in the modified system the rule is added
only if the addition of s → t to Ci preserves termination. Of course, deciding
termination is not possible in general. In Sect. 4, we discuss how this test is
accomplished in practice.
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Figure 2 provides the inference rules for a modification of the standard com-
pletion procedure, which we refer to as system A. A deduction of A, written
(E, R, C) �A (E′, R′, C′), consists of identities E, E′ and rewrite systems R, R′

as in standard completion, and finite constraint rewriting systems C, C′ new to
A. A finite execution α of the system A is the triple (E0, ∅, ∅) followed by a finite
sequence of deductions

(E0, ∅, ∅) �A (E1, R1, C1) · · · �A (En, Rn, Cn),

with E0 the set of input identities and where each deduction results from an
application of one inference rule from A. We consider only finite executions of
A; infinite executions are discussed in Sect. 6. We write |α| to denote the length
of the sequence. An execution α of A is equivalent to an execution γ of C when
the intermediate equations and rewrite systems are the same at each step. A
finite execution α of system A succeeds when E|α| = ∅ and R|α| is a convergent
rewrite system equivalent to E. Because we only consider finite executions, every
execution that does not succeed fails.

orient:
(E ∪ {s

.= t}, R, C)
(E, R ∪ {s → t}, C ∪ {s → t}) if C ∪ {s → t} terminates

deduce:
(E, R, C)

(E ∪ {s = t}, R, C) if s ←R u →R t

delete:
(E ∪ {s = s}, R, C)

(E, R, C)

simplify:

(E ∪ {s
.= t}, R, C)

(E ∪ {u
.= t}, R, C) if s →R u

compose:
(E, R ∪ {s → t}, C)
(E, R ∪ {s → u}, C) if t →R u

collapse:
(E, R ∪ {s → t}, C)
(E ∪ {v = t}, R,C) if s

�→R v

Fig. 2. Modified Knuth-Bendix Completion (A)

The rules deduce, delete, simplify, compose and collapse of A are
identical to those of C, except for the presence of the constraint system C which
is carried unmodified from antecedent to consequent. The critical difference be-
tween A and C is in the definition of the orient rule. In the standard system
C, an identity s

.= t of E is added to R as rule s → t only when s > t for the
given reduction order. In the modified system A, we add the rule s → t to R
only when the augmented constraint system C ∪ {s → t} is terminating. The
system A accepts as input only the finite set of identities E; no reduction order
is explicitly provided.

We now state correctness of A for finite executions (partial correctness). The
proof proceeds by showing that A simulates a standard Knuth-Bendix comple-
tion procedure C. For each finite execution α of A, we construct an execution



Slothrop: Knuth-Bendix Completion 291

γ of C with an equivalent sequence of deductions as α. The constraint systems
are used to show that any finite execution is equivalent to one which uses the
single order induced by the final constraint system. This is important because
completion is not generally correct when reduction orders are changed during
execution, even if each is compatible with the immediate intermediate rewrite
system [10]. The induced order is +→C|α| , the transitive closure of the reduction
relation of the final constraint system C|α|.

Theorem 1 (Partial Correctness of A). Let α be a finite execution of the
system A. Then there exists an equivalent execution γ of C using reduction order
+→C|α| .

3.1 Partial Completeness

We now show a limited form of completeness for our procedure with respect
to standard Knuth-Bendix completion. Namely, for any successful execution of
the standard completion procedure C there exists a corresponding execution
of the modified procedure A with the same deductions. This shows that our
method can at least construct decision procedures for those theories that are
decidable by the standard method. In Sect. 5, we give an example of a theory
for which our method constructs a convergent completion that, to the authors’
knowledge, cannot be automatically constructed by any tool that implements C
due to inability to specify an appropriate reduction order.

Theorem 2 (Partial Completeness of A). For any finite execution γ of C
with reduction order >, there exists an equivalent execution α of A. Furthermore,
+→C|γ|⊆>.

Proof. By induction on γ. The beginning execution is γ = (E0, ∅), which trans-
lates to α = (E0, ∅, ∅). Otherwise, γ = γ′ �C (Ek, Rk) and by IH there exists α′

that satisfies the claim for γ′, and also →Ck−1⊆>. Let Ck = Ck−1 if the final
deduction is the result of any rule except orient, and Ck = Ck−1 ∪ {s → t}
otherwise, with {s → t} = Rk − Rk−1. We claim α = α′ �A (Ek, Rk, Ck) and
show this is a correct execution of A. This is trivial for rules other than orient,
since their side conditions do not mention the constraint systems. Otherwise,
s > t and +→Ck−1⊆> which implies +→Ck

⊆>. This in turn implies that Ck is
terminating because its rules are compatible with the reduction order >.

This theorem demonstrates the existence of a successful execution of A for every
successful finite execution of C. But note that that the rule orient in A can
orient an equation s = t in either direction when both C ∪ {s → t} and C ∪
{t → s} are terminating systems. Consequently, an execution of A as defined
above will fail if a poor decision is made during orientation. The ability to
construct a successful execution relies on a non-deterministic orientation choice.
Deterministically, an execution of A becomes a binary tree in which each node
is an instance of the rule orient. In practice, we must search for a successful
execution. We ensure discovery of such an execution (corresponding to a path
from the root (E0, ∅)) by fairly advancing each of the individual executions.
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4 Implementation

We have implemented our modified Knuth-Bendix completion procedure in a
7000-line Ocaml program called Slothrop.1 The implementation is based on
a particular completion strategy developed and proved correct by Huet [7], and
later by Bachmair using the inference system C [2]. The implementation itself is
originally based on an ML implementation of Huet’s algorithm by Baader and
Nipkow [1] and makes use of data structures programmed by Filliâtre [5].

The main technical challenge in the implementation is with the orient rule.
As is well known, determining whether or not a term rewriting system terminates
is undecidable in general. However, modern termination-checking tools, such as
AProVE [6], succeed in proving many systems terminating or nonterminating
with almost alarming success. In our implementation, we take advantage of this
success and use AProVE as an oracle to answer queries about the termination of
constraint rewriting systems in each orientation step. If AProVE fails to prove
a system terminating or nonterminating, we treat it as a nonterminating system
and delay its treatment. However, the array of techniques used by AProVE to
show termination includes recursive path orders among many others, so there is
little difficulty recognizing the termination of systems compatible with such an
order. Furthermore, since AProVE is able to prove termination of systems that
are not compatible with a path order, Slothrop can find convergent comple-
tions of theories other modern completion tools (e.g., Waldmeister) cannot.
One example of such a theory is given in Sect. 5.

Integrating a separate termination checker also provides separation-of-
concerns benefits for theorem proving. As the power and speed of the AProVE
tool, so does Slothrop. This also provides the opportunity to leverage other
termination checkers with different properties (e.g., one which is faster but less
powerful might be useful for simple theories).

Another important aspect of our implementation is the manner in which dif-
ferent branches of executions are explored. When AProVE determines that
some equation s = t can be oriented either way, both branches are explored.
Implementation of this exploration is critical to performance. The binary tree
of executions is potentially infinite, and branches whenever orderings exist that
are compatible with both orientations of an equation.

A breadth-first search of the branches is sufficient for partial completeness; if
there is some successful finite execution corresponding to a branch on the tree,
it will eventually be expanded. In practice, however, this strategy spends too
much time in uninteresting areas of the search space, and prevents Slothrop
from finding completions for any but the most modest theories in a reasonable
amount of time. A more effective strategy is a best-first search in which the next
execution to advance is chosen based on a cost function defined by

cost(E, R, C) = size(C) + size(E) + size(Γ (R)),

1 Slothrop is available online at http://cl.cse.wustl.edu/ on the software page.



Slothrop: Knuth-Bendix Completion 293

where Γ (R) denotes the set of all nontrivial critical pairs of R. With this strategy,
size(C) can be thought of as the cost to reach the current intermediate step in
the execution and size(E) + size(Γ (R)) as a heuristic estimate for the cost to
find a convergent completion.

In some cases, AProVE is unable to prove termination of a system with
either orientation of a particular equation. Here, we do not discard the system
entirely, but attempt to orient other equations in hope that the previously unori-
entable equation will simplify into an orientable (or trivial) one. In the current
implementation of Slothrop, treatment of such systems is delayed until others
are explored which can be proved terminating or nonterminating. This heuris-
tic is suitable for simple systems, but better ones are needed for more difficult
theories.

5 Performance and New Results

Slothrop is capable of completing a variety of theories fully automatically
in a modest amount of time. For example, the standard 10-rule completion of
the group axioms is discovered in under 3 seconds on a modern desktop PC.
On the way to this completion, it encounters 27 orientations, roughly half of
which are not trivially nonterminating and must be verified with AProVE. On
the execution branch that leads to a completion, however, only two orientation
steps are required. Slothrop automatically completes the theory of groups plus
a single endomorphism (GE1) in under 10 seconds, requiring about 100 calls to
AProVE. A large theory with 21 equations corresponding to propositional proof
simplification rules [12] is considerably more difficult to complete because of the
number of orientations. Nonetheless, Slothrop does find a completion without
user intervention after about 7 hours and 3000 calls to AProVE.

The majority of Slothrop’s running time is spent waiting for calls to
AProVE. Although we have encountered many examples of rewriting systems
which AProVE can show terminating after a prohibitively long amount of
time, in practice we have found that it is uncommon for such difficult sys-
tems to appear on the branch of a successful execution. Most calls to AProVE
that occur on successful branches return in under 2 seconds. Completeness of
Slothrop can be exchanged for performance enhancements by calling AProVE
with a short timeout. The above completions were obtained with a 5-second
timeout.

Since Slothrop is not restricted to a given reduction ordering, it can also
search for multiple completions of a given theory. For example, it finds two

1 ∗ x = x x−1 ∗ x = 1 (x ∗ y) ∗ z = x ∗ (y ∗ z)
f(x ∗ y) = f(x) ∗ f(y) g(x ∗ y) = g(x) ∗ g(y) f(x) ∗ g(y) = g(y) ∗ f(x)

Fig. 3. The Theory of Two Commuting Group Endomorphisms (CGE2)
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completions of the basic group axioms corresponding to both orientations of the
associativity rule. It also finds four completions of GE1 corresponding to the ori-
entations of the associativity endomorphism rules. It also discovers a number of
other larger completions of the same theory in which endomorphism are oriented
differently depending on the context.

Additionally, a convergent completion can be obtained by Slothrop for the
theory of two commuting group endomorphisms (CGE2), shown in Fig. 5. The
reader may verify that no RPO or KBO is compatible with the theory (in par-
ticular, the final commutativity rule). A completion was recently obtained for
the first time by hand [11] — rules derived from critical pairs were manually ori-
ented, local confluence checked, and termination of the resulting system verified
by AProVE.

Using unfailing completion [3], Waldmeister is able to complete CGE2 as
well, but constructs a larger system which is ground-confluent only — i.e, it
contains equations as well as rewrite rules. This system is often less helpful than
a small convergent completion, for example, in characterizing the normal forms of
the system for algebraic proof mining [12]. Furthermore, Waldmeister does not
appear to be able to find this ground-convergent completion fully automatically;
a carefully selected Knuth-Bendix ordering (given in [11]) must be provided.
Slothrop is able to find the convergent completion with no input from the
user other than the theory itself. (This still takes more than an hour, however,
even using the heuristic described in Sect. 4.)

6 Conclusion and Future Work

We have presented a new variant on Knuth-Bendix completion which does not
require the user to provide a reduction ordering to orient identities. The proce-
dure is correct and complete, but only for finite executions. An implementation of
the procedure, called Slothrop, can find convergent completions for a number
of interesting theories without any input from the user, including one (CGE2)
which cannot be obtained by any existing tool.

A primary goal of future work is to increase the efficiency of Slothrop. Basic
heuristic search techniques have made the algorithm feasible for many theories,
but it is still prohibitively slow for large theories — completion of the CGE3 has
not yet been achieved. The performance of Slothrop also does not approach
that of well-tuned equational theorem provers such as Waldmeister for most
tasks. Modern search and learning techniques, e.g. as developed for SAT, may
be applicable to the search for a convergent completion. Finally, we would like
to explore extensions to termination checking techniques to allow proofs to be
constructed incrementally. This may significantly decrease the amortized time to
prove a series of term rewriting systems terminating, since Slothrop tends to
make a number of successive calls on rewrite systems whose rules form increasing
chains.

Infinite Executions. While the provided argument for completeness carries
to infinite executions essentially unmodified, it is not the case that all non-
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failing runs are successful. In particular, termination of the infinite union of
the intermediate constraint systems does not follow from termination of the
individual systems; this is because in general the union of an infinite number
of finite, terminating rewrite systems is not itself terminating. For example,
consider the family of (string) rewriting systems Rj = ∪0≤i≤j{fgif → fgi+1}.
For any k ∈ N it is easy to see that ∪0≤j≤kRj is terminating. But it is not the
case that ∪j∈NRj is terminating, for it contains the infinite derivation ff →
fgf → fggf → · · · .

Instead, it must be shown in a proof of correctness for the infinite case that
some successful branch of execution always exists, and that it will always be
found in the search for a completion. The authors believe the modified procedure
to be correct in the infinite case, making it usable as a semidecision procedure
for theories. We have a proof sketch of correctness for the infinite case of the
system A, and a complete proof is in progress.
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Abstract. There are many powerful techniques for automated termi-
nation analysis of term rewriting. However, up to now they have hardly
been used for real programming languages. We present a new approach
which permits the application of existing techniques from term rewriting
in order to prove termination of programs in the functional language Has-
kell. In particular, we show how termination techniques for ordinary re-
writing can be used to handle those features of Haskell which are missing
in term rewriting (e.g., lazy evaluation, polymorphic types, and higher-
order functions). We implemented our results in the termination prover
AProVE and successfully evaluated them on existing Haskell-libraries.

1 Introduction

We show that termination techniques for term rewrite systems (TRSs) are also
useful for termination analysis of programming languages like Haskell. Of course,
any program can be translated into a TRS, but in general, it is not obvious how
to obtain TRSs suitable for existing automated termination techniques. Adapting
TRS-techniques for termination of Haskell is challenging for the following reasons:
• Haskell has a lazy evaluation strategy. However, most TRS-techniques ignore

such evaluation strategies and try to prove that all reductions terminate.
• Defining equations in Haskell are handled from top to bottom. In contrast

for TRSs, any rule may be used for rewriting.
• Haskell has polymorphic types, whereas TRSs are untyped.
• In Haskell-programs with infinite data objects, only certain functions are

terminating. But most TRS-methods try to prove termination of all terms.
• Haskell is a higher-order language, whereas most automatic termination tech-

niques for TRSs only handle first-order rewriting.

There are only few techniques for automated termination analysis of func-
tional programs. Methods for first-order languages with strict evaluation strat-
egy were developed in [5,10,16]. For higher-order languages, [1,3,17] study how
to ensure termination by typing and [15] defines a restricted language where all
evaluations terminate. A successful approach for automated termination proofs
for a small Haskell-like language was developed in [11]. (A related technique is
[4], which handles outermost evaluation of untyped first-order rewriting.) How-
� Supported by the Deutsche Forschungsgemeinschaft DFG under grant GI 274/5-1.
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ever, these are all “stand-alone” methods which do not allow the use of modern
termination techniques from term rewriting. In our approach we build upon the
method of [11], but we adapt it in order to make TRS-techniques applicable.1

We recapitulate Haskell in Sect. 2 and introduce our notion of “termination”.
To analyze termination, our method first generates a corresponding termination
graph (similar to the “termination tableaux” in [11]), cf. Sect. 3. But in contrast
to [11], then our method transforms the termination graph into dependency
pair problems which can be handled by existing techniques from term rewriting
(Sect. 4). Our approach in Sect. 4 can deal with any termination graph, whereas
[11] can only handle termination graphs of a special form (“without crossings”).
We implemented our technique in the termination prover AProVE [9], cf. Sect. 5.

2 Haskell

We now give the syntax and semantics for a subset of Haskell which only uses cer-
tain easy patterns and terms (without “λ”), and function definitions without con-
ditions. Any Haskell-program (without type classes and built-in data structures)2

can automatically be transformed into a program from this subset [14].3 For ex-
ample, in our implementation lambda abstractions are removed by replacing every
Haskell-term “\ t1...tn → t” with the free variables x1, . . . xm by “f x1 . . . xm”.
Here, f is a new function symbol with the defining equation f x1...xm t1...tn = t.

2.1 Syntax of Haskell

In our subset of Haskell, we only permit user-defined data structures such as

data Nats = Z | S Nats data List a = Nil | Cons a (List a)

These data-declarations introduce two type constructors Nats and List of arity
0 and 1, respectively. So Nats is a type and for every type τ , “List τ” is also a
type representing lists with elements of type τ . Moreover, there is a pre-defined
binary type constructor → for function types. Since Haskell’s type system is
polymorphic, it also has type variables like a which stand for any type.

For each type constructor like Nats, a data-declaration also introduces its data
constructors (e.g., Z and S) and the types of their arguments. Thus, Z has arity
0 and is of type Nats and S has arity 1 and is of type Nats → Nats.

Apart from data-declarations, a program has function declarations. Here,
“from x” generates the infinite list of numbers starting with x and “take n xs”
returns the first n elements of xs. The type of from is “List Nats” and take has
type “Nats → (Lista) → (Lista)” where τ1 → τ2 → τ3 stands for τ1 → (τ2 → τ3).
1 Alternatively, one could simulate Haskell’s evaluation strategy by context-sensitive

rewriting (CSR), cf. [6]. But termination of CSR is hard to analyze automatically.
2 See Sect. 5 for an extension to type classes and pre-defined data structures.
3 Of course, it would be possible to restrict ourselves to programs from an even smaller

“core”-Haskell subset. However, this would not simplify the subsequent termination
analysis any further. In contrast, the resulting programs would usually be less read-
able, which would make interactive termination proofs harder.
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from x = Consx (from (S x)) takeZ xs = Nil
taken Nil = Nil
take (S n) (Cons x xs) = Consx (take n xs)

In general, function declarations have the form “f �1 . . . �n = r”. The function
symbols f on the “outermost” position of left-hand sides are called defined. So the
set of function symbols is the disjoint union of the (data) constructors and the
defined function symbols. All defining equations for f must have the same num-
ber of arguments n (called f ’s arity). The right-hand side r is an arbitrary term,
whereas �1, . . . , �n are special terms, so-called patterns. Moreover, the left-hand
side must be linear, i.e., no variable may occur more than once in “f �1 . . . �n”.

The set of terms is the smallest set containing all variables, function symbols,
and well-typed applications (t1 t2) for terms t1 and t2. As usual, “t1 t2 t3” stands
for “((t1 t2) t3)”. The set of patterns is the smallest set with all variables and
terms “c t1 . . . tn” where c is a constructor of arity n and t1, . . . , tn are patterns.

The positions of t are Pos(t) = {ε} if t is a variable or function symbol. Other-
wise, Pos(t1 t2) = {ε}∪{1 π | π∈Pos(t1)}∪{2 π | π∈Pos(t2)}. As usual, we de-
fine t|ε = t and (t1 t2)|i π = ti|π. The head of t is t|1n where n is the maximal num-
ber with 1n∈Pos(t). So the head of t= taken xs (i.e., “(taken) xs”) is t|11 = take.

2.2 Operational Semantics of Haskell

Given an underlying program, for any term t we define the position e(t) where the
next evaluation step has to take place due to Haskell’s outermost strategy. So in
most cases, e(t) is the top position ε. An exception are terms “f t1... tn tn+1... tm”
where arity(f) = n and m > n. Here, f is applied to too many arguments. Thus,
one considers the subterm “f t1 . . . tn” at position 1m−n to find the evaluation
position. The other exception is when one has to evaluate a subterm of f t1 . . . tn
in order to check whether a defining f -equation � = r will then become applicable
on top position. We say that an equation � = r from the program is feasible for
a term t and define the corresponding evaluation position e�(t) w.r.t. � if either

(a) � matches t (then we define e
(t) = ε), or
(b) for the leftmost outermost position π where head(�|π) is a constructor and where

head(�|π) �=head(t|π), the symbol head(t|π) is defined or a variable. Then e
(t)=π.

Since Haskell considers the order of the program’s equations, t is evaluated below
the top (on position e�(t)) whenever (b) holds for the first feasible equation � = r
(even if an evaluation with a subsequent defining equation would be possible at
top position). Thus, this is no ordinary leftmost outermost evaluation strategy.

Definition 1 (Evaluation Position e(t)). For any term t, we define

e(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1m−n π, if t = f t1 . . . tn tn+1 . . . tm, f is defined, m > n = arity(f),

and π = e( f t1 . . . tn )
e�(t) π, if t = f t1 . . . tn, f is defined, n = arity(f), there are feasible

equations for t (the first is “�=r”), e�(t) �=ε, and π=e(t|e�(t))
ε, otherwise

If t= takeu (from m) and s= take (Sn) (from m), then t|e(t) =u and s|e(s) = from m.
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We now present Haskell’s operational semantics by defining the evaluation re-
lation →H. For any term t, it performs a rewrite step on position e(t) using the
first applicable defining equation of the program. So terms like “xZ” or “takeZ”
are normal forms: If the head of t is a variable or if a symbol is applied to too
few arguments, then e(t) = ε and no rule rewrites t at top position. Moreover,
a term s = f s1 . . . sm with a defined symbol f and m ≥ arity(f) is a normal
form if no equation in the program is feasible for s. If head(s|e(s)) is a defined
symbol g, then we call s an error term (i.e., then g is not “completely” defined).

For terms t = c t1 . . . tn with a constructor c of arity n, we also have e(t) = ε
and no rule rewrites t at top position. However, here we permit rewrite steps
below the top, i.e., t1, . . . , tn may be evaluated with →H. This corresponds to the
behavior of Haskell-interpreters like Hugs which evaluate terms until they can be
displayed as a string. To transform data objects into strings, Hugs uses a function
“show”. This function can be generated automatically for user-defined types by
adding “deriving Show” behind the data-declarations. This show-function would
transform every data object “c t1 . . . tn” into the string consisting of “c” and of
show t1, . . . , show tn. Thus, show would require that all arguments of a term
with a constructor head have to be evaluated.

Definition 2 (Evaluation Relation →H). We have t →H s iff either
(1) t rewrites to s on the position e(t) using the first equation of the program

whose left-hand side matches t|e(t), or
(2) t = c t1 . . . tn for a constructor c of arity n, ti →H si for some 1 ≤ i ≤ n,

and s = c t1 . . . ti−1 si ti+1 . . . tn

For example, we have the infinite evaluation from m →H Consm (from (S m))
→H Consm (Cons (S m) (from (S m))) →H . . . On the other hand, the following
evaluation is finite: take (S Z) (from m) →H take (S Z) (Cons m (from (S m))) →H

Consm(takeZ (from (S m))) →H Consm Nil.
The reason for permitting non-ground terms in Def. 1 and 2 is that our ter-

mination method in Sect. 3 evaluates Haskell symbolically. Here, variables stand
for arbitrary terminating terms. Def. 3 introduces our notion of termination.

Definition 3 (H-Termination). A ground term t is H-terminating iff
(a) t does not start an infinite evaluation t →H . . . ,
(b) if t →∗

H (f t1 . . . tn) for a defined function symbol f , n < arity(f), and the
term t′ is H-terminating, then (f t1 . . . tn t′) is also H-terminating, and

(c) if t→∗
H (c t1 . . . tn) for a constructor c, then t1, . . . , tn are also H-terminating.

A term t is H-terminating iff tσ is H-terminating for all substitutions σ with
H-terminating ground terms (of the correct types). These substitutions σ may
also introduce new defined function symbols with arbitrary defining equations.

So a term is only H-terminating if all its applications to H-terminating terms
H-terminate, too. Thus, “from” is not H-terminating, as “fromZ” has an infinite
evaluation. But “take u (from m)” is H-terminating: when instantiating u and m
by H-terminating ground terms, the resulting term has no infinite evaluation.

To illustrate that one may have to add defining equations to examine H-ter-
mination, consider the function nonterm of type Bool → (Bool → Bool) → Bool:
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nonterm True x = True nonterm False x = nonterm (x True) x (1)

The term “nonterm False x” is not H-terminating: one obtains an infinite eval-
uation if one instantiates x by the function mapping all arguments to False. In
full Haskell, such functions can of course be represented by lambda terms and
indeed, “nontermFalse (\y → False)” starts an infinite evaluation.

3 From Haskell to Termination Graphs

Our goal is to prove H-termination of a start term t. By Def. 3, H-termination
of t implies that tσ is H-terminating for all substitutions σ with H-terminating
ground terms. Thus, t represents a (usually infinite) set of terms and we want to
prove that they are all H-terminating. Without loss of generality, we can restrict
ourselves to normal ground substitutions σ, i.e., substitutions where σ(x) is a
ground term in normal form w.r.t. →H for all variables x in t.

Regard the start term t = takeu (from m). A naive approach would be to
consider the defining equations of all needed functions (i.e., take and from) as re-
write rules. However, this disregards Haskell’s lazy evaluation strategy. So due to
the non-terminating rule for “from”, we would fail to prove H-termination of t.

Therefore, our approach starts evaluating the start term a few steps. This
gives rise to a so-called termination graph. Instead of transforming defining
Haskell-equations into rewrite rules, we then transform the termination graph
into rewrite rules. The advantage is that the initial evaluation steps in this graph
take the evaluation strategy and the types of Haskell into account and therefore,
this is also reflected in the resulting rewrite rules.

To construct a termination graph for the start term t, we begin with the graph
containing only one single node, marked with t. Similar to [11], we then apply
expansion rules repeatedly to the leaves of the graph in order to extend it by
new nodes and edges. As usual, a leaf is a node with no outgoing edges. We
have obtained a termination graph for t if no expansion rules is applicable to its
leaves anymore. Afterwards, we try to prove H-termination of all terms occurring
in the termination graph, cf. Sect. 4. We now describe our five expansion rules
intuitively using Fig. 1. Their formal definition is given in Def. 4.

takeu (from m)

takeZ (from m)

Nil

take (S n) (from m)

take (S n) (Cons m (from (S m)))

Consm (taken (from (S m)))

m taken (from (S m))

n S m

m

[u/Z] [u/(S n)]

aCase

b
Eval

c
Eval

d
Eval

e

f
ParSplit

g
h

Ins

i jParSplit

k

Fig. 1. Termination graph for “take u (from m)”

When constructing ter-
mination graphs, the goal
is to evaluate terms. How-
ever, t = takeu (fromm)
cannot be evaluated with
→H, since it has a vari-
able u on its evaluation
position e(t). The evalua-
tion can only continue if
we know how u is going
to be instantiated. There-
fore, the first expansion
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rule is called Case Analysis (or “Case”, for short). It adds new child nodes
where u is replaced by all terms of the form (c x1 . . . xn). Here, c is a constructor
of the appropriate type and x1, . . . , xn are fresh variables. The edges to these
children are labelled with the respective substitutions [u/(c x1 . . . xn)]. In our
example, u is a variable of type Nats. Therefore, the Case-rule adds two child
nodes b and c to our initial node a, where u is instantiated by Z and by (S n),
respectively. Since the children of a were generated by the Case-rule, we call
a a “Case-node”. Every node in the graph has the following property: If all
its children are marked with H-terminating terms, then the node itself is also
marked by a H-terminating term. Indeed, if the terms in nodes b and c are
H-terminating, then the term in node a is H-terminating as well.

Now the terms in nodes b and c can indeed be evaluated. Therefore, the
Evaluation-rule (“Eval”) adds the nodes d and e resulting from one evaluation
step with →H. Moreover, e is also an Eval -node, since its term can be evaluated
further to the term in node f. So the Case- and Eval -rule perform a form of
narrowing that respects the evaluation strategy and the types of Haskell.

The term Nil in node d cannot be evaluated and therefore, d is a leaf of the
termination graph. But the term “Consm (taken (from (S m)))” in node f may
be evaluated further. Whenever the head of a term is a constructor like Cons
or a variable,4 then evaluations can only take place on its arguments. We use a
Parameter Split-rule (“ParSplit”) which adds new child nodes with the argu-
ments of such terms. Thus, we obtain the nodes g and h. Again, H-termination
of the terms in g and h obviously implies H-termination of the term in node f.

The node g remains a leaf since its term m cannot be evaluated further for
any normal ground instantiation. For node h, we could continue by applying the
rules Case, Eval , and ParSplit as before. However, in order to obtain finite
graphs (instead of infinite trees), we also have an Instantiation-rule (“Ins”).
Since the term in node h is an instance of the term in node a, one can draw
an instantiation edge from the instantiated term to the more general term (i.e.,
from h to a). We depict instantiation edges by dashed lines. These are the only
edges which may point to already existing nodes (i.e., one obtains a tree if one
removes the instantiation edges from a termination graph).

To guarantee that the term in node h is H-terminating whenever the terms in
its child nodes are H-terminating, the Ins-rule has to ensure that one only uses
instantiations with H-terminating terms. In our example, the variables u and m
of node a are instantiated with the terms n and (S m), respectively. Therefore,
in addition to the child a, the node h gets two more children i and j marked
with n and (S m). Finally, the ParSplit-rule adds j’s child k, marked with m.

Now we consider a different start term, viz. “take”. If a defined function has
“too few” arguments, then by Def. 3 we have to apply it to additional H-ter-
minating arguments in order to examine H-termination. Therefore, we have a
Variable Expansion-rule (“VarExp”) which would add a child marked with
“take x” for a fresh variable x. Another application of VarExp gives “take x xs”.
The remaining termination graph is constructed by the rules discussed before.

4 The reason is that “x t1 . . . tn” H-terminates iff the terms t1, . . . , tn H-terminate.
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Definition 4 (Termination Graph). Let G be a graph with a leaf marked
with the term t. We say that G can be expanded to G′ (denoted “ G ⇒ G′”) if
G′ results from G by adding new child nodes marked with the elements of ch(t)
and by adding edges from t to each element of ch(t). Only in the Ins-rule, we
also permit to add an edge to an already existing node, which may then lead to
cycles. All edges are marked by the identity substitution unless stated otherwise.

Eval: ch(t)={t̃}, if t = (f t1 . . . tn), f is a defined symbol, n≥arity(f), t→H t̃

Case: ch(t) = {tσ1, . . . , tσk}, if t = (f t1 . . . tn), f is a defined function symbol,
n ≥ arity(f), t|e(t) is a variable x of type “d τ1...τm” for a type constructor d,
the type constructor d has the data constructors ci of arity ni (where 1 ≤
i ≤ k), and σi = [x/(ci x1 . . . xni)] for fresh pairwise different variables
x1, . . . , xni . The edge from t to tσi is marked with the substitution σi.

VarExp: ch(t) = {t x}, if t = (f t1 . . . tn), f is a defined function symbol,
n < arity(f), x is a fresh variable

ParSplit: ch(t)={t1, ..., tn} if t=(c t1...tn), c is a constructor or variable, n>0
Ins: ch(t) = {s1, . . . , sm, t̃}, if t = (f t1 . . . tn), t is not an error term, f is a de-

fined symbol, n ≥ arity(f), t = t̃σ for some term t̃, σ = [x1/s1, . . . , xm/sm].
Moreover, either t̃ = (x y) for fresh variables x and y, or t̃ is an Eval-node,
or t̃ is a Case-node and all paths starting in t̃ reach an Eval-node or a leaf
with an error term after traversing only Case-nodes.5 The edge from t to t̃
is called an instantiation edge.

If the graph already contained a node marked with t̃, then we permit to re-
use this node in the Ins-rule. So in this case, instead of adding a new child
marked with t̃, one may add an edge from t to the already existing node t̃.

Let Gt be the graph with a single node marked with t and no edges. G is a
termination graph for t iff Gt ⇒∗ G and G is in normal form w.r.t. ⇒.

If one disregards Ins, then for each leaf there is at most one rule applicable.6

However, the Ins-rule introduces indeterminism. Instead of applying the Case-
rule on node a in Fig. 1, we could also apply Ins and generate an instantiation
edge to a new node with t̃ = (takeu ys). Since the instantiation is [ys/(fromm)],
node a would get an additional child node marked with the non-H-terminating
term (from m). Then our approach in Sect. 4 which tries to prove H-termination
of all terms in the termination graph would fail, whereas it succeeds for the graph
in Fig. 1. Therefore, in our implementation we developed a heuristic for construc-
ting termination graphs which tries to avoid unnecessary applications of Ins
(since applying Ins means that one has to prove H-termination of more terms).

An instantiation edge to t̃ = (x y) is needed to get termination graphs for
functions like tma which are applied to “too many” arguments in recursive
calls.

tma (S m) = tma m m (2)

5 This ensures that every cycle of the graph contains at least one Eval -node.
6 No rule is applicable to leaves with variables, constructors of arity 0, or error terms.
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Here, tma has the type Nats → a. We obtain the termination graph in Fig. 2.
After applying Case and Eval , we result in “tmam m” in node d which is not
an instance of the start term “tman” in node a. Of course, we could continue with

tma n

tmaZ tma (S m)

tma m m

tmam m

m

[n/Z] [n/(S m)]

x y

y

a
Case

b c
Eval

d
Ins

f
Ins

g

i

e
ParSplit

h

Fig. 2. Termination graph for “tma n”

Case and Eval infinitely often, but to
obtain a termination graph, at some
point we need to apply the Ins-rule.
Here, the only possibility is to regard
t = (tma m m) as an instance of the
term t̃ = (x y). Thus, we obtain an ins-
tantiation edge to the new node e. As
the instantiation is [x/(tma m), y/m],
we get additional child nodes f and g
marked with “tmam” and m, respec-
tively. Now we can “close” the graph,
since “tmam” is an instance of the
start term “tman” in node a. So the
instantiation edge to the special term (x y) is used to remove “superfluous” ar-
guments (i.e., it permits to go from “tmam m” in node d to “tmam” in node
f). Thm. 5 shows that by the expansion rules of Def. 4 one can always obtain
normal forms.7

Theorem 5 (Existence of Termination Graphs). The relation ⇒ is nor-
malizing, i.e., for any term t there exists a termination graph.

4 From Termination Graphs to DP Problems

Now we present a method to prove H-termination of all terms in a termination
graph. To this end, we want to use existing techniques for termination analysis of
term rewriting. One of the most popular techniques for TRSs is the depen-
dency pair (DP) method [2]. In particular, the DP method can be formulated
as a general framework which permits the integration and combination of any
termination technique for TRSs [7]. This DP framework operates on so-called DP
problems (P ,R). Here, P and R are TRSs that may also have rules � → r where r
contains extra variables not occurring in �. P ’s rules are called dependency pairs.
The goal of the DP framework is to show that there is no infinite chain, i.e., no
infinite reduction s1σ1 →P t1σ1 →∗

R s2σ2 →P t2σ2 →∗
R . . . where si → ti ∈ P

and σi are substitutions. In this case, the DP problem (P ,R) is called finite. See
[7] for an overview on techniques to prove finiteness of DP problems.8

Instead of transforming termination graphs into TRSs, the information avail-
able in the termination graph can be better exploited if one transforms these

7 All proofs can be found at http://aprove.informatik.rwth-aachen.de/eval/Haskell/.
8 In the DP literature, one usually does not regard rules with extra variables on right-

hand sides, but almost all existing termination techniques for DPs can also be used
for such rules. (For example, finiteness of such DP problems can often be proved by
eliminating the extra variables by suitable argument filterings [2].)
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graphs into DP problems, cf. the end of this section. In this way, we also do
not have to impose any restrictions on the form of the termination graph (as
in [11] where one can only analyze certain start terms which lead to termina-
tion graphs “without crossings”). Then finiteness of the resulting DP problems
implies H-termination of all terms in the termination graph.

Note that termination graphs still contain higher-order terms (e.g., applica-
tions of variables to other terms like “x y” and partial applications like “takeu”).
Since most methods and tools for automated termination analysis only operate
on first-order TRSs, we translate higher-order terms into applicative first-order
terms containing just variables, constants, and a binary symbol ap for function
application. So terms like “x y”, “take u”, and “take u xs” are transformed into
the first-order terms ap(x, y), ap(take, u), and ap(ap(take, u), xs), respectively. As
shown in [8], the DP framework is well suited to prove termination of applicative
TRSs automatically. To ease readability, in the remainder we will not distinguish
anymore between higher-order and corresponding applicative first-order terms,
since the conversion between these two representations is obvious.

Recall that if a node in the termination graph is marked with a non-H-
terminating term, then one of its children is also marked with a non-H-termina-
ting term. Hence, every non-H-terminating term corresponds to an infinite path
in the termination graph. Since a termination graph only has finitely many nodes,
infinite paths have to end in a cycle. Thus, it suffices to prove H-termination for
all terms occurring in cycles resp. in strongly connected components (SCCs) of
the termination graph. Moreover, one can analyze H-termination separately for
each SCC. Here, an SCC is a maximal subgraph G′ of the termination graph
such that for all nodes n1 and n2 in G′ there is a non-empty path from n1 to n2
traversing only nodes of G′. (In particular, there must also be a non-empty path
from every node to itself in G′.) The termination graph for “takeu (fromm)” in
Fig. 1 has just one SCC with the nodes a, c, e, f, h. The following definition is
needed to extract dependency pairs from SCCs of the termination graph.

Definition 6 (DP Path). Let G′ be an SCC of a termination graph containing
a path from a node marked with s to a node marked with t. We say that this path
is a DP path if it does not traverse instantiation edges, if s has an incoming
instantiation edge in G′, and if t has an outgoing instantiation edge in G′.

So in Fig. 1, the only DP path is a, c, e, f, h. Since every infinite path has
to traverse instantiation edges infinitely often, it also has to traverse DP paths
infinitely often. Therefore, we generate a dependency pair for each DP path. If
there is no infinite chain with these dependency pairs, then no term corresponds
to an infinite path, i.e., then all terms in the graph are H-terminating.

More precisely, whenever there is a DP path from a node marked with s to a
node marked with t and the edges of the path are marked with σ1, . . . , σm, then
we generate the dependency pair sσ1 . . . σm → t. In Fig. 1, the first edge of the
DP path is labelled with the substitution [u/(S n)] and all remaining edges are
labelled with the identity. Thus, we generate the dependency pair

take (S n) (from m) → taken (from (S m)). (3)
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The resulting DP problem is (P ,R) where P = {(3)} and R = ∅.9 Automated
termination tools can easily show that this DP problem is finite. Hence, the start
term “takeu (from m)” is H-terminating in the original Haskell-program.

Similarly, finiteness of the DP problem ({tma (S m) → tma m}, ∅) for the start
term “tma n” from Fig. 2 is also easy to prove automatically.

A slightly more challenging example is obtained by replacing the last take-rule
by the following two rules, where p computes the predecesor function.

take (S n) (Consx xs) = Consx (take (p (S n)) xs) p (S x) = x (4)

Consm (take (p (S n)) (from (S m))) to a

m take (p (S n)) (from (S m))

p (S n) S m

n m

f
ParSplit

g h
Ins

i
Eval jParSplit

k l

Fig. 3. Subtree at node f of Fig. 1

Now the resulting termination graph can
be obtained from the graph in Fig. 1 by
replacing the subgraph starting with node
f by the subgraph in Fig. 3.

We want to construct an infinite chain
whenever the termination graph contains
a non-H-terminating term. In this case,
there also exists a DP path with first
node s such that s is not H-terminating.
So there is a normal ground substitu-
tion σ where sσ is not H-terminating either. There must be a DP path
from s to a term t labelled with the substitutions σ1, . . . , σm such that σ
is an instance of σ1 . . . σm and such that tσ is also not H-terminating.10

So the first step of the desired corresponding infinite chain is sσ →P tσ.
The node t has an outgoing instantiation edge to a node t̃ which starts an-
other DP path. So to continue the construction of the infinite chain in the
same way, we now need a non-H-terminating instantiation of t̃ with a nor-
mal ground substitution. Obviously, t̃ matches t by some matcher τ . But while
t̃τσ is not H-terminating, the substitution τσ is not necessarily a normal ground
substitution. The reason is that t and hence τ may contain defined symbols.

This is also the case in our example. The only DP path is a, c, e, f, h
which would result in the dependency pair take (S n) (from m) → t with t =
take (p (S n)) (from (S m)). Now t has an instantiation edge to node a with t̃ =
takeu (fromm). The matcher is τ = [u/(p (S n)), m/(S m)]. So τ(u) is not normal.

In this example, the problem can be avoided by already evaluating the right-
hand sides of dependency pairs as much as possible. So instead of a dependency
pair sσ1 . . . σm → t we now generate the dependency pair sσ1 . . . σm → ev(t). For
a node marked with t, ev(t) is the term reachable from t by traversing only Eval -
nodes. So in our example ev(p (S n)) = n, since node i is an Eval -node with an
9 Def. 11 will explain how to generate R in general.

10 To ease the presentation, we require that user-defined data structures (base types)
may not be “empty”. (But our approach can easily be extended to “empty” struc-
tures as well.) Then we may restrict ourselves to substitutions σ where all subterms
of σ(x) with base type have a constructor as head, for all variables x in s. This ensures
that for every Case-node in the DP path, one child corresponds to the instantiation
σ. To obtain a ground term tσ, we extend the substitution σ appropriately to the
variables in t that do not occur in s. These variables were introduced by VarExp.
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edge to node k. Moreover, ev(t) can also evaluate subterms of t if t is an Ins-
node or a ParSplit-node with a constructor as head. We obtain ev(S m) = S m
for node j and ev(take (p (S n)) (from (S m))) = taken (from (S m)) for node h.
Thus, the resulting DP problem is again (P ,R) with P = {(3)} and R = ∅.

To see how ev(t) must be defined for ParSplit-nodes where head(t) is a vari-
able, we regard the function nonterm again, cf. (1). In the termination graph
for the start term “nonterm b x”, we obtain a DP path from the node with
the start term to a node with “nonterm (xTrue)x” labelled with the substi-
tution [b/False]. So the resulting DP problem only contains the dependency pair
“nontermFalsex → ev(nonterm (xTrue)x)”. If we would define ev(xTrue) =
xTrue, then ev would not modify the term “nonterm (xTrue)x”. But then the
resulting DP problem would be finite and one could falsely prove H-termination.
(The reason is that the DP problem contains no rule to transform any instance
of “xTrue” to False.) But as discussed in Sect. 3, x can be instantiated by ar-
bitrary H-terminating functions and then, “xTrue” can evaluate to any term.
Therefore, ev must replace terms like “xTrue” by fresh variables.

Definition 7 (ev). Let G be a termination graph with a node t.11 Then

ev(t)=

t, if t is a leaf, a Case-node, or a VarExp-node
x, if t is ParSplit-node, head(t) is a variable, and x is a fresh variable
ev(t̃), if t is an Eval-node with child t̃
t̃[x1/ev(t1), . . . , xn/ev(tn)], if t = t̃[x1/t1, . . . , xn/tn] and either

t is an Ins-node with the children t1, . . . , tn, t̃ or
t is a ParSplit-node, and t̃ = (c x1 . . . xn) for a constructor c

Our goal was to construct an infinite chain whenever s is the first node in a
DP path and sσ is not H-terminating for a normal ground substitution σ. As
discussed before, there is a DP path from s to t such that the chain starts with
sσ →P ev(t)σ and such that tσ and hence ev(t)σ is also not H-terminating. The
node t has an instantiation edge to some node t̃. Thus t = t̃[x1/t1, . . . , xn/tn]
and ev(t) = t̃[x1/ev(t1), . . . , xn/ev(tn)]. In order to continue the construc-
tion of the infinite chain, we need a non-H-terminating instantiation of t̃ with
a normal ground substitution. Clearly, if t̃ is instantiated by the substitution
[x1/ev(t1)σ, . . . , xn/ev(tn)σ], then it is again not H-terminating. However, the
substitution [x1/ev(t1)σ, . . . , xn/ev(tn)σ] is not necessarily normal. The prob-
lem is that ev does not perform those evaluations that correspond to instan-
tiation edges and to edges from Case-nodes. Therefore, we now generate DP
problems which do not just contain dependency pairs P , but they also contain
all rules R which might be needed to evaluate ev(ti)σ further. Then we obtain
sσ →P ev(t)σ →∗

R t̃σ′ for a normal ground substitution σ′. Since t̃ is again the
first node in a DP path, now this construction of the chain can be continued in
the same way infinitely many times. Hence, we obtain an infinite chain.

As an example, we replace the equation for p in (4) by the following two
defining equations:

p (S Z) = Z p (S x) = S (p x) (5)
11 To simplify the presentation, we identify nodes with the terms they are labelled with.
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In the termination graph for “takeu (fromm)” from Fig. 1 and 3, the node i
would now be replaced by the subtree in Fig. 4. So i is now a Case-node. Thus,
instead of (3) we obtain the dependency pair

take (S n) (from m) → take (p (S n)) (from (S m)), (6)

since now ev does not modify its right-hand side anymore (i.e., ev(p (S n)) =
p (S n)). Hence, now the resulting DP problem must contain all rules R that
might be used to evaluate p (S n) when instantiated by σ.

p (S n)

p (S Z) p (S (S x))

Z S (p (S x))

p (S x)

x

[n/Z] [n/(S x)]

iCase

m
Eval

n
Eval

o p
ParSplit

q
Ins

r

Fig. 4. Subtree at node i of Fig. 3

So for any term t, we want to detect rules
that might be needed to evaluate ev(t)σ fur-
ther for normal ground substitutions σ. To
this end, we first compute the set con(t)
of those terms that are reachable from t,
but where the computation of ev stopped.
So con(t) contains all terms which might
give rise to further continuing evaluations
that are not captured by ev. To compute
con(t), we traverse all paths starting in t. If
we reach a Case-node s, we stop traversing
this path and insert s into con(t). Moreover, if we traverse an instantia-
tion edge to some node t̃, we also stop and insert t̃ into con(t). So in
the example of Fig. 4, we obtain con(p (S n)) = {p (S n)}, since i is now a Case-
node. If we started with the term t = take (S n) (from m) in node c, then we would
reach the Case-node i and the node a which is reachable via an instantiation
edge. So con(t) = {p (S n), takeu (from m)}. Finally, con also stops at VarExp-
nodes (they are in normal form w.r.t. →H) and at ParSplit-nodes whose head
is a variable (since ev already “approximates” their result by fresh variables).

Definition 8 (con). Let G be a termination graph with a node t. Then

con(t) =

∅, if t is a leaf, a VarExp-, or a ParSplit-node with variable head
{t}, if t is a Case-node
{t̃} ∪ con(t1) ∪ . . . ∪ con(tn), if t is an Ins-node with the

children t1, . . . , tn, t̃ and an instantiation edge from t to t̃

t′child of t con(t′), otherwise

Now we can define how to extract a DP problem dpG′ from every SCC G′ of the
termination graph. As mentioned, we generate a dependency pair sσ1 . . . σm →
ev(t) for every DP path from s to t labelled with σ1, . . . , σm in G′. If t =
t̃[x1/t1, . . . , xn/tn] has an instantiation edge to t̃, then the resulting DP problem
must contain all rules that can be used reduce the terms in con(t1)∪. . .∪con(tn).
For any term s, let rl(s) be the rules that can be used to reduce sσ for normal
ground substitutions σ. We will give the definition of rl afterwards.

Definition 9 (dp). For a termination graph containing an SCC G′, we define
dpG′ = (P ,R). Here, P and R are the smallest sets such that
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• “sσ1 . . . σm → ev(t)” ∈ P and
• rl(q) ⊆ R,

whenever G′ contains a DP path from s to t labelled with σ1, . . . , σm, t = t̃[x1/t1,
. . . , xn/tn] has an instantiation edge to t̃, and q ∈ con(t1) ∪ . . . ∪ con(tn).

In our example with the start term “takeu (from m)” and the p-equations from
(5), the termination graph in Fig. 1, 3, and 4 has two SCCs G1 (consisting of the
nodes a, c, e, f, h) and G2 (consisting of i, n, p, q). Finiteness of the two DP
problems dpG1

and dpG2
can be proved independently. The SCC G1 only has the

DP path from a to h leading to the dependency pair (6). So we obtain dpG1
=

({(6)},R1) where R1 contains rl(q) for all q ∈ con(p (S n)) = {p (S n)}. Thus,
R1 = rl(p (S n)). The SCC G2 only has the DP path from i to q. Hence, dpG2

=
(P2,R2) where P2 consists of the dependency pair “p (S (S x)) → p (S x)” (since
ev(p (S x)) = p (S x)) and R2 contains rl(q) for all q ∈ con(x) = ∅, i.e., R2 = ∅.
Thus, finiteness of dpG2

can easily be proved automatically.
For every term s, we now show how to extract a set of rules rl(s) such that

every evaluation of sσ for a normal ground substitution σ corresponds to a
reduction with rl(s).12 The only expansion rules which transform terms into
“equal” ones are Eval and Case. This leads to the following definition.

Definition 10 (Rule Path). A path from a node marked with s to a node
marked with t is a rule path if s and all other nodes on the path except t are
Eval - or Case-nodes and t is no Eval - or Case-node. So t may also be a leaf.

In Fig. 4, there are two rule paths starting in node i. The first one is i, m, o
(since o is a leaf) and the other is i, n, p (since p is a ParSplit-node).

While DP paths give rise to dependency pairs, rule paths give rise to rules.
Therefore, if there is a rule path from s to t labelled with σ1, . . . , σm, then rl(s)
contains the rule sσ1 . . . σm → ev(t). In addition, rl(s) must also contain all
rules required to evaluate ev(t) further, i.e., all rules in rl(q) for q ∈ con(t).13

Definition 11 (rl). For a node labelled with s, rl(s) is the smallest set with

• “sσ1 . . . σm → ev(t)” ∈ rl(s) and
• rl(q) ⊆ rl(s),

whenever there is rule path from s to t labelled with σ1, . . . , σm, and q ∈ con(t).

For the start term “takeu (fromm)” and the p-equations from (5), we obtained
the DP problem dpG1

= ({6}, rl(p (S n))). Here, rl(p (S n)) consists of

p (S Z) → Z (due to the rule path from i to o) (7)
p (S (S x)) → S (p (S x)) (due to the rule path from i to p), (8)

12 More precisely, sσ →∗
H q implies sσ →∗

rl(s) q′ for a term q′ which is “at least as
evaluated” as q (i.e., one can evaluate q further to q′ if one also permits evaluation
steps below or beside the evaluation position).

13 So if t = t̃[x1/t1, . . . , xn/tn] has an instantiation edge to t̃, then here we also include
all rules of rl(t̃), since con(t) = {t̃} ∪ con(t1) ∪ . . . ∪ con(tn). In contrast, for the
definition of dp in Def. 9 we only regard the rules rl(q) for q ∈ con(t1)∪. . .∪con(tn),
whereas the evaluations of t̃ are captured by the dependency pairs.
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as ev does not modify the right-hand sides of (7) and (8). Moreover, the require-
ment “rl(q) ⊆ rl(p (S n)) for all q ∈ con(Z) and all q ∈ con(S (p (S x)))” does not
add further rules. The reason is that con(Z)=∅ and con(S (p (S x)))={p (S n)}.
Now finiteness of dpG1

= ({6}, {(7), (8)}) is also easy to show automatically.
Finally, consider the following program which leads to the graph in Fig. 5.

f x = applyToZero f applyToZerox = xZ

This example shows that one also has to traverse edges resulting from VarExp
when constructing dependency pairs. Otherwise one would falsely prove H-termi-
nation. Since the only DP path goes from node a to f, we obtain the DP problem
({f x → f y},R) with R = rl(y) = ∅. This problem is not finite (and indeed, “f x”
is not H-terminating). In contrast, the definition of rl stops at VarExp-nodes.

f x

applyToZero f applyToZerox

f xZ

f y Z

y

a
Eval

b
Ins

c

Eval

d
VarExp

e
ParSplit

Ins
f g

h

Fig. 5. Termination graph for “f x”

The example also illustrates that rl and dp
handle instantiation edges differently, cf. Foot-
note 13. Since there is a rule path from a to b, we
would obtain rl(f x) = {f x → applyToZero f} ∪
rl(applyToZerox), since con(applyToZero f) =
applyToZerox. So for the construction of rl we
also have to include the rules resulting from
nodes like c which are only reachable by instan-
tiation edges.14 We obtain rl(applyToZerox) =
{applyToZerox → z}, since ev(xZ) = z for a
fresh variable z. The following theorem states
the soundness of our approach.

Theorem 12 (Soundness). Let G be termination graph. If the DP problem
dpG′ is finite for all SCCs G′ of G, then all nodes t in G are H-terminating.15

While we transform termination graphs into DP problems, it would also be pos-
sible to transform termination graphs into TRSs instead and then prove termi-
nation of the resulting TRSs. However, this approach has several disadvantages.
For example, if the termination graph contains a VarExp-node or a ParSplit-
node with a variable as head, then we would result in rules with extra variables
on right-hand sides and thus, the resulting TRSs would never be terminating.
In contrast, a DP problem (P ,R) with extra variables in P and R can still be
finite, since dependency pairs from P are only be applied on top positions in
chains and since R need not be terminating for finite DP problems (P ,R).

5 Extensions, Implementation, and Experiments

We presented a technique for automated termination analysis of Haskell which
works in three steps: First, it generates a termination graph for the given start
14 This is different in the definition of dp. Otherwise, we would have R = rl(y)∪rl(f x).
15 Instead of dpG′ = (P , R), for H-termination it suffices to prove finiteness of (P�, R).

Here, P� results from P by replacing each rule f(t1, ..., tn) → g(s1, ..., sm) in P by
f �(t1, ..., tn)→g�(s1, ..., sm), where f � and g� are fresh “tuple” function symbols [2].
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term. Then it extracts DP problems from the termination graph. Finally, one uses
existing methods from term rewriting to prove finiteness of these DP problems.

To ease readability, we did not regard Haskell’s type classes and built-in data
structures in the preceding sections. However, our approach easily extends to
these concepts [14]. To deal with type classes, we use an additional Case-rule in
the construction of termination graphs, which instantiates type variables by all
instances of the corresponding type class. Built-in data structures like Haskell’s
lists and tuples simply correspond to user-defined types with a different syntax.
To deal with integers, we transform them into a notation with the constructors
Pos and Neg (which take arguments of type Nats) and provide pre-defined rewrite
rules for integer operations like addition, subtraction, etc. Floating-point num-
bers can be handled in a similar way (e.g., by representing them as fractions).

We implemented our approach in the termination prover AProVE [9]. It ac-
cepts the full Haskell 98 language defined in [12] and we successfully evaluated
our implementation with standard Haskell-libraries from the Hugs-distribution
such as Prelude, Monad, List, FiniteMap, etc. To access the implementation via a
web interface, for details on our experiments, and for the proofs of all theorems,
see http://aprove.informatik.rwth-aachen.de/eval/Haskell/.

We conjecture that term rewriting techniques are also suitable for termination
analysis of other kinds of programming languages. In [13], we recently adapted
the dependency pair method in order to prove termination of logic programming
languages like Prolog. In future work, we intend to examine the use of TRS-
techniques for imperative programming languages as well.
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Abstract. Semantic labeling is a transformation technique for proving
the termination of rewrite systems. The semantic part is given by a
quasi-model of the rewrite rules. In this paper we present a variant of
semantic labeling in which the quasi-model condition is only demanded
for the usable rules induced by the labeling. Our variant is less powerful
in theory but maybe more useful in practice.

1 Introduction

Numerous methods are available for proving the termination of term rewrite sys-
tems, ranging from simplification orders like the Knuth-Bendix order [10], poly-
nomial interpretations [12,3], and path orders [4,9], via transformation methods
like semantic labeling [18] and the dependency pair method [1], to recent meth-
ods based on results from automata theory [5,6].

In this paper we revisit the semantic labeling method of Zantema [18]. In-
vented back in 1995, only recently the method has become available in tools
that aim to prove termination automatically. Zantema implemented a version
with a binary (quasi-)model in his termination prover TORPA [19] for string
rewrite systems. The termination prover TPA [11] developed by Koprowski for
term rewrite systems, additionally employs natural numbers as semantics and
labels. As shown by the performance of TPA in the TRS category of the 2005
termination competition,1 this is surprisingly powerful.

We present a variant of semantic labeling which comes with less constraints
on the part of the semantics. More precisely, our variant does not require that
all rewrite rules of the rewrite system that we want to prove terminating need to
be considered when checking the quasi-model condition. To make the discussion
more concrete, let us consider the following example.

Example 1. Consider the TRS R consisting of the following rewrite rules:

fact(0) → s(0) 0 + y → y

fact(s(x)) → fact(p(s(x))) × s(x) s(x) + y → s(x + y)
p(s(0)) → 0 0 × y → 0

p(s(s(x))) → s(p(s(x))) s(x) × y → (x × y) + y

1 http://www.lri.fr/~marche/termination-competition/2005

F. Pfenning (Ed.): RTA 2006, LNCS 4098, pp. 313–327, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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This is the leading example from [18] extended with the rule fact(0) → s(0)
and recursive rules for addition and multiplication. These additional rules cause
no problems for the “standard” semantic labeling proof, which employs natural
numbers as semantics and as labels for the function symbol fact, using the natural
interpretations 0N = 0, sN(x) = x + 1, pN(x) = max {x − 1, 0}, x +N y = x + y,
x ×N y = x × y, factN(x) = x! and the labeling function fact�(x) = x. Note that
the resulting algebra is a model of the rewrite rules of R. By replacing the two
rules

fact(0) → s(0) fact(s(x)) → fact(p(s(x))) × s(x)

with the infinitely many rules

fact0(0) → s(0) facti+1(s(x)) → facti(p(s(x))) × s(x) (∀ i � 0)

the labeled TRS Rlab is obtained. The rules of this TRS are oriented from left
to right by the lexicographic path order induced by the well-founded precedence

facti+1 > facti > · · · > fact0 > × > + > p > s

and hence Rlab is terminating. The soundness of semantic labeling guarantees
that R is terminating, too.

Semantic labeling requires that the algebra defining the semantics is a (quasi-)
model of all rewrite rules of the TRS that we want to prove terminating. This
entails that we need to define semantics for all function symbols occurring in the
TRS. In the variant we present in this paper, we need to define the semantics of
the function symbols that appear below a function symbol that we want to label
as well as the function symbols that depend on them, and the (quasi-)model
condition is required only for the rules that define these function symbols. In
our example, the interpretations of the function symbols +, ×, and fact may be
ignored. Furthermore, the (quasi-)model condition needs to be checked for the
two rules

p(s(0)) → 0 p(s(s(x))) → s(p(s(x)))

only. We prove that this is sound provided an additional condition on the algebras
that may be used in connection with our variant of semantic labeling is imposed.
This condition makes our variant less powerful in theory but maybe more useful
in practice. Our variant is certainly more difficult to prove correct since the
standard proof of transforming a presupposed infinite rewrite sequence into an
infinite labeled rewrite sequence will not work without further ado due to a
lack of semantic information. In the correctness proof we predict this missing
information, which is why we call our variant predictive labeling.

The remainder of the paper is organized as follows. In the next section we
recapitulate the formal definition of semantic labeling. In Section 3 we present
our main result. Some more examples are presented in Section 4 and we conclude
with mentioning some open issues in Section 5.
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2 Preliminaries

We assume that the reader is familiar with term rewriting [2,14]. Let R be a
TRS over a signature F and let A = (A, {fA}f∈F) be an F -algebra. A labeling
� for A consists of sets of labels Lf ⊆ A for every f ∈ F together with mappings
�f : An → Lf for every n-ary function symbol f ∈ F with Lf �= ∅. In examples
we have Lf = A whenever Lf �= ∅. The labeled signature Flab consists of n-ary
function symbols fa for every n-ary function symbol f ∈ F and label a ∈ Lf

together with all function symbols f ∈ F such that Lf = ∅. The mapping
�f determines the label of the root symbol f of a term f(t1, . . . , tn) based on
the values of the arguments t1, . . . , tn. Let V be the set of variables. For every
assignment α : V → A the mapping labα : T (F ,V) → T (Flab,V) is inductively
defined as follows:

labα(t) =

⎧⎪⎨⎪⎩
t if t is a variable,
f(labα(t1), . . . , labα(tn)) if t = f(t1, . . . , tn) and Lf = ∅,
fa(labα(t1), . . . , labα(tn)) if t = f(t1, . . . , tn) and Lf �= ∅

where a denotes the label �f ([α]A(t1), . . . , [α]A(tn)). The labeled TRS Rlab over
the signature Flab consists of the rewrite rules

labα(l) → labα(r)

for all rules l → r ∈ R and assignments α : V → A.

Theorem 2 (Zantema [18]). Let R be a TRS. Let the algebra A be a non-empty
model of R and let � be a labeling for A. The TRS R is terminating if and only
if the TRS Rlab is terminating. ��
The condition that A is a model is somewhat restrictive. A stronger (in the
sense that more terminating TRSs can be transformed into TRSs that can be
proved terminating by simple methods) result is obtained by equipping A with
a well-founded order such that all algebra operations and all labeling functions
are weakly monotone in all coordinates.

A well-founded weakly monotone F -algebra (A, >) consists of a non-empty
F -algebra A = (A, {fA}f∈F) and a well-founded order > on the carrier A of A
such that every algebra operation is weakly monotone in all coordinates, i.e., if
f ∈ F has arity n � 1 then

fA(a1, . . . , ai, . . . , an) � fA(a1, . . . , b, . . . , an)

for all a1, . . . , an, b ∈ A and i ∈ {1, . . . , n} with ai > b. The relation �A on
T (F ,V) is defined as follows: s �A t if [α]A(s) � [α]A(t) for all assignments α.
We say that (A, >) is a quasi-model of a TRS R if R ⊆ �A.

A labeling � for A is called weakly monotone if all labeling functions �f are
weakly monotone in all coordinates. The TRS Dec consists of all rewrite rules

fa(x1, . . . , xn) → fb(x1, . . . , xn)

with f an n-ary function symbol, a, b ∈ Lf such that a > b, and x1, . . . , xn

pairwise different variables.
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Theorem 3 (Zantema [18]). Let R be a TRS, (A, >) a well-founded weakly
monotone quasi-model for R, and � a weakly monotone labeling for (A, >). The
TRS R is terminating if and only if the TRS Rlab ∪Dec is terminating. ��

In [13] it is shown how Theorem 3 can be used to transform any terminating
TRS into a so-called precedence terminating TRS, which are defined as having
the property that there exists a well-founded precedence � such that root(l) �
f for every rewrite rule l → r and every function symbol f ∈ Fun(r). This
condition ensures that the rewrite rules can be oriented from left to right by
the lexicographic path order induced by the precedence. Needless to say, this
particular transformation is not effective.

We conclude this preliminary section with a simple but useful fact that un-
derlies the dependency pair method [1]. This fact is used to obtain the main
result presented in the next section. The easy proof can be found in [8]. Here
T∞ denotes the set of minimal non-terminating terms in T (F ,V), minimal in
the sense that all arguments are terminating.

Lemma 4. For every term t ∈ T∞ there exists a rewrite rule l → r, a substitu-
tion σ, and a non-variable subterm u of r such that t

>ε−−→∗ lσ
ε−→ rσ 
 uσ and

lσ, uσ ∈ T∞. ��

In the following we do not use the fact that all steps in the rewrite sequence
from t to lσ take place below the root.

3 Predictive Labeling

Our aim is to weaken the quasi-model condition R ⊆ �A in Theorem 3 by
replacing R with the usable rules of the labeling �. The concept of usable rules
originates from [1]. We extend the definition to labelings.

Definition 5. For function symbols f and g we write f �d g if there exists a
rewrite rule l → r ∈ R such that f = root(l) and g is a defined function symbol
in Fun(r). Let � be a labeling and t a term. We define

G�(t) =

⎧⎪⎨⎪⎩
∅ if t is a variable,
Fun(t1)∗ ∪ · · · ∪ Fun(tn)∗ if t = f(t1, . . . , tn) and Lf �= ∅,
G�(t1) ∪ · · · ∪ G�(tn) if t = f(t1, . . . , tn) and Lf = ∅

where F ∗ denotes the set {g | f �∗
d g for some f ∈ F}. Furthermore we define

G�(R) =
⋃

l→r∈R
G�(l) ∪ G�(r).

The set of usable rules for � is defined as U(�) = {l → r ∈ R | root(l) ∈ G�(R)}.

In the following we simply write G� for G�(R).
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Example 6. With respect to the TRS R and the labeling � restricted to fact in
Example 1 we have G� = {0, p, s}. Since 0 and s are constructors, U(�) consists
of the two rules p(s(0)) → 0 and p(s(s(x))) → s(p(s(x))) that define the function
symbol p.

In our version of semantic labeling we require U(�) ⊆ �A instead of R ⊆ �A.
Moreover, we only need to define semantics for the function symbols in G�.
Without further ado, this would be unsound, as can be seen from the following
example.

Example 7. Consider the non-terminating TRS R (from [16])

f(a, b, x) → f(x, x, x) g(x, y) → x g(x, y) → y

We want to distinguish the two occurrences of the function symbol f. This can
be achieved by an algebra A consisting of the carrier {0, 1, a, b} equipped with
the well-founded order > = {(1, 0)} and the interpretations aA = a and bA = b,
together with the weakly monotone labeling function

�f(x, y, z) =

{
1 if x = a and y = b

0 otherwise

We have G� = {a, b} and U(�) = ∅. Obviously U(�) ⊆ �A. The transformed
TRS Rlab ∪ Dec

f1(a, b, x) → f0(x, x, x) g(x, y) → x g(x, y) → y

f1(x, y, z) → f0(x, y, z)

is terminating.

Definition 8. Let A = (A, {fA}f∈F) be an algebra equipped with a proper order
> on its carrier A. We say that (A, >) is a �-algebra if for all finite subsets
X ⊆ A there exists a least upper bound

⊔
X of X in A. We denote

⊔
∅ by ⊥.

Since every element of A is an upper bound of ∅, it follows that ⊥ is the minimum
element of A. This is used in the proof of Lemma 13 below. Note that the algebra
in Example 7 is not a �-algebra as the set {a, b} has no upper bound.

In the remainder of this section we assume that R is a finitely branching
TRS over a signature F , (A, >) with A = (A, {fA}f∈F) a well-founded weakly
monotone �-algebra, and � a weakly monotone labeling for (A, >) such that
U(�) ⊆ �A and fA(a1, . . . , an) = ⊥ for all f /∈ G� and a1, . . . , an ∈ A. The latter
assumption is harmless because function symbols in F \G� are not involved when
computing Rlab or verifying U(�) ⊆ �A.

The if-direction of Theorem 3 is proved in [18] by transforming a presupposed
infinite rewrite sequence in R into an infinite rewrite sequence in Rlab ∪ Dec.
This transformation is achieved by applying the labeling function labα(·) (for an
arbitrary assignment α) to all terms in the infinite rewrite sequence of R. The
key property is that

labα(s) →+
Rlab∪Dec labα(t)
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whenever s →R t. In our setting this approach does not work since we lack
sufficient semantic information to label arbitrary terms.

In the following definition an interpretation function [α]∗A(·) is given for all
terminating terms in T (F ,V) which provides more information than the stan-
dard interpretation function [α]A(·). We write SN for the subset of T (F ,V)
consisting of all terminating terms.

Definition 9. Let t ∈ SN and α an assignment. We define the interpretation
[α]∗A(t) inductively as follows:

[α]∗A(t) =

⎧⎪⎨⎪⎩
α(x) if t is a variable,
fA([α]∗A(t1), . . . , [α]∗A(tn)) if t = f(t1, . . . , tn) and f ∈ G�,⊔
{[α]∗A(u) | t →+

R u} if t = f(t1, . . . , tn) and f /∈ G�.

Note that the recursion in the definition of [α]∗A(·) terminates because the union
of →+

R and the proper superterm relation � is a well-founded relation on SN .
Further note that the operation

⊔
is applied only to finite sets as R is assumed

to be finitely branching. The definition of [α]∗A(t) can be viewed as a semantic
version of a transformation of Gramlich [7, Definition 3], which is used for prov-
ing the modularity of collapsing extending (CE) termination of finite branching
TRSs. Here R is CE-terminating if R∪{g(x, y) → x, g(x, y) → y} with g a fresh
function symbol is terminating. We remark that every �-algebra (A, >) satisfies
g(x, y) �A x and g(x, y) �A y by taking the interpretation gA(x, y) =

⊔
{x, y}.

Variations of Gramlich’s definition have been more recently used in [17,8,15] to
reduce the constraints originating from the dependency pair method.

The induced labeling function can be defined for terminating and for minimal
non-terminating terms but not for arbitrary terms in T (F ,V).

Definition 10. Let t ∈ SN ∪ T∞ and α an assignment. We define the labeled
term lab∗α(t) inductively as follows:

lab∗α(t) =

⎧⎪⎨⎪⎩
t if t is a variable,
f(lab∗α(t1), . . . , lab∗α(tn)) if Lf = ∅,
fa(lab∗α(t1), . . . , lab∗α(tn)) if Lf �= ∅

where a = �f ([α]∗A(t1), . . . , [α]∗A(tn)).

We illustrate the above definitions on a concrete rewrite sequence with respect
to the factorial example of the introduction.

Example 11. Consider the TRS R and the labeling � restricted to fact of Ex-
ample 1. We assume that fN(x1, . . . , xn) = 0 for all function symbols f ∈
{fact, +,×} and all x1, . . . , xn ∈ N. Consider the rewrite sequence

fact(s(0) + fact(0)) → fact(s(0 + fact(0))) → fact(s(fact(0))) → fact(s(s(0)))

and let α be an arbitrary assignment. (Since we deal with ground terms, the
assignment does not matter.) We have
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[α]∗
N
(s(0)) = 1

[α]∗
N
(s(s(0))) = 2

[α]∗
N
(fact(0)) = [α]∗

N
(0 + s(0)) =

⊔
{[α]∗

N
(s(0))} =

⊔
{1} = 1

[α]∗N(s(fact(0))) = sN([α]∗N(fact(0))) = 1 + 1 = 2

[α]∗
N
(0 + fact(0)) =

⊔
{[α]∗

N
(fact(0)), [α]∗

N
(0 + s(0)), [α]∗

N
(s(0))} =

⊔
{1} = 1

[α]∗N(s(0 + fact(0))) = sN([α]∗N(0 + fact(0))) = 1 + 1 = 2

[α]∗
N
(s(0) + fact(0)) =

⊔
{ · · · } = 2

and hence by applying lab∗α(·) to all terms in the above rewrite sequence we
obtain the sequence

fact2(s(0) + fact0(0)) → fact2(s(0 + fact0(0))) → fact2(s(fact0(0)))
→ fact2(s(s(0)))

in Rlab.

The following lemma compares the predicted semantics of an instantiated ter-
minating term to the original semantics of the uninstantiated term, in which the
substitution becomes part of the assignment.

Definition 12. Given an assignment α and a substitution σ such that σ(x) ∈
SN for all variables x, the assignment α∗

σ is defined as [α]∗A ◦ σ and the substi-
tution σlab∗

α
as lab∗α ◦ σ.

Lemma 13. If tσ ∈ SN then [α]∗A(tσ) � [α∗
σ]A(t). If in addition Fun(t) ⊆ G�

then [α]∗A(tσ) = [α∗
σ]A(t).

Proof. We use structural induction on t. If t is a variable then

[α]∗A(tσ) = ([α]∗A ◦ σ)(t) = [α∗
σ]A(t).

Suppose t = f(t1, . . . , tn). We distinguish two cases.

1. If f ∈ G� then

[α]∗A(tσ) = fA([α]∗A(t1σ), . . . , [α]∗A(tnσ))
� fA([α∗

σ]A(t1), . . . , [α∗
σ]A(tn))

= [α∗
σ]A(t)

where the inequality follows from the induction hypothesis (note that tiσ ∈
SN for all i = 1, . . . , n) and the weak monotonicity of fA. If Fun(t) ⊆ G�

then Fun(ti) ⊆ G� and the inequality is turned into an equality.
2. If f /∈ G� then fA(a1, . . . , an) = ⊥ for all a1, . . . , an ∈ A and thus

[α]∗A(tσ) � ⊥ = [α∗
σ]A(t)

In this case Fun(t) ⊆ G� does not hold, so the second part of the lemma
holds vacuously. ��
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The next two lemmata do the same for labeled terms. Since the label of a function
symbol depends on the semantics of its arguments, we can deal with minimal
non-terminating terms.

Lemma 14. Let tσ ∈ SN ∪ T∞. If Fun(t1) ∪ · · · ∪ Fun(tn) ⊆ G� when t =
f(t1, . . . , tn) then lab∗α(tσ) = labα∗

σ
(t)σlab∗

α
.

Proof. We use structural induction on t. If t is a variable then

lab∗α(tσ) = tσlab∗
α

= labα∗
σ
(t)σlab∗

α
.

Suppose t = f(t1, . . . , tn). The induction hypothesis yields

lab∗α(tiσ) = labα∗
σ
(ti)σlab∗

α

for i = 1, . . . , n. We distinguish two cases.

1. If Lf = ∅ then

lab∗α(tσ) = f(lab∗α(t1σ), . . . , lab∗α(tnσ))
= f(labα∗

σ
(t1)σlab∗

α
, . . . , labα∗

σ
(tn)σlab∗

α
)

= f(labα∗
σ
(t1), . . . , labα∗

σ
(tn))σlab∗

α

= labα∗
σ
(f(t1, . . . , tn))σlab∗

α
.

2. If Lf �= ∅ then

lab∗α(tσ) = fa(lab∗α(t1σ), . . . , lab∗α(tnσ))
= fa(labα∗

σ
(t1)σlab∗

α
, . . . , labα∗

σ
(tn)σlab∗

α
)

= fa(labα∗
σ
(t1), . . . , labα∗

σ
(tn))σlab∗

α

and

labα∗
σ
(t)σlab∗

α
= fb(labα∗

σ
(t1), . . . , labα∗

σ
(tn))σlab∗

α

with a = �f([α]∗A(t1σ), . . . , [α]∗A(tnσ)) and b = �f([α∗
σ]A(t1), . . . , [α∗

σ]A(tn)).
Because Fun(ti) ⊆ G�, Lemma 13 yields [α]∗A(tiσ) = [α∗

σ]A(ti), for all i =
1, . . . , n. Hence a = b and therefore lab∗α(tσ) = labα∗

σ
(t)σlab∗

α
as desired. ��

Lemma 15. If tσ ∈ SN ∪ T∞ then lab∗α(tσ) →∗
Dec labα∗

σ
(t)σlab∗

α
.

Proof. We use structural induction on t. If t is a variable then we obtain lab∗α(tσ)
= labα∗

σ
(t)σlab∗

α
from Lemma 14. Suppose t = f(t1, . . . , tn). Note that t1, . . . , tn ∈

SN . The induction hypothesis yields lab∗α(tiσ) →∗
Dec labα∗

σ
(ti)σlab∗

α
for all i =

1, . . . , n. We distinguish two cases.

1. If Lf = ∅ then

lab∗α(tσ) = f(lab∗α(t1σ), . . . , lab∗α(tnσ))
→∗

Dec f(labα∗
σ
(t1)σlab∗

α
, . . . , labα∗

σ
(tn)σlab∗

α
)

= f(labα∗
σ
(t1), . . . , labα∗

σ
(tn))σlab∗

α

= labα∗
σ
(f(t1, . . . , tn))σlab∗

α
.
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2. If Lf �= ∅ then

lab∗α(tσ) = fa(lab∗α(t1σ), . . . , lab∗α(tnσ))
→∗

Dec fa(labα∗
σ
(t1)σlab∗

α
, . . . , labα∗

σ
(tn)σlab∗

α
)

and

labα∗
σ
(t)σlab∗

α
= fb(labα∗

σ
(t1), . . . , labα∗

σ
(tn))σlab∗

α

= fb(labα∗
σ
(t1)σlab∗

α
, . . . , labα∗

σ
(tn)σlab∗

α
)

with a = �f([α]∗A(t1σ), . . . , [α]∗A(tnσ)) and b = �f([α∗
σ]A(t1), . . . , [α∗

σ]A(tn)).
Lemma 13 yields [α]∗A(tiσ) � [α∗

σ]A(ti) for all i = 1, . . . , n. Because the
labeling function �f is weakly monotone in all its coordinates, a � b. If a > b
then Dec contains the rewrite rule fa(x1, . . . , xn) → fb(x1, . . . , xn) and thus
(also if a = b)

fa(labα∗
σ
(t1)σlab∗

α
, . . . , labα∗

σ
(tn)σlab∗

α
) →=

Dec labα∗
σ
(t)σlab∗

α
.

We conclude that lab∗α(tσ) →∗
Dec labα∗

σ
(t)σlab∗

α
. ��

The next lemma states that the rewrite sequence in Lemma 15 is empty when t
is a subterm of the right-hand side of a rule.

Lemma 16. If l → r ∈ R and t � r such that tσ ∈ SN ∪ T∞ then lab∗α(tσ) =
labα∗

σ
(t)σlab∗

α
.

Proof. We use structural induction on t. If t is a variable then we obtain

lab∗α(tσ) = labα∗
σ
(t)σlab∗

α

from Lemma 14. Suppose t = f(t1, . . . , tn). The induction hypothesis yields
lab∗α(tiσ) = labα∗

σ
(ti)σlab∗

α
for all i = 1, . . . , n. If Lf = ∅ then we obtain

lab∗α(tσ) = labα∗
σ
(t)σlab∗

α
as in the proof of Lemma 14. If Lf �= ∅ then Fun(t1)∪

· · · ∪ Fun(tn) ⊆ G� by the definition of G�. Since tiσ ∈ SN , we have tσ ∈ T∞
and therefore Lemma 14 yields lab∗α(tσ) = labα∗

σ
(t)σlab∗

α
. ��

We are now ready for the key lemma, which states that rewrite steps between
terminating and minimal non-terminating terms can be labeled.

Lemma 17. Let s, t ∈ SN ∪ T∞. If s →R t then lab∗α(s) →+
Rlab∪Dec lab∗α(t).

Proof. Write s = C[lσ] and t = C[rσ]. We use structural induction on the
context C. If C = � then

lab∗α(s) = lab∗α(lσ) →∗
Dec labα∗

σ
(l)σlab∗

α

→Rlab labα∗
σ
(r)σlab∗

α
= lab∗α(rσ)

using Lemmata 15 and 16. Let C = f(s1, . . . , C
′, . . . , sn). The induction hypoth-

esis yields lab∗α(C′[lσ]) →+
Rlab∪Dec lab∗α(C′[rσ]). We distinguish two cases.
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1. If Lf = ∅ then

lab∗α(s) = f(lab∗α(s1), . . . , lab∗α(C′[lσ]), . . . , lab∗α(sn))

→+
Rlab∪Dec f(lab∗α(s1), . . . , lab∗α(C′[rσ]), . . . , lab∗α(sn))

= lab∗α(t).

2. If Lf �= ∅ then

lab∗α(s) = fa(lab∗α(s1), . . . , lab∗α(C′[lσ]), . . . , lab∗α(sn))

→+
Rlab∪Dec fa(lab∗α(s1), . . . , lab∗α(C′[rσ]), . . . , lab∗α(sn))

with
a = �f([α]∗A(s1), . . . , [α]∗A(C′[lσ]), . . . , [α]∗A(sn))

and

lab∗α(t) = fb(lab∗α(s1), . . . , lab∗α(C′[rσ]), . . . , lab∗α(sn))

with
b = �f ([α]∗A(s1), . . . , [α]∗A(C′[rσ]), . . . , [α]∗A(sn))

If we can show that

[α]∗A(C′[lσ]) � [α]∗A(C′[rσ]) (1)

then a � b by weak monotonicity of �f and thus

fa(lab∗α(s1), . . . , lab∗α(C′[rσ]), . . . , lab∗α(sn)) →=
Dec lab∗α(t).

We prove (1) by structural induction on C′.
(a) First assume that C′ = �. We distinguish two cases. If root(lσ) =

root(l) ∈ G� then l → r ∈ U(�) and Fun(r) ⊆ G� according to the
definition of G�. Hence

[α]∗A(lσ) � [α∗
σ]A(l)

by Lemma 13,
[α∗

σ]A(l) � [α∗
σ]A(r)

since l �A r due to the assumption U(�) ⊆ �A, and

[α∗
σ]A(r) = [α]∗A(rσ)

by another application of Lemma 13. The combination yields the desired
[α]∗A(lσ) � [α]∗A(rσ). If root(lσ) = root(l) /∈ G� then

[α]∗A(lσ) =
⊔

{[α]∗A(u) | lσ →+
R u}

Because lσ →R rσ, [α]∗A(rσ) ∈ {[α]∗A(u) | lσ →+
R u} and thus also in

this case [α]∗A(lσ) � [α]∗A(rσ).
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(b) Next assume that C′ = g(u1, . . . , C
′′, . . . , um). The induction hypothesis

yields [α]∗A(C′′[lσ]) � [α]∗A(C′′[rσ]). If g ∈ G� then

[α]∗A(C′[lσ]) = gA([α]∗A(u1), . . . , [α]∗A(C′′[lσ]), . . . , [α]∗A(um))

and

[α]∗A(C′[rσ]) = gA([α]∗A(u1), . . . , [α]∗A(C′′[rσ]), . . . , [α]∗A(um))

and thus [α]∗A(C′[lσ]) � [α]∗A(C′[rσ]) by the weak monotonicity of gA. If
g /∈ G� then

[α]∗A(C′[lσ]) =
⊔

{[α]∗A(u) | C′[lσ] →+
R u}

Because C′[lσ] →R C′[rσ], [α]∗A(C′[rσ]) ∈ {[α]∗A(u) | C′[lσ] →+
R u} and

thus [α]∗A(C′[lσ]) � [α]∗A(C′[rσ]). ��

We now have all the ingredients to prove the soundness of predictive labeling.

Theorem 18. Let R be a TRS, (A, >) a well-founded weakly monotone �-
algebra, and � a weakly monotone labeling for (A, >) such that U(�) ⊆ �A.
If Rlab ∪ Dec is terminating then R is terminating.

Proof. According to Lemma 4 for every term t ∈ T∞ there exist a rewrite rule
l → r ∈ R, a substitution σ, and a subterm u of r such that

t
>ε−−→∗ lσ

ε−→ rσ 
 uσ

and lσ, uσ ∈ T∞. Let α be an arbitrary assignment. We will apply lab∗α to the
terms in the above sequence. From Lemma 17 we obtain

lab∗α(t) →∗
Rlab∪Dec lab∗α(lσ).

Since rσ need not be an element of T∞, we cannot apply Lemma 17 to the step
lσ

ε−→ rσ. Instead we use Lemma 15 to obtain

lab∗α(lσ) →∗
Dec labα∗

σ
(l)σlab∗

α
.

Since labα∗
σ
(l) → labα∗

σ
(r) ∈ Rlab,

labα∗
σ
(l)σlab∗

α
→Rlab labα∗

σ
(r)σlab∗

α
.

Because u is a subterm of r, labα∗
σ
(r)σlab∗

α

 labα∗

σ
(u)σlab∗

α
. Lemma 16 yields

labα∗
σ
(u)σlab∗

α
= lab∗α(uσ). Putting everything together, we obtain

lab∗α(t) →+
Rlab∪Dec · 
 lab∗α(uσ).

Now suppose that R is non-terminating. Then T∞ is non-empty and thus there
is an infinite sequence

t1
>ε−−→∗ · ε−→ · 
 t2

>ε−−→∗ · ε−→ · 
 t3
>ε−−→∗ · ε−→ · 
 · · ·
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By the above argument, this sequence is transformed into

lab∗α(t1) →+
Rlab∪Dec · 
 lab∗α(t2) →+

Rlab∪Dec · 
 lab∗α(t3) →+
Rlab∪Dec · 
 · · ·

By introducing appropriate contexts, the latter sequence gives rise to an infinite
rewrite sequence in Rlab ∪Dec, contradicting the assumption that the latter
system is terminating. ��

We conclude this section by showing that, due to the least upper bound condi-
tion on the algebras that may be used in connection with Theorem 18, predictive
labeling does not succeed in transforming every terminating TRS into a prece-
dence terminating TRS.

Example 19. The one-rule TRS R = {f(a, b, x) → f(x, x, x)} is terminating but
not precedence terminating. Suppose R can be transformed by predictive la-
beling into a precedence terminating TRS. This is only possible if the two
occurrences of f get a different label. Let A = (A, {fA, aA, bA}) be a well-
founded weakly monotone �-algebra and � a weakly monotone labeling such
that U(�) ⊆ �A and Rlab ∪ Dec is precedence terminating. Since Lf �= ∅, the
labeling function �f exists and we must have �f(aA, bA, x) �= �f(x, x, x) for all
x ∈ A. Take x =

⊔
{aA, bA}. Since x � aA and x � bA, we obtain

a = �f(x, x, x) � �f(aA, bA, x) = b

from the weak monotonicity of �f . Since we cannot have a = b, a > b must
hold. Hence Dec contains the rule fa(x, y, z) → fb(x, y, z) whereas Rlab contains
the rule fb(a, b, x) → fa(x, x, x) It follows that Rlab ∪ Dec cannot be precedence
terminating, contradicting our assumption.

4 Examples

In this section we present two more examples.

Example 20. Consider the TRS R consisting of the following rewrite rules:

1 : x − 0 → x 6: gcd(0, y) → y

2: s(x) − s(y) → x − y 7: gcd(s(x), 0) → s(x)
3 : 0 ≤ y → true 8: gcd(s(x), s(y)) → ifgcd(y ≤ x, s(x), s(y))
4 : s(x) ≤ 0 → false 9: ifgcd(true, s(x), s(y)) → gcd(x − y, s(y))
5 : s(x) ≤ s(y) → x ≤ y 10: ifgcd(false, s(x), s(y)) → gcd(y − x, s(x))

We use the interpretations

0N = trueN = falseN = ≤N(x, y) = 0 sN(x) = x + 1 −N(x, y) = x

and the labeling

�gcd(x, y) = x + y �ifgcd(x, y, z) = y + z
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We have G� = {0, s, true, false,≤,−} and thus U(�) = {1, 2, . . . , 5}. One easily
checks that U(�) ⊆ �N. The TRS Rlab consists of the rewrite rules

1 : x − 0 → x

2: s(x) − s(y) → x − y

3: 0 ≤ y → true

4: s(x) ≤ 0 → false

5: s(x) ≤ s(y) → x ≤ y

6′ : gcdj(0, y) → y

7′ : gcdi+1(s(x), 0) → s(x)
8′ : gcdi+j+2(s(x), s(y)) → ifgcdi+j+2(y ≤ x, s(x), s(y))

9′ : ifgcdi+j+2(true, s(x), s(y)) → gcdi+j+1(x − y, s(y))

10′ : ifgcdi+j+2(false, s(x), s(y)) → gcdi+j+1(y − x, s(x))

for all i, j � 0 and the TRS Dec consists of the rules gcdi(x, y) → gcdj(x, y) and
ifgcdi(x, y, z) → ifgcdj(x, y, z) for all i > j � 0. Their union is oriented from left
to right by the lexicographic path order induced by the well-founded precedence

ifgcdi+1 > gcdi+1 > ifgcdi > gcdi > · · · > gcd0 > − > ≤ > true > false

and hence terminating. Theorem 18 yields the termination of R.

Example 21. Consider the TRS R consisting of the following rewrite rules:

1 : half(0) → 0 4: bits(0) → 0

2: half(s(0)) → 0 5: bits(s(x)) → s(bits(half(s(x))))
3 : half(s(s(x))) → s(half(x))

We use the interpretations

0N = 0 sN(x) = x + 1 halfN(x) = max {x − 1, 0}

and the labeling �bit(x) = x. We have G� = {0, s, half} and U(�) = {1, 2, 3}.
Clearly U(�) ⊆ �N. The TRS Rlab consists of the rewrite rules

1 : half(0) → 0 4′ : bits0(0) → 0

2: half(s(0)) → 0 5′ : bitsi+1(s(x)) → s(bitsi(half(s(x))))
3 : half(s(s(x))) → s(half(x))

for all i � 0 and the TRS Dec consists of the rules bitsi(x) → bitsj(x) for all
i > j � 0. Their union is oriented from left to right by the lexicographic path
order induced by the well-founded precedence

bitsi+1 > bitsi > · · · > bits0 > half > s > 0

and thus we conclude that R is terminating.
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5 Conclusion

Predictive labeling (Theorem 18) is a variant of the quasi-model version of se-
mantic labeling (Theorem 3). A natural question is whether the usable rules
refinement is also applicable to the model version of semantic labeling (The-
orem 2). This would be interesting not so much because we would get rid of
the rewrite rules in Dec but especially because without the weak monotonicity
condition more labeling functions are possible. The termination prover TORPA
mentioned in the introduction implements both versions of semantic labeling for
that reason. Unfortunately, it is not immediately clear how the definitions and
proofs in Section 3 have to be modified in order to obtain a model version of
predictive labeling.

Although the example at the end of Section 3 shows that predictive labeling is
less powerful than semantic labeling, we believe that predictive labeling may be
more useful when it comes to automation. First note that the algebras used in
the implementations of semantic labeling mentioned in the introduction, {0, 1}
and N equipped with the standard order, are �-algebras. Second, the usable
rules induced by the labeling are often a small subset of the set of all rewrite
rules. Hence the possibility of finding a suitable interpretation increases while
at the same time the search space decreases. The overhead of computing U(�)
is negligible. Therefore we believe that termination provers that incorporate
semantic labeling may benefit from our result. In the version of semantic labeling
implemented in TPA [11] all function symbols are labeled. This entails that most
rewrite rules are usable. As a consequence the termination proving power of TPA
is only modestly increased by predictive labeling (Adam Koprowski, personal
communication).
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Abstract. A rewriting system can be shown terminating by an order-
preserving mapping into a well-founded domain. We present an instance
of this scheme for string rewriting where the domain is a set of square
matrices of natural numbers, equipped with a well-founded ordering that
is not total. The coefficients of the matrices can be found via a transfor-
mation to a boolean satisfiability problem. The matrix method also sup-
ports relative termination, thus it fits with the dependency pair method
as well. Our implementation is able to automatically solve hard termi-
nation problems.

1 Introduction

To solve a problem in rewriting, one can try to translate it into a different do-
main that still allows to represent important aspects of rewriting, but at the
same time provides new techniques. We consider string rewriting, so we need
the concept of strings (concatenation of letters) and of replacement (rule appli-
cation in context). This suggests a translation to rings. A ring has multiplicative
structure, representing concatenation, and additive resp. subtractive structure,
representing rule application, as the translation i maps a rewrite rule � → r to
the ring element i(�) − i(r).

We are especially interested in termination, so the ring has to be equipped
with a suitable well-founded ordering such that for each rewrite step u → v, we
have i(u) > i(v) for the respective images. This implies that the ring must be
infinite, so the obvious example is the ordered ring of integers whose positive
cone is well-founded. Indeed it is useful in termination proofs because it gives us
proofs by weights (written multiplicatively). On the other hand, its usefulness
is limited because multiplication is commutative: no integer weight function can
show termination of e. g. {ab → ba}. So we are looking for non-commutative
rings, and the natural examples are rings of square integer matrices and this is
indeed the main topic of the paper.

As an introductory example of our method, we show that the string rewriting
system {aa → aba} is terminating, even relative to the system {b → bb}. We
interpret letters by square matrices

F. Pfenning (Ed.): RTA 2006, LNCS 4098, pp. 328–342, 2006.
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i(a) =
(

1 1
1 0

)
, i(b) =

(
1 0
0 0

)
and get i(aa)− i(aba) = ( 2 1

1 1 )− ( 1 1
1 1 ) = ( 1 0

0 0 ) and i(b)− i(bb) = ( 1 0
0 0 )− ( 1 0

0 0 ) =
( 0 0

0 0 ). It is easily verified that i(xaay) − i(xabay) = i(x)(i(aa) − i(aba))i(y) ≥
( 1 0

0 0 ) and i(xby)− i(xbby) = i(x)(i(b) − i(bb))i(y) ≥ ( 0 0
0 0 ) for all context strings

x and y. This implies relative termination, as will be justified and discussed in
the remainder of the paper.

We describe interpretations into well-founded rings in Section 3 and special-
ize to the ring of matrices in Section 4. Examples are given in Section 5, among
them two hard termination problems. Limitations of matrix interpretations are
discussed in Section 6. We then describe how our method can be implemented
and how it performs on the Termination Problem Data Base (TPDB) [12], a col-
lection of termination problems that is used in the annual termination competi-
tions, see http://www.lri.fr/~marche/termination-competition/. Finally,
we relate our method to the monotone algebra point of view.

2 Notations and Preliminaries

A string rewriting system over an alphabet Σ is a relation R ⊆ Σ∗ ×Σ∗, where
a pair (�, r) from R is usually referred to as a rule � → r. The system R induces
the (one-step) rewrite relation →R = {(x�y, xry) | x, y ∈ Σ∗, (� → r) ∈ R} on
Σ∗. In this paper, all rewriting systems are finite. For more on strings and string
rewriting see [2], for instance.

The transitive closure of a relation ρ ⊆ A × A is ρ+, and ρ∗ denotes its
reflexive and transitive closure. The composition of two relations ρ ⊆ A×B and
σ ⊆ B × C is ρ ◦ σ = {(a, c) | ∃b ∈ B : (a, b) ∈ ρ, (b, c) ∈ σ}. For ρ ⊆ A × A and
σ ⊆ B × B, a mapping f : A → B is said to be monotone (or order preserving)
if (a, a′) ∈ ρ implies (f(a), f(a′)) ∈ σ.

A relation ρ ⊆ A×A is terminating (or strongly normalizing, or well-founded),
written SN(ρ), if no infinite chain modulo ρ exists. For example, the usual order
> on N is terminating. For relations ρ, σ ⊆ A × A define ρ/σ by σ∗ ◦ ρ ◦ σ∗.
We say that ρ is terminating relative to σ if SN(ρ/σ). For example, SN(ρ/σ) for
ρ = {(2n, n) | n > 0} (division by 2) and σ = {(n, 3n) | n > 0} (multiplication
by 3) on N. For string rewriting systems R and S we abbreviate SN(→R) and
SN(→R/→S) by SN(R) and SN(R/S) respectively.

Relative termination is useful in step-wise proofs of termination: SN(R) can
be inferred if there is some subset R′ ⊆ R with SN(R′/R) and SN(R \ R′). The
same idea of removal of rules works in proofs of relative termination: SN(R/S)
holds if there are subsets R′ ⊆ R and S′ ⊆ S such that SN((R′ ∪ S′)/(R ∪ S))
and SN((R\R′)/(S \S′)). For these and related concepts see [8,15], for instance.

A partial order ≥ is a reflexive, antisymmetric, and transitive relation. We
write > for ≥ \ =, and the partial order is called well-founded if > is well-
founded. Throughout the paper, mappings f : A1 × · · · × An → A are extended
to sets by f(B1, . . . , Bn) = {f(b1, . . . , bn) | bi ∈ Bi} for Bi ⊆ Ai.
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3 Interpretations into Well-Founded Rings

Interpretations into suitable well-founded partially ordered rings can be used for
termination proofs. Before we consider matrix rings in Section 4, a slightly more
general treatment of the underlying principle is given in this section.

Basically, interpretations are order preserving mappings into well-founded do-
mains. The following lemma gives the simple general scheme for relative termi-
nation proofs that we are going to instantiate.

Lemma 1. Let ρ and σ be relations on Σ∗. Let (N,≥) be a well-founded partial
order, let i : Σ∗ → N be a mapping. If i is order preserving both from (Σ∗, ρ+)
to (N, >) and from (Σ∗, σ∗) to (N,≥), then ρ is terminating relative to σ.

Proof. As we have ≥ ◦ > ◦ ≥ ⊆ >, the mapping i is also order preserving from
(Σ∗, σ∗ ◦ ρ ◦ σ∗) to (N, >). Therefore, an infinite chain modulo σ∗ ◦ ρ ◦ σ∗ on Σ∗

would induce an infinite chain modulo > on N . ��

A ring (D, 0, 1, +, ·) with domain D has two constants and two binary operations
such that (D, 0, +) is an Abelian group (implying the existence of an additive
inverse −d for each d ∈ D) and such that (D, 1, ·) is a monoid; additionally,
multiplication distributes over addition from both sides. Multiplication is neither
required to be commutative nor invertible. As usual, subtraction a−b stands for
a + (−b). The ring is partially ordered by ≥ if (D,≥) is a partial order which is
compatible with the ring operations: for a, b, c ∈ D, a ≥ b ⇒ a + c ≥ b + c and
a ≥ b ∧ c ≥ 0 ⇒ ac ≥ bc ∧ ca ≥ cb.

The set N = {d ∈ D | d ≥ 0} of positive ring elements is said to be its
positive cone, and P = {d ∈ D | d > 0} = N \ {0} is its strictly positive cone,
see [5]. Note that the ordering ≥ is already uniquely determined by the positive
cone since a ≥ b is equivalent to a − b ∈ N . Analogously, a > b is equivalent to
a − b ∈ P . The ring is called well-founded if > is well-founded on N . For i ∈ N

and A ⊆ D define Ai by A0 = {1} and Ai+1 = Ai · A, and let A∗ =
⋃

i∈N
Ai.

Note that by definition we have N + P = P + N = P and N + N = N . Further,
N · P = P · N = N = N · N , thus N∗ = N , but in general we do not have
P · P ⊆ P due to the existence of zero divisors.

A (homomorphic ring) interpretation of an alphabet Σ is a mapping i : Σ →
D that is extended to a homomorphism from (Σ∗, ε, ·) to (D, 1, ·) by i(s1 · . . . ·
sn) = i(s1) · . . . · i(sn). We further extend i to a mapping from rules (i.e., pairs
of strings) to D by i(� → r) = i(�) − i(r).

In order to apply ring interpretations for proving termination of rewriting, we
want to ensure i(x�y) > i(xry) for each rewrite step x�y →R xry, that is,

i(x�y) − i(xry) = i(x)i(�)i(y) − i(x)i(r)i(y) = i(x)
(
i(�) − i(r)

)
i(y) ∈ P. (∗)

Given the set of interpretations of letters i(Σ) = A, what is the set of admissible
interpretations of rules i(R) = B? Inspecting condition (∗), it is obvious that
A∗BA∗ ⊆ P is necessary. The largest such set B will be called the core for A.

Definition 1. For A ⊆ D define core(A) = {d ∈ D | A∗dA∗ ⊆ P}.
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Example 1. For A = {( 1 0
0 0 )} we have core(A) = {d | d ≥ ( 1 0

0 0 )}, see Lemma 4.

Remark 1. For A, B ⊆ D define left and right quotients by A\B = {d ∈ D |
Ad ⊆ B} and B/A = {d ∈ D | dA ⊆ B} respectively. Then we can write
core(A) = A∗\P/A∗; note that (A∗\P )/A∗ = A∗\(P/A∗).

Remark 2. By definition, core(A) is the largest set B with A∗BA∗ ⊆ P . On the
other hand, for a given set B there is not necessarily a unique largest set A with
A∗BA∗ ⊆ P . To wit, for B = {( 1 0

0 1 )} the sets A = {d ∈ N | d ≥ ( 1 0
0 0 )} and

A′ = {d ∈ N | d ≥ ( 0 0
0 1 )} are different maximal sets fulfilling that property.

In the following lemma, we collect a few basic properties for later reference.

Lemma 2. (1) core(A) ⊆ P .
(2) A∗ core(A)A∗ = core(A).
(3) For A ⊆ N , core(A) + N = core(A).
(4) If A1 ⊆ A2, then core(A2) ⊆ core(A1).
(5) For A ⊆ N , core(A + N) = core(A).
(6) For A ⊆ N , A∗ ⊆ P if and only if core(A) �= ∅.

Proof. (1) By core(A) ⊆ A∗ core(A)A∗ ⊆ P . (2) This follows from A∗A∗ = A∗.
(3) For c ∈ core(A) and n ∈ N we have A∗(c + n)A∗ ⊆ A∗cA∗ + A∗nA∗ ⊆
P + N = P . (4) If A1 ⊆ A2, then for any d ∈ D we have A∗

1dA∗
1 ⊆ A∗

2dA∗
2, so

A∗
2dA∗

2 ⊆ P implies A∗
1dA∗

1 ⊆ P . (5) We have “⊆” by the previous item; the other
inclusion holds since in a partially ordered ring, a′

i ≥ ai implies a′
1da′

2 ≥ a1da2.
(6) If A∗ ⊆ P , then A∗ ⊆ core(A) by A∗A∗A∗ = A∗ ⊆ P , thus core(A) �= ∅.
Conversely, A∗ ⊆ N and A∗ �⊆ P implies 0 ∈ A∗. For core(A) �= ∅ we get the
contradiction {0} = 0 core(A)0 ⊆ A∗ core(A)A∗ ⊆ P . ��

We always have core(A) ⊆ P , but in general we do not have core(A) ⊆ A, even
for A ⊆ P (see Lemma 4 in Section 4 for an example).

Remark 3. It is important to observe that adding elements to the potential range
of interpretations of letters typically reduces the set of elements that can safely
be chosen as interpretations of rules; this is what Lemma 2(4) says. We can, on
the other hand, assume that the range of all interpretations is upward closed
(i.e., if it contains a then it also contains every a′ ≥ a). This can be assumed
without loss of generality for the interpretation of letters by Lemma 2(5), and
it always holds for the interpretation of rules by Lemma 2(3).

Lemma 3. Let R be a string rewriting system over Σ, and let i : Σ → D be an
interpretation into a well-founded ring such that i(Σ) ⊆ N . Then i is
(1) order preserving from (Σ∗,→+

R) to (D, >) if and only if i(R) ⊆ core(i(Σ)),
(2) order preserving from (Σ∗,→∗

R) to (D,≥) if and only if i(R) ⊆ N .

Proof. Set A = i(Σ). (1) Equivalence of ∀x, y ∈ Σ∗∀(�, r) ∈ R : i(x�y) > i(xry)
and A∗i(R)A∗ ⊆ P holds by (∗) above. (2) is proven analogously; note that
A∗i(R)A∗ ⊆ N if and only if i(R) ⊆ N . ��
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Definition 2. Let N be the positive cone of a well-founded ring. For A ⊆ N ,
an A-interpretation for a string rewriting system R over Σ is an interpretation
i : Σ → N with i(Σ) ⊆ A and i(R) ⊆ core(A).

Lemma 3 together with Lemma 1 yields

Theorem 1. Let N be the positive cone of a well-founded ring, let A ⊆ N , and
let R and S be string rewriting systems over Σ. If there is an A-interpretation i
for R with i(S) ⊆ N , then R is terminating relative to S. In particular, if there
is an A-interpretation for R, then R is terminating.

We remark that this termination proof method is complete in the sense that
for all string rewriting systems R and S over Σ with SN(R/S), there is some
well-founded ring and some subset A of its positive cone N such that an A-
interpretation i for R with i(S) ⊆ N exists. This ring can be chosen as the free
semi-group ring over Σ (consisting of mappings Σ∗ → Z), where the order ≥ is
induced by the order (→R/→S)∗ on strings.

4 Matrix Interpretations

We now switch to the partially ordered ring of square matrices of a fixed dimen-
sion n over Z, which is D = Zn×n. Addition and multiplication are the usual
matrix operations, and 0 and 1 are the zero and the identity matrix respectively.
The order is defined component-wise: d ≥ d′ if ∀i, j : di,j ≥ d′i,j . The positive ring
elements are just the matrices over N, thus the positive cone is N = Nn×n. The
given partial order is indeed well-founded on the positive cone. For dimensions
n > 1, this order is not total.

In order to apply Theorem 1 we need a set of matrices A ⊆ N and an inter-
pretation i : Σ → N such that i(Σ) ⊆ A, i(R) ⊆ core(A), and i(S) ⊆ N . In
the sequel, we present two particular instances of this method, both parameter-
ized by a set of matrix indices I. The one alternative is to choose A = EI with
core(A) = PI , the other choice is A = MI with core(A) = MI , where EI , PI and
MI are simple “syntactically” defined subsets of N . Of course, further instances
of the general scheme are conceivable.

Definition 3. For non-empty I ⊆ {1, . . . , n} define subsets of N = Nn×n by

EI = {d ∈ N | ∀i ∈ I : di,i > 0},
PI = {d ∈ N | ∃i ∈ I∃j ∈ I : di,j > 0},
MI = {d ∈ N | ∀i ∈ I∃j ∈ I : di,j > 0}.

For 1 ≤ i ≤ n let Pi = P{1,...,i}, and P = Pn = N \ {0}. Sets Ei, Mi, E, and M
are defined analogously.

The following properties are all easily verified. By definition we have 1 ∈ EI ⊆
MI ⊆ PI ⊆ P . From E2

I ⊆ EI and M2
I ⊆ MI we obtain E∗

I = EI and M∗
I = MI ,

but P 2
I ⊆ PI does not hold since the matrix ring has zero divisors. Further,

EIPI = PIEI = PI , thus E∗
I PIE

∗
I = PI . Note that E1 = P1 = M1.
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Lemma 4. For non-empty I ⊆ {1, . . . , n},

core(EI) = PI , (1)
core(MI) = MI . (2)

Proof. (1) Using quotients as defined in Remark 1, we have PI = PI/EI ⊆ P/EI

by 1 ∈ EI and PIEI = PI ⊆ P . For showing the inverse inclusion P/EI ⊆ PI ,
assume the existence of a matrix d with dEI ⊆ P and d /∈ PI , so di,j = 0
for i, j ∈ I. Define e ∈ EI by ei,j = 1 for i = j ∈ I and ei,j = 0 otherwise.
Then de = 0 /∈ P , a contradiction. Symmetrically, we get EI\PI = PI . Thus by
Remark 1, core(EI) = E∗

I \P/E∗
I = EI\P/EI = EI\PI = PI .

(2) Here we get MI = MI/MI ⊆ P/MI by 1 ∈ MI and M2
I = MI ⊆ P ,

and symmetrically, MI = MI\MI ⊆ MI\P . For MI\P ⊆ MI , again by way of
contradiction, assume the existence of a matrix d with MId ⊆ P and d /∈ MI .
Then, for some k ∈ I, we have ∀j ∈ I : dk,j = 0. Define m ∈ MI by mi,j = 1 for
i ∈ I, j = k, and mi,j = 0 otherwise. Then md = 0 /∈ P , contradiction. Finally,
by Remark 1, core(MI) = M∗

I \P/M∗
I = MI\P/MI = MI/MI = MI . ��

Example 2. We claimed in the introduction that termination of the string rewrit-
ing system {aa → aba} relative to the system {b → bb} is shown by the inter-
pretation

i(a) =
(

1 1
1 0

)
, i(b) =

(
1 0
0 0

)
.

This is an E1-interpretation with i(aa → aba) = i(aa)− i(aba) = ( 2 1
1 1 )− ( 1 1

1 1 ) =
( 1 0

0 0 ) ∈ P1 and i(b → bb) = i(b) − i(bb) = 0 ∈ N . Alternatively, the M2-
interpretation

i(a) =
(

1 1
1 0

)
, i(b) =

(
0 1
0 1

)
with i(aa → aba) = i(aa) − i(aba) = ( 2 1

1 1 ) − ( 2 0
1 0 ) = ( 0 1

0 1 ) ∈ M2, and where
again i(b → bb) = 0, serves the same purpose. Note that the latter interpretation
is not EI for any I.

Remark 4. Matrix interpretations have implicitly occurred in the literature be-
fore. For instance in [15, Section 6.2.5], termination of R = {aa → aba} is shown
by an interpretation into a monotone algebra A with domain N × {0, 1}, where
(after an argument swap)

aA(n, m) = (n + m, 1), bA(n, m) = (n, 0).

Equivalently, we can choose linear functions

aB(n, m, e) = (n + m, e, e), bB(n, m, e) = (n, 0, e)

in an algebra B with domain N × {0, 1}× {1} ⊆ N3, corresponding to matrices

i(a) =
( 1 1 0

0 0 1
0 0 1

)
, i(b) =

( 1 0 0
0 0 0
0 0 1

)
.
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This mapping i is in fact an E{1,3}-interpretation for R, as

i(aa → aba) = i(aa) − i(aba) =
(

1 1 1
0 0 1
0 0 1

)
−
(

1 1 0
0 0 1
0 0 1

)
=
(

0 0 1
0 0 0
0 0 0

)
∈ P{1,3}.

Remark 5. Matrix interpretations are invariant under permutations, i.e., if i is
an EI -interpretation of dimension n for a system R, and if π is a permutation
on {1, . . . , n}, then there is also an Eπ(I)-interpretation for R. First observe that
for the corresponding permutation matrix p we have Eπ(I) = p−1 · EI · p and
Pπ(I) = p−1 · PI · p. Defining the Eπ(I)-interpretation iπ by iπ(s) = p−1 · i(s) · p
for s ∈ Σ we get iπ(x) = p−1 · i(x) · p for x ∈ Σ∗. Thus, i(R) ⊆ PI implies
iπ(R) ⊆ Pπ(I) = core(Eπ(I)), so iπ is an Eπ(I)-interpretation for R. The same
considerations also apply to MI . As a consequence we can replace an arbitrary
index set I by the particular index set {1, . . . , |I|} without loss of generality.

Remark 6. In our implementation we use EJ -interpretations of dimension n
for the particular two element index set J = {1, n}, see Section 7. In view
of Remark 5 it is not difficult to see that a proof of SN(R/S) via some EI -
interpretation can be replaced by a sequence of such EJ -interpretations which
successively remove the same rules.

Remark 7. It is decidable whether an arbitrary matrix interpretation i : Σ → N
(i.e., not necessarily of type EI or MI) satisfies i(R) ⊆ core(i(Σ)). In particular
we can effectively determine a finite set C ⊆ P such that core(i(Σ)) = {d ≥ c |
c ∈ C}; note that a finite such set always exists by Lemma 2(3) and since the
standard matrix ordering is a well-quasi-order.

5 Examples

Example 3. Zantema’s System {a2b2 → b3a3} is a classical test case for (au-
tomated) termination methods (and therefore is problem z001 in TPDB). The
matrix interpretation

i(a) =

⎛⎜⎜⎜⎜⎝
1 0 0 1 0
0 0 0 2 0
0 0 0 1 0
0 0 1 0 0
0 0 0 0 1

⎞⎟⎟⎟⎟⎠ , i(b) =

⎛⎜⎜⎜⎜⎝
1 0 0 0 0
0 0 1 2 1
0 1 0 0 0
0 0 0 0 0
0 0 0 0 1

⎞⎟⎟⎟⎟⎠
of type E{1,5} shows termination, as

i(a2b2 → b3a3) =

(
1 0 1 2 1
0 0 2 4 2
0 0 1 2 1
0 0 0 0 0
0 0 0 0 1

)
−
(

1 0 1 2 0
0 0 2 1 2
0 0 0 2 1
0 0 0 0 0
0 0 0 0 1

)
=

(
0 0 0 0 1
0 0 0 3 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0

)
∈ P{1,5}.

Note that exchanging a and b, and then transposing the matrices along the anti-
diagonal is the identical mapping. This corresponds to taking the reversal of the
system after exchanging letters, which indeed gives the original system.
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Example 4. Zantema’s “other” System {a2 → bc, b2 → ac, c2 → ab} is TPDB
problem z086 which became famous because no tool (and no tool author) could
solve it in the previous termination competitions. It also appears as Problem
#104 [17] in the RTA list of open problems. The following E{1,5}-interpretation
proves termination:

a =

⎛⎜⎜⎜⎜⎝
1 0 0 3 1
0 0 1 1 1
0 2 0 1 0
0 0 0 0 0
0 0 0 0 1

⎞⎟⎟⎟⎟⎠ , b =

⎛⎜⎜⎜⎜⎝
1 0 2 0 0
0 0 1 0 0
0 0 2 1 2
0 0 0 0 0
0 0 0 0 1

⎞⎟⎟⎟⎟⎠ , c =

⎛⎜⎜⎜⎜⎝
1 0 0 1 1
0 0 1 1 3
0 0 0 1 0
0 0 2 0 0
0 0 0 0 1

⎞⎟⎟⎟⎟⎠ .

This interpretation has been published (in disguise) in [10], cf the remark at the
end of Section 8. Again, note the symmetry by exchanging a and c and applying
anti-transposal of the matrices resp. reversal of the system.

Remark 8. A termination criterion is not necessarily invariant under reversal,
that is, the method may fail to show termination of a given system R, but
may apply to its reversal rev(R) = {rev(�) → rev(r) | (� → r) ∈ R}, where
rev(a1, . . . , an) = an, . . . , a1 for ai ∈ Σ. For matrix interpretations, invariance
under reversal is guaranteed if the class of matrices used is closed under trans-
posal. This is due to the fact that a · b = (bT · aT)T for square matrices a and
b, where aT denotes the transpose of a. For a given interpretation i : Σ → A
define iT : Σ → AT by iT(c) = i(c)T. Then i(rev(x)) = iT(x)T for x ∈ Σ∗, thus
i(rev(�))−i(rev(r)) = iT(�)T−iT(r)T = (iT(�)−iT(r))T, so i(rev(R)) ⊆ core(A)
implies iT(R) ⊆ core(A)T. Note that core(A)T = core(AT), as (AT)∗ = (A∗)T

and PT = P . Therefore, if i is an A-interpretation for rev(R), then iT is an
AT-interpretation for R. This shows that if A is closed under transposal, then
there is an A-interpretation for R in case an A-interpretation for rev(R) exists.
Finally note that all classes EI and PI are indeed closed under transposal, but
that this does not hold for MI .

Example 5. For k ≥ 0, termination of the system {ab → bak} is proven by the
E2-interpretation i(a) = ( 1 1

0 1 ), i(b) =
( 1 0

0 k+1
)
, as i(ab) − i(bak) =

( 1 k+1
0 k+1

)
−(

1 k
0 k+1

)
= ( 0 1

0 0 ) ∈ P2.

Remark 9. All termination proofs by additive natural weights can be expressed
as matrix interpretations with 2× 2 matrices of type E2. This is due to the fact
that (N, +) is isomorphic to ({( 1 n

0 1 ) | n ∈ N}, · ). More generally, consider ter-
mination proofs by linear interpretations : Letters are interpreted by mappings
λn.an + b on N with a, b ∈ N and a ≥ 1, concatenation is interpreted by com-
position, and the proof obligation is ∀n ∈ N : i(�)(n) > i(r)(n) for � → r in R.
This corresponds to matrix interpretations with matrices of the form ( a b

0 1 ).

Example 6. The system R = {aa → bc, bb → cd, b → a, cc → df, dd →
fff, d → b, ff → ga, gg → a}, is TPDB problem z112. In the 2005 termina-
tion competition, it has been solved by Jambox [3] (being RFC-match-bounded
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by 4, witnessed by an automaton with 127 states) and Torpa [16] using additive
weights a �→ 16, b �→ 17, c �→ 15, d �→ 18, f �→ 12, g �→ 8 to remove rules
{bb → cd, b → a, d → b}, and then another weighting to remove the remaining
rules. It can be verified that integer weights ≥ 18 are necessary to remove any
of the rules from R.

Additive weights correspond to matrices ( 1 ∗
0 1 ), see Remark 9, and we will now

show that for a moderate increase in dimension one can sometimes get a drastic
decrease in coefficients: The following is an M{1,4}-interpretation that allows to
remove rule gg → a:

i(a) =
(

1 0 0 0
0 0 0 0
1 0 0 0
1 0 0 0

)
, i(b) =

(
1 0 0 0
0 0 0 0
1 0 0 0
1 0 0 0

)
, i(c) =

(
1 0 0 0
0 0 0 0
1 0 0 0
1 0 0 0

)
,

i(d) =
(

1 0 0 0
0 0 1 0
1 0 0 0
1 0 1 0

)
, i(f) =

(
1 0 0 0
1 0 0 0
0 0 0 0
1 1 0 0

)
, i(g) =

(
1 1 0 0
1 0 0 0
0 1 0 0
1 1 0 0

)
.

The rest of the rules can be removed successively with additive weights ≤ 2.

6 Limitations

We will now discuss inherent limitations of the matrix method. We present dif-
ferent reasons why a terminating rewriting system does not have a termination
proof via A-interpretations. These are: a particular shape of A, the dimension
of A, and the plain fact that A consists of matrices.

Simple Termination. Simple termination of R over Σ is equivalent to SN(R ∪
Σ×{ε}). We claim that if there is an E-interpretation for a rewriting system R,
then R is simply terminating. Recall that E = {d | d ≥ 1}. Any E-interpretation
i fulfills i(Σ×{ε}) ⊆ N since i(ε) = 1, so interpretation i shows SN(R/Σ×{ε}),
and SN(Σ × {ε}) is obvious. This implies that for a non-simply terminating
rewriting system as {aa → aba} we cannot have an E-interpretation. There are
matrix interpretations for that system, see Example 2 and Remark 4, but they
use E1, M2 or E{1,3} and not E.

Dimension restrictions. For dimension one, matrices are in fact scalars, and
scalar multiplication is commutative. Therefore there can be no one-dimensional
termination proof for {ab → ba}, since any interpretation i : {a, b} → N1×1

verifies i(ab) = i(ba). (Note that a “two-dimensional” proof is contained in Ex-
ample 5.)

This is a general phenomenon: a matrix ring is not free. Depending on its
dimension, certain polynomial identities hold. For 2 × 2-matrices A and B, we
have that [A, B]2 is a scalar multiple of the identity (where [A, B] denotes the
commutator AB − BA), therefore [A, [B, C]2] = 0. In other words, ABCBC +
ACBCB + BCCBA +CBBCA = CBCBA + BCBCA +ABCCB +ACBBC.
This implies that there is no interpretation i : {a, b, c} → N2×2 that removes
(by relative termination) a rule from {abcbc → cbcba, acbcb → bcbca, bccba →
abccb, cbbca → acbbc}. Still this system is easily seen terminating because it
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is RFC-matchbounded. (We currently do not know of a matrix proof.) Similar
polynomial identities are known [11] for matrix rings of any dimension, leading
to similar counterexamples.

Exponentional derivational complexity. In a product of k matrices taken from a
finite set A of matrices, the coefficients are bounded by an exponential function
in k. This also bounds the derivational complexity of string rewriting systems
for which we can obtain a termination proof via matrix interpretations.

For example, {ab → baa, cb → bbc} has derivations of doubly exponential

length, since abk →∗ bka2k

, ckb →∗ b2k

ck and ackb →∗ ab2k

ck →∗ b2k

a22k

ck,
and by the fact that increasing the length of a string by n can only be the result
of at least n rewrite steps. So this rewrite system cannot be proved terminating
by a matrix interpretation. In this case, there still is a termination proof via
matrix interpretations due to relative termination: we can first remove the rule
cb → bbc, and then the other one.

In contrast, consider the system {ab → bca, cb → bbc}, which is up to renam-
ing the heart of TPDB problems z018 and z020. It has long derivations: We have
(cb)k →∗ b2k+1−2ck, thus abk →∗ (bc)ka = b(cb)k−1ca →∗ b2k−1cka. This can
be iterated, so from akb we can start a derivation whose length is a tower of k
exponentials and in which both rules are applied equally often. Therefore, none
of the rules can be removed by a matrix interpretation. Note that this system is
compatible with a recursive path order. It also has a termination proof via the
dependency pair method combined with matrix interpretations, as discussed in
Section 9.

7 Implementation

For automatically proving termination by step-wise removal of rules, the basic
algorithm takes as input a description of a matrix set A and a nonempty rewriting
system R, and it outputs a nonempty subset R′ ⊆ R and an A-interpretation i
that proves SN(R′/R), or it fails.

No matter how the interpretation i will be found, its validity can be verified
easily. Short of an exact solution, the obvious route to finding interpretations
is to enumerate all, or randomly guess some, and then just check them. This is
indeed feasible for small dimensions and small coefficients. For larger parameters,
we tried genetic algorithms: candidate solutions are improved by evaluating,
mutating and combining them. The difficult part is to find a good evaluation
function, and we really do have none. So we need something more elaborate.
In the following we describe the implementation in the current version of the
automated termination prover Matchbox [13].

Restricting the matrix shape. The matrix method works with A-interpretations
where core(A) �= ∅. We have given EI - and MI-interpretations as examples. We
found experimental evidence (but no proof) that if there is an MI-interpretation
i that removes some rules, then there also is an EJ -interpretation j that removes
some of these rules. Sometimes the dimension of j is larger than that of i. We
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are willing to pay this price because by Remark 6, then there is also an E{1,n}-
interpretation, so it is enough to search for matrices of that shape. We restrict
this matrix class even more, as we found that in a lot of cases there is an
interpretation into

T = {d | d ∈ E{1,n}, first column is (1, 0, . . . , 0)T, last row is (0, . . . , 0, 1)}.

This shape is motivated by the transformation that introduced the third para-
meter in Remark 4, and it also occurs in Examples 3, 4 and Remark 9. Note
that core(T ) = P{1,n}, thus core(T ) ∩ (T − T ) = {d | d1,n > 0}.

Formulating an integer constraint system. The conditions of Theorem 1 consti-
tute a system of inequalities with the coefficients in the n × n-matrices i(Σ) as
unknowns. The shape of T determines the first column and the last row, so we
effectively have reduced the dimension by one, and there are only (n − 1)2 · |Σ|
unknowns. Since the shape is respected by multiplication (T ∗ ⊆ T ), in each
product we only need to compute the upper right (n − 1) × (n − 1)-submatrix.

The inequalities relate polynomials in the unknowns. For dimension n = 2,
the polynomials are in fact linear functions, cf. Remark 9. For dimensions n > 2,
the maximal degree of these polynomials is the maximal length of a side of a
rewrite rule.

For each rule of the input system, we have (n − 1)2 inequalities. Each one
relates polynomials with nl−1 monomials, where l is the length of the corre-
sponding side of the corresponding rewrite rule. We can reduce the degree and
size of these polynomials at the cost of introducing additional variables. In fact,
we represent each product of two matrices by another matrix of shape T , intro-
ducing (n − 1)2 new variables. These new variables are constrained by equality
relations. The resulting equalities and inequalities are quadratic.

Since matrix multiplication is associative, we can choose the grouping of the
sub-products so as to minimize the number of additional variables. This is done
by looking for factors that occur repeatedly in the sides of the rewrite rules. For
{a2b2 → b3a3}, e.g., we set c = a2, d = b2 and consider {cd → (bd)(ca)}. This is
most likely to be helpful for termination problems over small alphabets (but for
a fixed problem size, problems over larger alphabets tend to be easier anyway).

Solving the constraint system. Since the constraints are nonlinear (for n > 2), we
cannot hope for an algebraic algorithm that solves them exactly and efficiently.
By putting a bound on the coefficients, we get a finite domain problem that can
be solved by combinatorial methods.

The finite domain constraint system is translated into a formula in proposi-
tional logic. Each integer unknown is represented in unary or binary notation
by a sequence of propositional variables. Relations between the variables are ex-
pressed by formulas. Then a state-of-the-art SAT solver (we use SatELiteGTI [7])
finds a satisfying assignment, from which we reconstruct the solution of the orig-
inal system.

Flow control in the small. This is how we use the constraint solver to find
the subset R′ of rules to be removed from R: it solves the constraint system
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Method/Prover Number of proofs Average time
matrix 106 18 s
matrix (no time limit) 124 —
matrix + RFC 138 6 s
Torpa-1.4 (2005) 138 0.04 s
Torpa-1.5 (2006) 144 0.1 s

Fig. 1. Performance on TPDB [12] (1 min default time limit)

corresponding to

i(Σ) ⊆ T ∧ i(R) ⊆ N ∧
∨

(�→r)∈R

i(� → r) ∈ core(T ),

which implies that at least one rule can be removed. This also gives a nice safety
measure: from the constraint solver we just get an assignment of the variables,
and we re-compute all constraints to see which parts of the disjunction were
true.

Flow control in the large. While this gives the general idea, quite some effort
has to be invested to organize the repeated attempts in such a manner that all
potentially successful parameter combinations are actually tried within the given
time bound, where we have to consider also the time spent for failing attempts
due to unsuccessful parameter settings. A good balance seems to be that we
first take 4 seconds time to look for interpretations of dimension 2 with 6 bits
for coefficients, then increase the dimension and the runtime while decreasing
the bit width, arriving at dimension 5 with 3 bits and 25 seconds. This allows
to prove both of Zantema’s systems (Examples 3 and 4) within one minute on a
standard personal computer.

Performance. The Termination Problem Data Base [12] (Version 2.0) contains
166 termination problems for string rewriting. Among these, 13 are relative ter-
mination problems, and 11 problems are non-terminating (on purpose).For 152
of these problems, at least one automated tool could prove termination in the
2005 competition. We run our prover Matchbox on this problem set. It finds 106
termination proofs via matrix interpretations (including 12 for relative termina-
tion) within the time limit of one minute per problem. This includes z001 and
z086, see Examples 3 and 4. Using more time and more refined search meth-
ods (that are not completely automated) we found that a total of 124 problems
can be solved by matrix interpretations. These numbers indicate that matrix
interpretations are a very powerful stand-alone method for termination proofs,
although our current implementation is slow compared to other provers.

The matrix method nicely combines with the RFC match-bound method [9],
in the sense that it is often the case that either the whole system is RFC-
match-bounded, or some rules can be removed by a matrix interpretation.By
repeated application of these two approaches, Matchbox finds 138 termination
proofs within the one minute time limit for each. We remark that this score just
coincides with last year’s winning score of Torpa [16].
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8 Well-Founded Rings as Monotone Algebras

One particular instance of the matrix method (T -interpretations as defined in
Section 7) has been extended to term rewriting [4]. Since the algebra of terms
does not have a ring structure, ordered rings are replaced by “extended monotone
algebras”. In this section we show how these concepts are related for string
rewriting.

In a Σ-algebra A with domain D, for every symbol s ∈ Σ there is a mapping
sA : D → D, its interpretation. This induces an interpretation of strings by
εA(x) = x and, for s ∈ Σ and z ∈ Σ∗, (sz)A(x) = sA(zA(x)). Assume that
relations ρ and σ on D are given such that ρ is well-founded, ρ ◦ σ ⊆ ρ, and
for each s ∈ Σ, sA is monotone modulo ρ and monotone modulo σ. Then A is
called an extended monotone algebra in [4]. It is strictly compatible with a string
rewriting system R over Σ if ∀(� → r) ∈ R ∀x ∈ D : �A(x) ρ rA(x), and it is
compatible with R if ∀(� → r) ∈ R ∀x ∈ D : �A(x) σ rA(x).

Theorem 2 ([4]). For string rewriting systems R and S the following proper-
ties are equivalent: (1) There is an extended monotone algebra that is strictly
compatible with R and compatible with S. (2) R is terminating relative to S.

Now let N be the positive cone of a well-founded ring, let A ⊆ N , and let again
R and S be string rewriting systems over Σ. If there is an A-interpretation i for
R with i(S) ⊆ N , Theorem 1 yields a proof of SN(R/S) which can as well be
formulated in the above cited monotone algebra framework:

Given a mapping i : Σ → A, we build a Σ-algebra A with domain A∗ as
follows. The interpretation sA : A∗ → A∗ of s ∈ Σ is defined by sA(x) = i(s) ·x;
thus zA(x) = i(z) · x for z ∈ Σ∗ and x ∈ A∗. Apart from the usual strict matrix
ordering > and its reflexive closure ≥, we shall need the ordering >A on A∗

which is defined by
x >A y if x − y ∈ core(A).

Excluding the trivial cases Σ = ∅ or R = ∅, we can assume A �= ∅ and core(A) �=
∅, so by Lemma 2(6) we have A ⊆ P . Further, without loss of generality we have
A + N ⊆ A by Lemma 2(5), cf. Remark 3. Then choosing ρ = >A and σ = ≥,
it is easy to establish

Proposition 1. A is an extended monotone algebra, A is strictly compatible
with R if and only if i(R) ⊆ core(A), and A is compatible with S if and only if
i(S) ⊆ N .

From the above algebra of matrices Zd×d there is a homomorphism h into the
algebra of vectors Zd given by h(m) = m·(1, . . . , 1)T, corresponding to construct-
ing the column vector of row sums. Then an A-interpretation i corresponds to a
Σ-algebra C with domain Zd by sC(x) = i(s) ·x (as above, but now x is a vector).
For certain choices of A it is possible to define an ordering >A, this time on vec-
tors, such that C becomes an extended monotone algebra as above. E.g., define
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x >EI y by x ≥ y∧∃i ∈ I : xi > yi and define x >MI y by x ≥ y∧∀i ∈ I : xi > yi.
For the set T from Section 7, take x >T y by x ≥ y∧x1 > y1; this is the ordering
we used for our termination proof of Example 4 in [10]. For A = MT

I there is no
such ordering.

9 Discussion

Matrix interpretations and dependency pairs. The dependency pair method [1]
infers termination of a rewriting system R over Σ from relative termination
SN(DP(R)/R), see [16]. For a string rewriting system R, the marked system is
DP(R) = {x′u → y′w | (xu, vyw) ∈ R, x, y ∈ Σ} over an alphabet Σ ∪Σ′ where
Σ′ = {x′ | x ∈ Σ}. Since the matrix method gives proofs for relative termination,
it directly supports this basic version of the dependency pairs method. The
marker symbols do in fact encode the idea that DP(R) steps only happen at the
left end (for terms: top position). As shown in [4], the matrix method can be
adapted to relative top-termination, and it can be combined with refinements of
the dependency pair approach.

Open problems and future work. One immediate problem with current imple-
mentations of the matrix method is that they are slow. Perhaps this could be
improved by preprocessing the constraints. Performance is not a problem of the
method itself—we have the strong feeling that more problems from the Termina-
tion Problem Database can be solved by matrix interpretations, and we already
can construct some of them on paper—the matrices are large but sparse.

We want to investigate more closely the power of the matrix method. What
other sets of matrices A with non-empty core(A) could be used in termination
proofs? Explain the relationship between proofs via the sets EI and MI , and
between MI and MI′ for I �= I ′.

By fixing matrix dimensions, we get a termination hierarchy where level n
contains those systems that admit a matrix proof of dimension n. Is every level
inhabited? Is it decidable whether a given system belongs to a given level? Is
it for some fixed level? (It is for level 1, because (after taking logarithms) an
interpretation can be found by linear programming. How about level 2?)

Another idea is to relate matrix interpretations to formal language theory.
Matrix interpretations are in fact weighted finite automata [14]. The method
of (RFC) match-bounds [9] also builds on weighted (annotated) automata. A
unified view of these methods would hopefully allow us to construct matrix
interpretations as efficiently as match bound certificates.

Acknowledgements. We have discussed the matrix method with Jörg Endrullis,
Alfons Geser and Hans Zantema. Jörg Endrullis has built an independent imple-
mentation [3]. Niklas Sörensson provided information on finite domain constraint
solving, and Axel Schüler pointed us to rings with polynomial identities. We are
grateful to the referees for careful reading and detailed remarks.
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Abstract. We consider several classes of term rewriting systems and
prove that termination is decidable for these classes. By showing the cy-
cling property of infinite dependency chains, we prove that termination
is decidable for semi-constructor case, which is a superclass of right-
ground TRSs. By analyzing argument propagation cycles in the depen-
dency graph, we show that termination is also decidable for left-linear
shallow TRSs. Moreover we extend these by combining these two tech-
niques.

1 Introduction

Termination is one of the central properties of term rewriting systems (TRSs
for short). We say a TRS terminates if it does not admit any infinite reduc-
tion sequences. Termination guarantees that any expression cannot be infinitely
rewritten, and hence the existence of a normal form for it. As we go from simple
to more general classes of term rewriting systems, the difficulty of deciding ter-
mination increases until it becomes undecidable. It is meaningful to identify the
decidability barrier and study decidability issues for some intermediate classes,
especially if these classes are expressive enough to capture interesting rules.

As a generalization of the decidable classes of ground TRSs [7] and right-
ground TRSs [4], the class of semi-constructor TRSs is studied. A TRS is called
semi-constructor if every defined symbol in the right-hand sides of rules takes
ground terms as its arguments. By showing the cycling property of infinite de-
pendency chains, we give a positive answer to this problem.

The class of shallow TRSs has been attracting some interests from researchers
due to the decidability of reachability and joinability problems for this class
[3,8,10,13]. A TRS is called shallow if all variables in l, r occur at positions with
depth 0 or 1 for each rule l → r. In 2005, the affirmative result on termination of
TRSs that contains right-linear shallow rules was shown by Godoy and Tiwari [5].
Here we propose a technique based on the analysis of argument propagation in
the dependency graph.

Combining the two techniques for semi-constructor case and shallow case, we
prove the decidability of termination for the following TRSs:
� Presently, with Financial Services Dept., Accenture Japan Ltd.

F. Pfenning (Ed.): RTA 2006, LNCS 4098, pp. 343–356, 2006.
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1. right-linear reverse-growing TRSs with all the dependency pairs being shal-
low or right-ground

2. left-linear growing TRSs with all the dependency pairs being shallow or
right-ground.

The organization of this paper is as follows. In Section 2, we review preliminary
definitions of term rewriting systems and introduce basic definitions and results
concerning dependency pair method that will be used in Section 3. In Section
3, we give the definition of loop, head-loop and cycle first, then list our results
and give their proofs. In Section 4, we compare our results with some existing
results.

2 Preliminaries

We assume the reader is familiar with the standard definitions of term rewriting
systems [2] and here we just review the main notations used in this paper.

A signature F is a set of function symbols, where every f ∈ F is associated
with a non-negative integer by an arity function: arity : F → IN(= {0, 1, 2, . . .}).
Function symbols of arity 0 are called constants. The set of all terms built from
a signature F and a countable infinite set V of variables such that F ∩V = ∅, is
represented by T (F ,V). The set of ground terms is denoted by T (F , ∅) (T (F)
for short). We write s = t when two terms s and t are identical. The root symbol
of a term t is denoted by root(t).

The set of all positions in a term t is denoted by Pos(t) and ε represents the
root position. We denote the subterm ordering by �, that is, t�s if t is a subterm
of s, and t � s if t � s and t �= s. The depth of a position p ∈ Pos(t) is |p|. The
height of a term t is 0 if t is a variable or a constant, and 1 + max({height(si) |
i ∈ {1, . . . , m}}) if t = f(s1, . . . , sm). Let C be a context with a hole �. We write
C[t] for the term obtained from C by replacing � with a term t.

A substitution θ is a mapping from V to T (F ,V) such that the set Dom(θ) =
{x ∈ V | θ(x) �= x} is finite. We usually identify a substitution θ with the set
{x �→ θ(x) | x ∈ Dom(θ)} of variable bindings. In the following, we write tθ
instead of θ(t).

A rewrite rule l → r is a directed equation which satisfies l �∈ V and Var(r) ⊆
Var(l). A term rewriting system TRS is a finite set of rewrite rules. If the two
conditions l �∈ V and Var(r) ⊆ Var(l) are not imposed, then we call it eTRS. We
use R−1 for the reverse eTRS of R; R−1 = {r → l | l → r ∈ R}. The reduction
relation →R⊆ T (F ,V)×T (F ,V) associated with a TRS R is defined as follows:
s →R t if there exist a rewrite rule l → r ∈ R, a substitution θ, and a context
C such that s = C[lθ] and t = C[rθ]. The subterm lθ of s is called a redex and
we say that s is reduced to t by contracting redex lθ. The transitive closure of
→R is denoted by →+

R. The transitive and reflexive closure of →R is denoted by
→∗

R. If s →∗
R t, then we say that there is a reduction sequence starting from s to

t or t is reachable from s by R. A term without redexes is called a normal form.
A rewrite rule l → r is called left-linear (resp. right-linear) if no variable occurs
twice in l (resp. r). It is called linear if it is both left- and right-linear. A TRS is
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called left-linear (resp. right-linear, resp. linear) if all of its rules are left-linear
(resp. right-linear, resp. linear).

For a TRS R, a term t ∈ T (F ,V) terminates if there is no infinite reduction
sequence starting from t. We say that R terminates if every term terminates.

For a TRS R, a function symbol f ∈ F is a defined symbol of R if f = root(l)
for some rule l → r ∈ R. The set of all defined symbols of R is denoted by
DR = {root(l) | ∃l → r ∈ R}. We write CR for the set of all constructor
symbols of R which is defined as F\DR. A term t has a defined root symbol if
root(t) ∈ DR.

Let R be a TRS over a signature F . F � denotes the union of F and D�
R =

{f � | f ∈ DR} where F ∩ D�
R = ∅ and f � has the same arity as f . We call these

fresh symbols dependency pair symbols. Given a term t = f(t1, . . . , tn) ∈ T (F ,V)
with f defined, we write t� for the term f �(t1, . . . , tn). If l → r ∈ R and u is a
subterm of r with a defined root symbol, then the rewrite rule l� → u� is called a
dependency pair of R. The set of all dependency pairs of R is denoted by DP(R).

For TRSs R and C, a (possibly infinite) sequence of the elements of C s�
1 →

t�1, s�
2 → t�2, . . . is an (R, C)-chain if there exist substitutions τ1, τ2, . . . such that

t�iτi→∗
Rs�

i+1τi+1 holds for every s�
i → t�i and s�

i+1 → t�i+1 in the sequence. An

(R, DP(R))-chain is called dependency chain.

Theorem 1 ( [6, 1]). For a TRS R, R does not terminate if and only if there
exists an infinite dependency chain.

The nodes of an (R, C)-graph denoted by G(R, C) are the elements of C and there
is an edge from a node s� → t� to u� → v� if and only if there exist substitutions
σ and τ such that t�σ →∗

R u�τ . An (R, DP(R))-graph is called dependency graph

and denoted by DG(R). Note that the dependency graph is not computable in
general. However, our results will work on any approximation of the dependency
graph. We say a graph is an approximate graph of a (R, C)-graph G if it contains
G as a subgraph and root(t) = root(u) for each arrow from a node s� → t�

to u� → v�. We remark that there exists at least one computable approximate
graph for every (R, C)-graph.

The special notations “(R, C)-chain” and “(R, C)-graph” adopted in this paper
is for handling left-linear TRSs as right-linear ones. For example, we will use an
“(R−1, DP(R)−1)-chain”.

3 Decidability of Termination Based on Cycle Detection

Infinite reduction sequences are often composed of cycles. A cycle is a reduction
sequence where a term is rewritten to the same term. More generally, a loop
is a reduction sequence where an instance of the starting term re-occurs as a
subterm. It is obvious that a loop gives an infinite reduction sequence. In fact,
the usual way to deduce non-termination is to construct a loop.
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Definition 2 (Loop, Head-Loop, Cycle).

1. A reduction sequence loops if it contains t′ →+
R C[t′θ] for some context

C, substitution θ and term t′. Similarly, a reduction sequence head-loops if
containing t′ →+

R t′θ, and cycles if containing t′ →+
R t′.

2. A term t loops (resp. head-loops, resp. cycles) with respect to R if there is a
looping (resp. head-looping, resp. cycling) reduction sequence starting from
t.

3. A TRS R admits a loop (resp. head-loop, resp. cycle) if there is a term t
such that t loops (resp. head-loops, resp. cycles) with respect to R.

Proposition 3. The following statements hold:

1. If t cycles, then t head-loops. If t head-loops, then t loops.
2. A TRS does not terminate if it admits a loop or a head-loop or a cycle.

Example 4. Let R1 = {f(x) → h(f(g(a))), g(x) → g(h(x))} and t = f(x).
We can construct the following reduction sequence by only applying the former
rule: f(x) → h(f(g(a))) → h(h(f(g(a)))) → · · · which loops with C = h[�],
θ = {x �→ g(a)} and t′ = f(x). Notice there are more than one looping reduction
sequences for R1.

Naturally, the observation above inspires us to find some class of TRSs, whose
non-termination is equivalent to the existence of loops. If we are able to check
the existence of loops, then termination of such a class becomes decidable.

The following theorem lists our main results and will be proved in the following
subsections.

Theorem 5. Termination of the following classes of TRSs is decidable:

1. semi-constructor TRSs
2. right-linear shallow TRSs
3. left-linear shallow TRSs
4. right-linear rev-growing TRSs with all the dependency pairs being shallow or

right-ground.
5. left-linear growing TRSs with all the dependency pairs being shallow or right-

ground.

3.1 Semi-constructor TRSs

Definition 6 (Semi-Constructor TRS). A term t ∈ T (F ,V) is a semi-
constructor term if every term s such that s � t and root(s) ∈ DR is ground. A
TRS R is a semi-constructor system if r is a semi-constructor term for every
rule l → r ∈ R.

Example 7. The TRS R2 = {f(x) → h(x, f(g(a))), g(x) → g(h(a, a))} is a semi-
constructor system.

Proposition 8. A TRS R is called right-ground if for every l → r ∈ R, r is
ground. The following statements hold:
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1. Right-ground TRSs are semi-constructor systems.
2. For a semi-constructor TRS R, rules in DP(R) are right-ground.

For a given TRS, let T∞ denote the set of all minimal non-terminating terms,
here “minimal” is used in the sense that all its proper subterms terminate.

Definition 9 (C-min). For a TRS R, let C ⊆ DP(R). An infinite reduction
sequence in R ∪ C in the form t�1→∗

Rt�2→Ct�3→∗
Rt�4→C · · · with ti ∈ T∞ for all

i ≥ 1 is called a C-min reduction sequence. We use Cmin(t�) to denote the set of
all C-min reduction sequences starting from t�.

Proposition 10 ( [1, 6]). Given a TRS R, we have the following statements:

1. If there exists an infinite dependency chain, then Cmin(t�) �= ∅ for some
C ⊆ DP(R) and t ∈ T∞.

2. For any sequence in Cmin(t�), reduction →R takes place below the root while
reduction →C takes place at the root.

3. For any sequence in Cmin(t�), subsequence s�→∗
R∪Ct� implies s→∗

RC[t] for
some context C.

4. For any sequence in Cmin(t�), there is at least one rule in C which is applied
infinitely often.

Lemma 11. For a TRS R, if sq ∈ Cmin(t�) loops, then sq head-loops.

Proof. Let sq ∈ Cmin(t�) loops, then there is a subsequence t�k→
+
R∪CC[t�kθ] in sq.

From Prop.10–(2) and the fact that dependency pair symbols appears only in
dependency pairs, we have C[t�kθ] = t�kθ, which implies that sq head-loops. ��

Lemma 12. For a TRS R, if sq ∈ Cmin(t�) loops, then there is a term t�k in sq
such that tk loops with respect to R.

Proof. From Lemma 11 and Prop. 10–(3). ��

Lemma 13. For a semi-constructor TRS R, the following statements are equiv-
alent:

1. R does not terminate.
2. There exists l� → u� ∈ DP(R) such that sq cycles for some sq ∈ Cmin(u�).

Proof. (2⇒1): It is obvious by Lemma 12. (1⇒2): By Theorem 1, there exists an
infinite dependency chain. By Prop. 10–(1), there exists a sequence sq ∈ Cmin(t�).
By Prop. 10–(4), there is some rule l� → u� ∈ C which is applied at root reduction
in sq infinitely often. By Prop. 8–(2), u� is ground. Thus u� cycles in the form
u�→∗

R∪DP (R) · →{l�→u�}u
� in sq. ��

Notice that non-termination of semi-constructor systems depends on the exis-
tence of a cycling dependency chain, which represents the cycle “u�→∗

R∪DP (R) ·
→{l�→u�}u

� in sq” in the proof of Lemma 13. Here, cycle is guaranteed by the

fact that DP(R) is right-ground.
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Proof. (Theorem 5–(1)) The decision procedure for termination of semi-
constructor TRS R is as follows: consider all terms u1, u2, . . . , un corresponding
to the right-hand sides of DP(R) = {l�i → u�

i | 1 ≤ i ≤ n}, and simultaneously
generate all reduction sequences with respect to R starting from u1, u2, . . . , un.
It terminates if it enumerates all reachable terms exhaustively or it detects a
looping reduction sequence ui →+

R C[ui] for some i.
Suppose R does not terminate. By Lemma 12, 13 and the groundness of ui’s,

we have a looping reduction sequence ui →+
R C[ui] for some i and C. Hence we

detect non-termination of R. If R terminates, then the execution of the reduction
sequence generation stops finally since it is finitely branching. Thus we detect
termination of R after finitely many steps. ��

Next we make a natural extension by relaxing the condition for assuring cycling,
which is mainly used in the Subsection 3.3.

Lemma 14. Let R be a TRS whose termination is equivalent to the non-
existence of a dependency chain that contains infinite use of right-ground de-
pendency pairs. Then termination of R is decidable.

Proof. We apply the above procedure starting from terms u1,u2,. . . ,un, where
u�

i’s are all ground right-hand sides of dependency pairs. Suppose R is non-
terminating, we have a dependency chain with infinite use of a right-ground
dependency pair. Similarly to the semi-constructor case, we have a loop ui →+

R

C[ui], which can be detected by the procedure. ��

Example 15. Let R3 = {f(a) → g(b), g(x) → f(x), h(a, x) → h(b, x)}. We can
compute the dependency graph. It has only one cycle, which contains a right
ground node. From Lemma 14 we can show termination of R3 by the procedure
starting from g(b).

3.2 Right-Linear Shallow or Left-Linear Shallow TRSs

In this subsection, we show how to analyze cycle of dependency chains that con-
sist only of right-linear shallow dependency pairs and then show the decidability
of termination for right-linear shallow TRSs and left-linear shallow TRSs.

Definition 16 (Shallow TRS). A rewrite rule l → r is shallow if all variables
in Var(l) ∪ Var(r) occur at positions with depth 0 or 1. An eTRS is shallow if
all its rewrite rules are shallow.

Example 17. TRS R4 = { f(x, y) → f(g(a), y), f(g(a), z) → f(z, b) } and R5 =
{ g(x, x) → f(x, a), f(c, x) → g(x, b), a → c, b → c } are shallow.

We say that T is joinable to s if ∀t ∈ T. t →∗
R s and T is joinable if it is joinable

to some s. From now on, we assume R in which both of the following properties
are decidable.

Ground Reachability: t →∗
R s for given ground terms t and s.

Ground Joinability: T is joinable for a given set T of ground terms.
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For dependency chains composed of shallow dependency pairs, all informa-
tions carried by variables are passed to the next dependency pairs in its deriva-
tion. For example, consider R5 and an infinite sequence of dependency pairs:

g�(x, x) → f �(x, a), f �(c, x) → g�(x, b), g�(x, x) → f �(x, a), . . . .

It is a dependency chain because we have a derivation:

g�(c, c) → f �(c, a) = f �(c, a) → g�(a, b) → · → g�(c, c) → f �(c, a) → · · · .

In order to analyze such information flows caused by variables, we introduce
some notions.

Definition 18 (Labeling Function). Let R and C be eTRSs and AG be an
approximate graph of (R, C)-graph. Let p be a path nd1, nd2, nd3 · · · in AG and
M be the maximum arity of root symbols of right-hand sides of nodes in AG. A
labeling function Lp : IN → C × P(T (F))M is defined as follows:

1. Let nd1 be f �(t1, . . . , tn) → g�(s1, . . . , sm). Then Lp(1) = (nd1, S
1
1 , . . . , S1

M )
where

S1
i =

{
{si} if si �∈ V and 1 ≤ i ≤ n
∅ otherwise. .

2. Let ndi = h�(v1, . . . , vk) → f �(u1, . . . , un), Lp(i) = (ndi, S
i
1, . . . , S

i
M ) and

ndi+1 = f �(t1, . . . , tn) → g�(s1, . . . , sm). Then Lp(i + 1) = (ndi+1, Si+1
1 ,

. . . , Si+1
M ) where

Si+1
j =

⎧⎪⎨⎪⎩
{sj} if sj �∈ V and 1 ≤ j ≤ k⋃
l∈{1,...,n}∧sj=tl

Si
l if sj ∈ V and 1 ≤ j ≤ k

∅ otherwise.

Example 19. Consider R=R5 and C={ g�(x, x) → f �(x, a), f �(c, x) → g�(x, b) }
⊂ DP(R5). The labeling function for a path N1, N2, N1, . . . is L(1) = (N1, ∅, {a}),
L(2) = (N2, {a}, {b}), L(3) = (N1, {a, b}, {a}), L(4) = (N2, {a}, {b}), L(5) =
(N1, {a, b}, {a}), . . ., where N1 = g�(x, x) → f �(x, a) and N2 = f �(c, x) →
g�(x, b). (See Fig. 1)

Definition 20 (Argument Propagation Cycling). Let Lp be a labeling func-
tion over p = nd1, nd2, nd3, . . .. We say a finite sequence of labels Lp(I), Lp(I +
1), . . . , Lp(J) is an argument propagation cycling (APC for short) if Lp(I) =
Lp(J) and the following condition, called smoothness condition, are satisfied for
all i (I ≤ i < J):

For all j (1 ≤ j ≤ n),
1. Si

j is joinable if tj is a variable;
2. otherwise Si

j is joinable to tj
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Fig. 1. Labeling for Example 19

where
Lp(i) = (v� → u�, Si

1, . . . , S
i
M ) and

Lp(i + 1) = (f �(t1, . . . , tn) → s�, Si+1
1 , . . . , Si+1

M ) .

We say an APC is minimal if all its proper subsequences are not APC.

Example 21. Consider the labeling function L in Example 19. The sequence
L(2), L(3), L(4) is a minimal APC.

One may think that every minimal APC contains no repetition of a same node
except the edges. However it is not correct in general as shown by the following
example.

Example 22. Consider a TRS R6 ={ g(x, y)→f(y, b, x, a), g(x, y)→f(y, a, x, b),
f(x, x, y, y) → g(x, y) } and C = DP(R6). The minimal APC over a path
N1, N3, N2, N3, N1, . . . is the sequence L(2), L(3), . . . , L(6) as shown in Fig. 2.
There is no APC over a path N1, N3, N1, N3, . . ..

Lemma 23. For an eTRS R such that ground reachability and ground joinabil-
ity are decidable and for a shallow eTRS C, the existence of APC is decidable.

Proof. Firstly we take an approximate graph G of (R, C)-graph. The procedure
tries searches starting from every node in G. In traversing edges, it quits if an
APC is found and backtracks traversal if the path does not satisfy the smooth-
ness condition. The correctness of this procedure is obvious. The range of the
labeling function is finite since the possible value in Sk of the labeling function
is a ground term at depth 1 that occurs in the right-hand side of nodes. Since
the smoothness condition is decidable by the assumption, termination of the
procedure is guaranteed. ��

We say that a natural extension of (R, C)-chain · · ·nd−1, nd0, nd1 is backward-
infinite. In order to avoid confusion, we sometimes say that an infinite (R, C)-
chain is forward-infinite. Next lemma will formally express the relation between
an APC and an infinite (R, C)-chain.
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Lemma 24. Let R be an eTRS and C be a right-linear shallow eTRS. Then,

1. there exists a forward and backward-infinite (R, C)-chain if there exists an
APC, and

2. there exists an APC if there exists a forward or backward-infinite (R, C)-
chain.

Proof. We firstly show the former part. Let Lp(I), . . . , Lp(J) be an APC over a
path nd1, · · · , ndI , · · · , ndJ . In order to construct substitutions τI , · · · , τJ that
satisfy the chain condition and τI = τJ , do the following repeatedly while ap-
plicable, starting with empty substitutions τi = ∅ (I ≤ i ≤ J).

– Let I ≤ k < J , ndk = v� → f �(u1, . . . , un) and ndk+1 = f �(t1, . . . , tn) → s�.
Set τk := τk∪{ui �→ tiτk+1} if ui ∈ V−Dom(τk) and tiτk+1 �∈ V (1 ≤ i ≤ n).

– Set τJ := τI if τJ �= τI .

Note that the uniqueness of each substitution τi is guaranteed by the right-
linearity of nodes. This procedure eventually stops and the chain is an (R, C)-
chain with ndIτI = ndJτJ from the smoothness of the APC. Hence the existence
of an forward and backward-infinite (R, C)-chain is easily shown.

Next, we argue that there exists an APC over a given forward-infinite (R, C)-
chain. Let the (R, C)-chain be nd1, nd2, . . . where ndi = t�i → s�

i ∈ C. There exists
an APC (with smoothness condition ignored) over the path. Note that it is also
possible even if the given chain is backward-infinite one · · · , nd−1, nd0, nd1, since
we can choose a natural number N small enough such that an APC can be found
along the path ndN , ndN+1, · · · , nd0, nd1. Let the APC be L(I), · · · , L(J). We
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have an sequence t�IτI →C s�
IτI →∗

R t�I+1τI+1 →C s�
I+1τI+1 →∗

R∪C · · · →∗
R∪C

t�JτJ →C s�
JτJ , where t�i → s�

i is a rule in L(i). The satisfaction of the smoothness
condition follows from the traces of the reductions of ground terms at depth 1
in the sequence. ��

Example 25. Consider the APC L(2), L(3), L(4) from a path nd1, nd2, . . . (see
Fig. 1). We show the existence of cycling reduction sequence t →+

R∪C t. According
to the procedure in the proof of Lemma 24, we obtain substitutions τ2 = τ3 =
τ4 = {x �→ c}. Thus, we have f �(c, c) →C g�(c, b) →∗

R g�(c, c) →C f �(c, a) →∗
R

f �(c, c) from the sequence nd2τ2, nd3τ3, nd4τ4.

Next, based on Lemma 24, we give proofs for Theorem 5–(2) and (3).

Proof. (Theorem 5–(2)) Let R be a right-linear shallow TRS. Then, DP(R)
is also right-linear shallow. We know ground reachability and ground join-
ability of right-linear shallow TRSs are decidable [9, 3, 10, 13]. By Lemma 23,
we can decide the existence of APC. Thus we can decide the existence of
a forward-infinite (R, DP(R))-chain by Lemma 24. The theorem follows from
Theorem 1. ��

Proof. (Theorem 5–(3)) Let R be a left-linear shallow TRS. Then R−1 and
DP(R)−1 are right-linear shallow eTRSs We know ground reachability and
ground joinability of right-linear shallow TRSs are decidable [9, 3, 10, 13]. By
Lemma 23, we can decide the existence of APC. If an APC exists, we have
a backward-infinite (R−1, DP(R)−1)-chain from the former part of Lemma 24,
which shows the existence of a forward-infinite (R, DP(R))-chain. If no APC
exists, we have no backward-infinite (R−1, DP(R)−1)-chain from the latter part
of Lemma 24, which shows the non-existence of a forward-infinite (R, DP(R))-
chain. The theorem follows from Theorem 1. ��

3.3 Combining the Two Techniques

In this subsection, we combine the techniques in the above two subsections and
show the decidability of termination for some larger classes. This is based on the
following lemma.

Proposition 26. For TRSs R, C and C′ such that C ⊇ C′, the following state-
ments are equivalent.

1. There exists an infinite (R, C)-chain.
2. There exists an infinite (R, C′)-chain or there exists an infinite (R, C)-chain

with infinite use of pairs in C − C′.

Proof. Since the latter implies the former trivially, we show the converse. Sup-
pose we have an infinite (R, C)-chain nd1, nd2, . . . with finite use of pairs in
C − C′. Letting ndn is the last use of a pair in C − C′, the infinite subsequence
ndn+1, ndn+2, . . . is a (R, C′)-chain. ��
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Definition 27 (Growing TRS). A rewrite rule l → r is growing if all vari-
ables in Var(l) ∩ Var(r) occur at positions with depth 0 or 1 in l. An eTRS R
is growing if every rewrite rule in R is growing and R is rev-growing if R−1 is
growing.

Example 28. TRS R7 = { f(a, x) → g(x, b), g(x, y) → h(x, p(x, y)), h(c, x) →
f(x, x) } is left-linear growing.

Proof. (Theorem 5–(4)) Let R be a right-linear rev-growing TRS with DP(R)
being shallow or right-ground. Let Cs be the set of all shallow pairs in DP(R).
We know ground reachability and ground joinability of right-linear rev-growing
TRSs are decidable [10, 13]. Since Cs is right-linear shallow, we can decide the
existence of APC by Lemma 23. If an APC exists then we have an infinite (R, Cs)-
chain by Lemma 24, which implies that R is non-terminating. Otherwise, from
Prop. 26, it is enough to decide the existence of an infinite (R, DP(R))-chain
with infinite use of pairs in DP(R) − Cs, which is a set of right-ground pairs.
This is decidable from Lemma 14. ��

Proof. (Theorem 5–(5)) Let R be a left-linear growing TRS with DP(R) being
shallow or right-ground. Let Cs be the set of all shallow pairs in DP(R). Then
R−1 is right-linear rev-growing and C−1

s is right-linear shallow. Since we know
ground reachability and ground joinability of right-linear rev-growing TRSs are
decidable [10,13], we can decide the existence of APC by Lemma 23. If an APC
exists then we have a backward-infinite (R−1, C−1

s )-chain by Lemma 24, which
implies the existence of an infinite (R, Cs)-chain and hence R is non-terminating.
Otherwise, from Prop. 26, it is enough to decide the existence of an infinite
(R, DP(R))-chain with infinite use of pairs in DP(R) − Cs, which is a set of
right-ground pairs. This is decidable from Lemma 14. ��

4 Comparison

In this section, we compare our results with some existing results.

Lemma 29. For a semi-constructor TRS R, the following statements are equiv-
alent:

1. R does not terminate.
2. DG(R) contains a cycle.

Proof. Suppose R does not terminate. There exists an infinite dependency chain
by Theorem 1. Hence the dependency graph must have a cycle, otherwise it
causes a contradiction.

Conversely, for every edge from a node s� → t� to a node u� → v� in a cycle,
there exists a substitution τ such that t� →∗

R u�τ . Thus we can easily construct
an infinite dependency chain. ��



354 Y. Wang and M. Sakai

Lemma 30. The dependency graph of semi-constructor TRSs is not compu-
table.

Proof. By encoding Post’s Correspondence Problem. Let {〈ui, vi〉 ∈ Σ+ × Σ+ |
1 ≤ i ≤ n} be a finite set of PCP pairs.

TRS R8 =

{ε → ei(ε) | 1 ≤ i ≤ n}∪
{ε → f(c, d)}∪
{b → a(b), b → a(ε) | b ∈ {c, d}, a ∈ Σ}∪
{f(x, x) → g(x, x)}∪
{ei(g(ui(x), vi(y))) → g(x, y) | 1 ≤ i ≤ n}∪
{ei(g(ui(ε), vi(ε))) → ε | 1 ≤ i ≤ n}

Defined symbol of R8 is {ε, c, d, f} ∪ {ei | 1 ≤ i ≤ n}, R8 is a semi-constructor

TRS and it is a variant of the example in [12]. Notice that the following state-
ment is true: in DG(R8), there is an edge from node ε� → e�

1(ε) to node
e�
1(g(u1(ε), v1(ε))) → ε� if and only if PCP has a solution. ��

Note that reachability problem is undecidable for linear semi-constructor TRSs
[11]. However this fact is not enough to prove the above lemma because the use
of reachability in dependency graphs are limited.

In the reference [9], Middeldorp proposed a decision procedure for termina-
tion of right-ground TRSs which is dependency graph based. Denoting growing
approximation dependency graph by DGg(R), he showed that for right-ground
TRS R, DG(R) = DGg(R), that is, the dependency graph of the right-ground
TRS is computable. Thus, the decision procedure proposed is that: compute the
dependency graph of R using the growing approximation and then check the
existence of cycles. For semi-constructor case, we also have Lemma 29 to assure
that semi-constructor TRS terminates if and only if there is no cycles in the
dependency graph. However, the dependency graph based method can not be
applied to semi-constructor case, since its dependency graph is not computable
by Lemma 30.

The following theorem shown by Godoy and Tiwari [5] is also given as a
corollary of Theorem 5–(4) since TRSs in this class satisfy the assumption of
our theorem.

Theorem 31 ( [5]). Termination of TRSs that consist of right-linear shallow
rules, collapsing rules and right-ground rules is decidable.

Nagaya and Toyama [10] obtained the decidability result for almost orthogonal
growing TRSs. We claim that the applicable classes of Nagaya’s method and
ours do not cover each other. Considering R4 in Example 17 and R7 in Exam-
ple 28: R4 is left-linear shallow, but it is not almost orthogonal since there is
a non-trivial critical pair 〈f(g(a), z), f(z, b)〉; DP(R7) does not fit either of the
applicable classes we proposed, but it is orthogonal.
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5 Conclusion

One research direction on termination is to find more general classes of TRSs
whose termination is decidable. We proposed several positive results listed in
Theorem 5.

We propose some conjectures and list them as follows:

Conjecture 32. Termination of right-linear rev-growing TRSs with all the de-
pendency pairs being left-linear is decidable.

Conjecture 33. Termination of left-linear growing TRSs with all the dependency
pairs being right-linear is decidable.

Conjecture 34. Termination of shallow TRSs is undecidable.
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Proving Positive Almost Sure Termination
Under Strategies

Olivier Bournez and Florent Garnier
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Abstract. In last RTA, we introduced the notion of probabilistic rewrite
systems and we gave some conditions entailing termination of those sys-
tems within a finite mean number of reduction steps.

Termination was considered under arbitrary unrestricted policies.
Policies correspond to strategies for non-probabilistic rewrite systems.

This is often natural or more useful to restrict policies to a subclass.
We introduce the notion of positive almost sure termination under strate-
gies, and we provide sufficient criteria to prove termination of a given
probabilitic rewrite system under strategies. This is illustrated with sev-
eral examples.

1 Introduction

As discussed in several papers such as [7,22,15], when specifying probabilistic
systems, it is rather natural to consider that the firing of a rewrite rule can be
subject to some probabilistic law.

Considering rewrite rules subject to probabilities leads to numerous questions
about the underlying notions and results. In [7], we introduced probabilistic ab-
stract reduction systems, and we introduced notions like almost-sure termination
or probabilistic confluence, with relations between all these notions. In [6], we
proved that, unlike what happens for classical rewriting logic, there is no hope
to build a sound and complete proof system with probabilities in the general
case [6]. In [5], we argue that positive almost sure termination is a better notion
than simple almost sure termination for probabilistic systems and we provide
necessary and sufficient criteria entailing positive almost sure termination.

In this paper, we pursue the investigation, by considering positive almost sure
termination under strategies. As we show through several examples, it is often
natural to restrict strategies to a subset of strategies. Many simple probabilis-
tic rewrite systems do not terminate under arbitrary strategies, whereas they
terminate if strategies are restricted to natural strategies.

The idea of adding probabilities to high level models of reactive systems is
not new, and has also been explored for models like Petri Nets [3,26], automata
based models [10,27], or process algebra [16]. There is now a rather important
literature about model-checking techniques for probabilistic systems: see example
[21] and the references there. Computer Tools like PRISM [20], APMC [19], do
exist. Observe however, that most of the studies and techniques restrict to finite
state systems.

F. Pfenning (Ed.): RTA 2006, LNCS 4098, pp. 357–371, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Termination of probabilistic concurrent programs has already been investi-
gated. In particular, in [18] it has been argued that this is important to restrict
to fair schedulers, and techniques for proving termination under fair schedulers
have been provided. These techniques have been extended to infinite systems in
[17]. Compared to our work, they focus on almost sure termination, whereas we
focus on positive almost sure termination. Furthermore, we deal with probabilis-
tic abstract reduction systems or rewrite systems, whereas these two papers are
focusing on concurrent programs, where strategies correspond to schedulers.

Several notions of fairness have been introduced for concurrent programs, and
in particular for probabilistic concurrent programs. In particular, Pnueli [23],
and Pnueli and Zuck have introduced extreme fairness and α-fairness [24]. Hart,
Sharir and Pnueli [18] and Vardi [27] consider probabilistic systems in which the
choice of actions at the states is subject to fairness requirements, and proposed
model checking algorithms. A survey and discussion of several fairness notions
for probabilistic systems can be found in chapter 8 of [10].

Probabilistic abstract reduction systems and probabilistic rewrite systems do
correspond to classical abstract reduction systems and classical rewrite systems
where probabilities can only be 0 or 1 [5]. Therefore, any technique for prov-
ing termination of a probabilistic system must have a counterpart for classical
systems. In particular, any technique for proving termination of probabilistic
rewrite systems under strategies is an extension of a technique for proving ter-
mination of classical rewrite systems under strategies. The termination of rewrite
systems under strategies has been investigated in e.g. [12,13]. Since the extension
to the probabilistic case of very basic techniques already yields several problems
discussed in this paper, we do not consider so general strategies.

The paper is organized as follows: in Section 2, we recall probabilistic abstract
reduction systems, and probabilistic rewrite systems, as well as several concepts
and results from [5]. In Section 3, we introduce positive almost sure termina-
tion under strategies, and we discuss several examples of systems that are non
positively almost surely terminating but which are positively almost surely ter-
minating under some strategies. In Section 4, we derive some techniques to prove
positive almost sure termination under strategies. In Section 5, we discuss several
applications of our results.

2 Probabilistic Abstract Reduction Systems and
Probabilistic Rewrite Systems

A stochastic sequence on a set A is a family (Xi)i∈N, of random variables defined
on some fixed probability space (Ω, σ, P ) with values on A. It is said to be
Markovian if its conditional distribution function satisfies the so-called Markov
property, that is for all n and s ∈ A,

P (Xn = s|X0 = π0, X1 = π1, . . . , Xn−1 = πn−1) = P (Xn = s|Xn−1 = πn−1),

and homogeneous if furthermore this probability is independent of n.
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Probabilistic abstract reduction systems (PARS) were introduced in [5]. In
the same way that abstract reduction systems are also called transition systems
in other contexts, PARS correspond12 to Markov Decision Processes [25].

Definition 1 (PARS). Given some denumerable set S, we note Dist(S) for
the set of probability distributions on S: μ ∈ Dist(S) is a function S → [0, 1]
that satisfies

∑
i∈S μ(i) = 1.

A probabilistic abstract reduction system (PARS) is a pair A = (A,→) con-
sisting of a countable set A and a relation →⊂ A×Dist(A). A state a ∈ A with
no μ such that a → μ is said terminal.

A PARS is said deterministic if, for all a, there is at most one μ with a → μ.
We denote Dist(A) for the set of distributions μ with a → μ for some a.

We now need to explain how such systems evolve: a history is a finite sequence
a0a1 · · · an of elements of the state space A. It is non-terminal if an is.

Definition 2 (Deterministic Policy/Strategy). A (deterministic) policy φ,
that can also be called a (deterministic) strategy, is a function that maps non-
terminal histories to distributions in such a way that φ(a0a1 · · · an) = μ is always
one (of the possibly many) distribution μ with an → μ. A history is said realiz-
able, if for all i < n, if μi denotes φ(a0a1 · · ·ai), one has μi(ai+1) > 0.

Actually, previous definition assumes that strategies must be deterministic (μ is
a deterministic function of the history). If we want to be very general, we can
also allow the strategy to be itself random (μ is selected among the possible μ
with an → μ in a random fashion).

Definition 3 (Randomized Policy/Strategy). A randomized policy φ, that
can also be called a randomized strategy, is a function that maps non-terminal
histories to Dist(M), where M is the set of μ with an → μ.

Following the classification from [25], one can also distinguish history dependent
strategies (the general case) from Markovian strategies (the value of the function
on a history a0, · · · , an depends only on an), to get the classes HD, HR, MD,
MD, where H is for history dependent, M for Markovian, D for deterministic,
R for randomized. In what follows, when we talk about strategies, it may mean
a strategy of any of these classes.

A derivation of A is then a stochastic sequence where the non-deterministic
choices are given by some policy φ, and the probabilistic choices are governed
by the corresponding distributions.

1 The only true difference with [25] is that here action names are omitted.
2 We prefer to keep to the terminology of [5], since we think that PARS indeed cor-

respond to a probabilistic extension of Abstract Reduction Systems (ARS), Markov
Decision Processes indeed correspond to a probabilistic extension of transition sys-
tems, and hence that the question of the best terminology is related to the question
of the best terminology for ARS/transition systems, i.e. a cultural question.
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Definition 4 (Derivations). A derivation π of A over policy φ is a stochastic
sequence π = (πi)i∈N on set A ∪ {⊥} (where ⊥ is a new element: ⊥ �∈ A) such
that for all n,

P (πn+1 = ⊥|πn = ⊥) = 1,

P (πn+1 = ⊥|πn = s) = 1 if s ∈ A is terminal,

P (πn+1 = ⊥|πn = s) = 0 if s ∈ A is non-terminal,

and for all t ∈ A.

P (πn+1 = t|πn = an, πn−1 = an−1, . . . , π0 = a0) = μ(t)

whenever a0a1 · · ·an is a realizable non-terminal history and μ = φ(a0a1 · · ·an).

If a derivation is such that πn = ⊥ for some n, then πn′ = ⊥ almost surely
for all n′ ≥ n. Such a derivation is said to be terminating. In other words, a
non-terminating derivation is such that πn ∈ A (πn �= ⊥) for all n.

The following two notions were introduced in [5]:

Definition 5 (Almost Sure Termination). A PARS A = (A,→) will be
said almost surely (a.s) terminating iff for any policy φ, the probability that a
derivation π = (πi)i∈N under policy φ terminates is 1: i.e. for all φ, P (∃n|πn =
⊥) = 1.

Definition 6 (Positive Almost Sure Termination). A PARS A = (A,→)
will be said positively almost surely (+a.s.) terminating if for all policies φ, for
all states a ∈ A, the mean number of reduction steps before termination under
policy φ starting from a, denoted by T [a, φ], is finite.

The following was proved in [5].

Theorem 1. A PARS A = (A,→) is +a.s. terminating if there exist some
function V : A → R, with infi∈A V (i) > −∞, and some ε > 0, such that, for all
states a ∈ A, for all μ with a → μ, the drift in a according to μ defined by

ΔμV (a) =
∑

i

μ(i)V (i) − V (a)

satisfies
ΔμV (a) ≤ −ε.

The technique was proved complete for finitely branching systems in [5]: such a
function V always exists for +a.s. terminating finitely branching systems.

In [5], we also introduce the following notion, that covers classical (i.e. non-
probabilistic) rewrite systems, and also Markov chains over finite spaces. It fol-
lows in particular that all examples that have been modeled in literature using
finite Markov chains (for e.g. in model-checking contexts [21,20]) can be modeled
as probabilistic rewrite systems.
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Definition 7 (Probabilistic Rewrite system). Given a signature Σ and a
set of variables X, the set of terms over Σ and X is denoted by T (Σ, X).

A probabilistic rewrite rule is an element of T (Σ, X) × Dist(T (Σ, X)). A
probabilistic rewrite system is a finite set R of probabilistic rewrite rules.

To a probabilistic rewrite system is associated a probabilistic abstract reduction
system (T (Σ, X),→R) over the set of terms T (Σ, X) where →R is defined as
follows: When t ∈ T (Σ, X) is a term, let Pos(t) be the set of its positions. For
ρ ∈ Pos(t), let t|ρ be the subterm of t at position ρ, and let t[s]ρ denote the
replacement of the subterm at position ρ in t by s. The set of all substitutions
is denoted by Sub.

Definition 8 (Reduction relation). To a probabilistic rewrite system R is
associated the following PARS (T (Σ, X),→) over terms: t →R μ iff there is a
rule (g, M) ∈ R, some position p ∈ Pos(t), some substitution σ ∈ Sub, such that
t|p = σ(g), and, for all t′, μ(t′) =

∑
d|t′=t[σ(d)]p M(d).

For example, a probabilistic rewrite rule can be f(x, y) �→
{

g(a) : 1/2
y : 1/2 , where

right hand side denotes the distribution with value 1/2 on g(a) and value 1/2 on
y. Then f(b, c) rewrites to g(a) with probability 1/2, and to c with probability
1/2. Now, f(b, g(a)) rewrites to g(a) with probability 1.

Example 1. Consider3 the following probabilistic rewrite system, with two rules
R1 and R2 (of course, we assume 0 ≤ p1 ≤ 1, 0 ≤ p2 ≤ 1).

X # (Y ⊕ Z) →
{

(X # Y ) ⊕ (X # Z) : p1
X # (Y ⊕ Z) : 1 − p1

((X # Y ) ⊕ (X # Z)) ⊕ X →
{

(X # (Y ⊕ Z)) ⊕ X : p2
X # ((Y ⊕ Z) ⊕ X) : 1 − p2

Consider the polynomial interpretation of symbols {⊕,#} given by [X ⊕ Y ] =
2[X ] + [Y ] + 1 and [X # Y ] = [X ] ∗ [Y ], where [P ] ∈ N[X1, . . . , Xn] denotes the
polynomial interpretation of a term P of arity n.

Fix some integer n0 ≥ 2, yet to be determined. The set of integers ≥ n0 is
preserved by the polynomials [P ]. Consider function V that maps any term P
to [P ](n0, · · · , n0). Denote also V (P ) by {P}.

We have [X # (Y ⊕ Z)] = 2[X ][Y ] + [X ][Z] + [X ], [(X # Y ) ⊕ (X # Z)] =
2[X ][Y ] + [X ][Z] + 1, and hence {X # (Y ⊕ Z)} = 2{X}{Y } + {X}{Z}+ {X},
{(X # Y ) ⊕ (X # Z)} = 2{X}{Y } + {X}{Z}+ 1, and the drift of the first rule
(see [5]) is given by ΔR1V (X # (Y ⊕ Z)) = p1 × {(X # Y ) ⊕ (X # Z)} + (1 −
p1){X # (Y ⊕Z)}− {X # (Y ⊕Z)} = p1 × (1−{X}). This is negative, and any

3 Example obtained by modifying an example discussed in [2] about polynomial inter-
pretations. As far as we know, this is the first time that a polynomial interpretation
is used to prove termination of a probabilistic system (the examples from [5] used
only linear interpretation functions).
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substitution on X can only decrease it: R1 is substitution decreasing following
the terminology of [5].

Considering the second rule, we have [((X #Y )⊕ (X #Z))⊕X ] = 4[X ][Y ] +
2[X ][Z] + [X ] + 3, [(X # (Y ⊕ Z)) ⊕ X ] = 4[X ][Y ] + 2[X ][Z] + 3[X ] + 1, [X #
((Y ⊕ Z) ⊕ X)] = 2[X ][Y ] + 2[X ][Z] + X + 2, and hence ΔR2V (((X # Y ) ⊕
(X # Z)) ⊕ X) = p2 × {(X # (Y ⊕ Z)) ⊕ X} + (1 − p2){X # ((Y ⊕ Z)⊕ X)} −
{((X #Y )⊕ (X #Z))⊕X} = 2(p2 − 1){X}{Y }+2p2{X}− p2− 1. This drift is
not necessarily negative: in particular for p2 = 1, it is positive. However, assume
p2 < 1. If we take, n0 ≥ p2/(1 − p2), we can be sure that it becomes negative,
since 2(p2−1){X}{Y } ≤ −2p2{X}. For such an n0, it is substitution decreasing.

Now, observing the form of the interpretation of symbols {⊕,#}, which are
linear in each of their variables with integer positive coefficients, a context can
only decrease a drift. We get that the probabilistic rewrite system is +a.s. ter-
minating for p2 < 1.

This is a fortiori true for the following system, since the drift of the third rule
is −1 − 2{X}, and hence negative.

Example 2. Consider the following probabilistic rewrite system, with three rules
R1, R2, R3:

X # (Y ⊕ Z) →
{

(X # Y ) ⊕ (X # Z) : p1
X # (Y ⊕ Z) : 1 − p1

((X # Y ) ⊕ (X # Z)) ⊕ X →
{

(X # (Y ⊕ Z)) ⊕ X : p2
X # ((Y ⊕ Z) ⊕ X) : 1 − p2

(X ⊕ Y ) ⊕ Z →
{

X ⊕ (Y ⊕ Z) : 1

3 Positive Almost Sure Termination Under Strategies

Positive almost sure termination means that for all starting term the mean num-
ber of rewrite steps to reach a terminal state is finite under any policy/strategy.
In particular, non termination can happen with a single very specific strategy.

In many examples, one is often tempted not to consider arbitrary strategies,
but to restrict to a subset of strategies. Whatever the considered class of strate-
gies is, the following notion is rather natural.

Definition 9 (Positive Almost Sure Termination Under Strategies).
Fix a class Φ of strategies (i.e. policies);

A PARS A = (A,→) will be said positively almost surely (+a.s.) terminating
under Φ if for all strategy (i.e. policy) φ ∈ Φ, for all states a ∈ A, the mean
number of reduction steps before termination under φ starting from a, denoted
by T [a, φ], is finite.

Example 3. Consider the following probabilistic rewrite system, with two rules.

a → {a : 1
a → {b : 1
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This system is clearly not (almost surely) terminating , since there is the infinite
derivation a → a → · · · a → · · · .

However, it is +a.s. terminating under Markovian non-deterministic4 random-
ized strategies: indeed, in state a, such a strategy selects either the first rule with
probability p1, or the second with probability 1− p1, for some fixed p1 < 1. The
system is then equivalent to the probabilistic rewrite system

a →
{

a : p1
b : 1 − p1

whose positive almost sure termination can be established easily, for example
using previous theorem and V (a) = 1, V (b) = 0.

Example 4. Consider the following probabilistic rewrite system, with two rules
named red and green: see Figure 1.

s(x) →
{

x : p1
s(s(x)) : 1 − p1

s(x) →
{

x : p2
s(s(x)) : 1 − p2

p1

1−p1 1−p1 1−p1

p1 p1

0 1 2 3 4

p1

p1

1−p1

1−p2

p2 p2 p2 p2

1−p2 1−p2 1−p2

p2

Fig. 1. Example 4

The red (respectively: green) rule5 is easily shown to be +a.s. terminating iff
p1 > 1/2 (resp. p2 > 1/2).

Suppose that p1 < 1/2, p2 > 1/2. The whole system is not +a.s. terminating:
consider the strategy that always selects the red rule.

However, it is +a.s. terminating under the strategy that always selects the
green rule.

Intuitively, in a more general case, its +a.s. termination depends on the ra-
tio of selection of the red versus green rule. Indeed, if we focus on Markovian
randomized strategies that select the red (respectively green) rule with a fixed
probability p (resp. 1 − p), the whole system is equivalent to

s(x) →
{

x : p1 ∗ p + p2 ∗ (1 − p)
s(s(x)) : (1 − p1) ∗ p + (1 − p2) ∗ (1 − p)

4 We want to avoid p1 = 1.
5 That is to say: the probabilistic rewrite system made of this rule alone.
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which is easily shown to be +a.s. terminating iff p1 ∗ p + p2 ∗ (1 − p) > 1/2, i.e.
p < (1 − 2p2)/(2(p2 − p1)).

Example 5. Consider the following probabilistic rewrite system, over signature
Σ = {A, B, C}, with four rules, where we assume p1 > 0, p2 > 0.

A →
{

B : p1
A : 1 − p1

B →
{

A : p2
B : 1 − p2

A → {C : 1
B → {C : 1

We have only states A and B, and in each of these states, a strategy can either
select the rule among the two first that applies or the rule among the two last
that applies. It is easy to see that with probability one, an infinite derivation is
made of a sequence of A and B, each of them appearing infinitely often.

This probabilistic rewrite system is not +a.s. terminating: consider the strat-
egy φ∞ that always excludes the second possibility (i.e. never choose third or
fourth rule).

However, it is clearly +a.s. terminating under Φ, for any class Φ that does not
contain this specific strategy φ∞.

This example illustrates that one may want to restrict to fair strategies, for
some or one’s preferred notion of fairness: in this example, since third and fourth
rule can fire infinitely often, one may want that they fire at least once (or with
positive probability).

In literature, several notions of fairness have been introduced: see [23,24,27,10]
and references in the introduction of this paper. Termination of probabilistic
systems under fairness constraints has been investigated, in particular in [18]
for probabilistic finite state systems, and in [17] for probabilistic infinite state
systems.

Next section will be devoted to provide techniques to prove positive almost
sure termination of a probabilistic rewrite system under strategies. These results
can be applied with classes of strategies constrained by several of these notions of
fairness. The following results can also be seen as an extension of the two papers
[18,17] to deal with +a.s. termination (and not only almost sure termination).

4 Proving +a.s. Termination Under Strategies

A slight generalization of Theorem 1 yields rather directly:

Theorem 2. Fix a class of strategies Φ.
A PARS A = (A,→) is +a.s. terminating under Φ if there exist some function

V : A → R, with infi∈A V (i) > −∞, and some ε > 0, such that, for all realizable
non-terminal history h = a0a1 · · · an, for all φ ∈ Φ, the drift in h according to φ
defined by

ΔφV (h) =
∑

i

φ(h)(i)V (i) − V (an)
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satisfies
ΔφV (h) ≤ −ε.

Fortunately, we can do better in many cases.
Consider a PARS A = (A,→). Assume that Dist(A) (see Definition 1) can be

partitioned into finitely many subsets Dist(A) = D1 ∪ D2 . . . ∪ Dk. Intuitively,
when A is corresponding to a PARS associated to some probabilistic rewrite
system with k probabilistic rewrite rules R1, . . . , Rk, each Di corresponds to
rewrite rule Ri: Di is made of distributions μ obtained by varying position p,
and substitution σ in the distribution of rule Ri, according to Definition 8.

We assume that for any strategy φ ∈ Φ, φ−1(Di) is measurable. The expecta-
tion of a random variable X is denoted by E[X ].

Definition 10 (Next Selection of a Rule). Fix some Di.
Fix some deterministic policy φ and some realizable non-terminal history h =

a0a1 · · · an. Let (πi)i∈N be a derivation starting from h: (πi)i∈N is a stochastic
sequence as in Definition 4 with π0 = a0, · · · , πn = an.

Let τ be the random variable denoting the first index greater than n at which
Di is selected, or a terminal state is reached (set τ = ∞ if there is no such index).
I.e. τ = m iff φ(π0, · · · , πm) ∈ Di, and φ(π0, · · · , πm′) �∈ Di for n < m′ < m, or
πm = ⊥ and πm′ �= ⊥ for n < m′ < m.

Let τDi,π,φ,h denote the τ for the corresponding Di, π, φ and h.

Each random variable τDi,π,φ,h is a stopping time with respect to derivation π
(see e.g. [9]): it is a random variable taking its value in N∪{∞}, such that for all
integers m ≥ 0, the event {τ = m} can be expressed in terms of π0, π1, . . . , πm.

Remark 1. One must understand that even if the policy is deterministic, and
hence not depending on any random choice, each τDi,π,φ,h is random. Indeed,
when h = a0 · · · an is fixed, the choice of an+1 is made according to distribution
φ(a0 · · ·an), and hence random; the choice of an+2 is then made according to
distribution φ(a0 · · ·anan+1), and hence random. And so on. The event Di is
selected or a terminal state is reached at time n is then random.

Definition 11 (Bounded Mean Selection). A class of strategy Φ has bounded
mean selection α ∈ R for Di, if for any strategy φ ∈ Φ, for any history, the ex-
pected time to wait before reaching a final state or selecting a rule from Di is less
than α. I.e. for any realizable non-terminal history h = a0 · · · an, for any policy
φ ∈ Φ, for any derivation π starting from h, τDi,π,φ,h has a finite mean with

E[τDi,π,φ,h] ≤ n + α.

Observe that a variable taking values in N∪{∞} with a finite mean is necessarily
almost surely finite: in other words, when the conditions of the previous definition
hold, one knows that almost surely starting from any history h, one reaches either
a final state, or one selects a rule from Di.
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Definition 12 (Expected Value of V At Time τ). Let V : A → R be
some function. Let τ ∈ N ∪ {∞} denotes some stopping time with respect to
derivation π, which is almost surely finite: P (τ < ∞) = 1. Fix some policy φ,
and a corresponding derivation (πi)i∈N.

We denote by EτV the expected value of V at time τ : formally

EτV = E[V (πτ )]

when it exists.

We claim:

Theorem 3 (Almost Sure Termination Under Strategy). Fix a class of
strategies Φ.

A PARS A = (A,→) is almost surely terminating under strategies Φ if there
exist some function V : A → R, with infi∈A V (i) > −∞, some ε > 0, and
some Di such that for all strategy φ ∈ Φ, for all realizable non-terminal history
h = a0 . . . an, for all derivation π starting from h,

1. the stopping time τDi,π,φ,h is almost surely finite,
2. and

EτDi,π,φ,h
V ≤ V (an) − ε.

This follows from the following result from Martingale theory: See [11] for a proof
(1A denotes the characteristic function of a set A).

Proposition 1. Let (Ω,F , P ) be a given probability space, and {Fn, n ≥ 0} an
increasing family of σ-algebra.

Consider a sequence (Si)i∈N of real non-negative random variables, such that
Si is Fi-measurable, for all i. Assume S0 to be constant, w.l.o.g.

Denote by τ the Fn-stopping time representing the epoch of the first entry into
[0, C], for some C: τ = inf{i ≥ 1, Si ≤ C}.

Introduce the stopped sequence S′
i = Smin(i,τ).

Assume S0 > C, and for some ε > 0, and for all n ≥ 0, almost surely

E[S′
i+1|Fn−1] ≤ S′

i − ε1τ>i. (1)

Then:

– Almost surely τ is finite.
– E[τ ] < S0/ε.

Proof (of Theorem 3). Replacing function V by V + K for some constant K if
needed, we can assume without loss of generality that V (a) ≥ 2ε for all a ∈ A.
Extend function V on A ∪ {⊥} by V (⊥) = 0.

Fix a strategy φ ∈ Φ, a realizable non-terminal history h, and a derivation
(πi)i∈N starting from h.

From Condition 1., one can build a sequence of random functions (ψn)n∈N

such that almost surely, for all n > 1, either πψ(n) = ⊥, or Di is selected at
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rank ψ(n). Indeed: Take ψ(0) = 0; when ψ(n) is built, build ψ(n + 1) as ψ(n) if
πψ(n) = ⊥ and as ψ(n) + τDi,π,φ,h otherwise.

Consider the increasing family of σ-algebra Fn where Fn is the σ-algebra
generated by π0, · · · , πn. Condition 2. implies almost surely E[S′

n+1|Fn−1] ≤
S′

n − ε1πψ(n) �=⊥, where S′
n = V (πψ(n)) for all n. By Proposition 1 above with

C = ε, almost surely there must exist some n with πn = ⊥.
In other words, the PARS is almost surely terminating under Φ.

Remark 2. Previous hypotheses yield almost sure termination, but not positive
almost sure termination. Indeed, the proof build a subsequence of indexes ψ(n)
yielding almost surely to termination. But there is no reason that ψ(n+1)−ψ(n)
stay bounded, and hence the original derivation can be non positively almost
surely terminating (such an example is easy to build).

Actually, weaker conditions entailing almost sure termination have been derived
in [17]: in particular ε can be taken as 0. However, for +a.s. almost sure deriva-
tion, we claim:

Theorem 4 (+ A.S. Termination Under Strategy). Fix a class of strate-
gies Φ.

A PARS A = (A,→) is +a.s. terminating under strategies Φ if there exist
some function V : A → R, with infi∈A V (i) > −∞, some ε > 0, and some Di

such that Φ has bounded mean selection for Di, and such that for all strategy
φ ∈ Φ, for all realizable non-terminal history h = a0 . . . an, for all derivation π
starting from h,

EτDi,π,φ,h
V ≤ V (an) − ε.

Proof. By previous discussion, the fact that Φ has bounded mean selection for
Di entails Condition 1. of previous theorem, and hence we have almost sure
termination. Even if we did not mention it, the application of Proposition 1 in
the proof of previous Theorem also yields that the random variable N giving the
smallest n with πn = ⊥ has a finite mean with E[N ] ≤ V (an)/ε.

Now, since Φ has bounded mean selection α for some α > 0, we can bound
E[ψ(N)] by αV (a0)/ε using following Lemma, whose proof can easily be estab-
lished (for example by adapting the proof of Wald’s Lemma in [9]).

Lemma 1. Consider a stochastic sequence (Xi)i∈N taking non-negative values.
Let N be an integer-valued random variable, with a finite expectation. Assume
there exists some constant M such that 0 ≤ Xn+1 − Xn ≤ M almost surely for
all n. The random variable XN has an expectation bounded by E[X0]+M ∗E[N ].

5 Applications

We first derive one simple case:

Proposition 2. Consider a PARS A = (A,→) so that there exists V : A →
R, with infi∈A V (i) > −∞, some (possibly positive) α, some ε > 0, such that
Dist(A) can be partitioned into Dist(A) = D1 ∪D2 such that for all a → μ, we
have
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1. ΔμV (a) ≤ α whenever μ ∈ D1.
2. ΔμV (a) ≤ −ε whenever μ ∈ D2.

Assume that a rule of the form a → μ, with μ ∈ D1 never lead to a terminal:
for all a → μ, μ ∈ D1, for all a′ with μ(a′) > 0, a′ is not a terminal.

Assume that φ selects D2 at least once every k steps for some constant k: for
any h = a0 · · · an, for any φ ∈ Φ, for any π, we assume that τD2,π,φ,h exists and
satisfies τD2,π,φ,h ≤ n + k.

Assume that (k − 1)α − ε < 0.
Then A is +a.s. terminating under strategies Φ.

Proof. It is easy to see that we always have EτD2,π,φ,h
V ≤ V (an) + (k − 1)α − ε

in this case: Indeed, a derivation starting from h must either reach a terminal or
lead to a state where D2 is selected. In any case, the last applied rule will be a
rule from D2, and hence V will decrease in mean of at least ε, after the at most
k − 1 first rules that can make it increase in mean of at most (k − 1)α. We can
then apply previous theorem.

Example 6. Consider the following probabilistic rewrite system, with three rules
R1, R′

2, R3:

X # (Y ⊕ Z) →
{

(X # Y ) ⊕ (X # Z) : p1
X # (Y ⊕ Z) : 1 − p1

((X # Y ) ⊕ (X # Z)) ⊕ X →
{

(X # (Y ⊕ Z)) ⊕ X : p2
((X # Y ) ⊕ (X # Z)) ⊕ X : 1 − p2

(X ⊕ Y ) ⊕ Z →
{

X ⊕ (Y ⊕ Z) : 1

This probabilistic rewrite system is not positively almost surely terminating.
Indeed, for the policy which always apply the first two rules and never the
third, we have an infinite derivation with terms ((X # Y ) ⊕ (X # Z)) ⊕ X and
(X # (Y ⊕ Z)) ⊕ X , each of them appearing almost surely infinitely often.

The drift of the rules R1 and R3 have been computed in Example 2. Now, the
drift of the rule R′

2 is ΔR′
2
V (((X # Y )⊕ (X #Z))⊕X) = 2p2 × ({X}− 1), and

hence positive.
If we choose a policy φ with a bounded mean selection for the rewrite rule

R3, and if φ always reduce the term of a cycle ((X # Y ) ⊕ (X # Z)) ⊕ X →
(X # (Y ⊕ Z)) ⊕ X until it can be broken by firing rule R3, then conditions
of Theorem 4 are satisfied, because, for all histories h = a0, . . . , an such that
an contains a subterm which is an instance of ((X # Y ) ⊕ (X # Z)) ⊕ X , then
EτD3 ,π,φ,hV ≤ V (an) − 2 × {X} − 1.

Example 7. Let’s now consider the following term rewrite system, coming from
the model of [8] of a simulator for the CSMA-CA protocol [1]. The rules rewrite
lists of couples. Each couple is made of two positive integers. The sort operator
triggers a rule based sort algorithm, which sorts in increasing order the list in
function of the value of the first field. The first rule will take the head of the list,
replace the first field by a random value between 1 and p following an uniform
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law with probability μ and decrease the value of the second field with probability
1 − μ.

(Δt, n + 1), . . . , (Δk, nk) →
{

(U(1, . . . , p), n + 1), . . . , (Δk, nk) : μ
(U(1, . . . , p), n), . . . , (Δk − Δt, nk) : 1 − μ

(Δt, n + 1), . . . , (Δk, nk) → sort((Δt, n + 1), . . . , (Δk, nk))
sort((Δt, nt), X) → sort1((Δt, nt), nil, X)
sort1((Δt, nt), l, (Δ′

t, n
′
t).X) → sort1(((Δt, nt), l.(Δ′

t, n
′
t), X)) If Δt < Δ′

t

sort1((Δt, nt), l, (Δ′
t, n

′
t).X) → sort1(((Δ′

t, n
′
t), l.(Δt, nt), X)) If Δt > Δ′

t

sort1((Δt, nt), l, (Δ′
t, n

′
t).nil) → (Δt, nt).sort(l.(Δ′

t, n
′
t)) If Δ′

t > Δt

sort1((Δt, nt), l, (Δ′
t, n

′
t).nil) → (Δ′

t, n
′
t).sort(l.(Δt, nt)) If Δ′

t < Δt

where, X, l are some lists of couples of integers, the operator “.”denotes the
concatenation of lists and nil is the empty list. U(1, . . . , p) is a random integer
variable following an uniform law on {1, . . . , p}. n and nii∈1,...,k are non negative
integers.

This PRS is easily seen not +a.s. terminating: For example the first two rules
always apply on every list or sublists.

Now let’s build a policy under which the PRS positively almost surely ter-
minates. Let’s start with a0 a list of length n, φ(a0) is the rule that rewrites
a0 to sort(a0). The length of the sorting process is n(n − 1), and the policy φ
chooses only the rules coding the sort algorithm during the sort process. If the
first element of the list has a zero second field, there’s no rule matching this list
and this term is terminal. Otherwise, the policy φ will choose again the rule that
triggers the sort of the list, and later apply the rule number one, and so one
since no terminal state is reached.

To show this system is +a.s. terminating, let’s consider the function V :
T (Σ, X) → N computing the sum of the second field of each element of a list,
and apply Proposition 2.

An alternative proof is the following: We can apply Theorem 4, because φ has
bounded mean selection for the first rule rewrite relation D1, because such a rule
is triggered between two sorts of length n(n−1) and EτD1 ,π,φ,hV = V (an)+μ−1,
because V does not change during the sorting process since the values of the
second field are not touched, and the only variation of the mean is induced by
the rule D1 whose drift is μ−1. V , as the sum of positive value, is lower bounded.

6 Conclusion and Future Work

In this paper, we introduced positive almost sure termination under strategies,
and we provide sufficient criteria to prove positive almost sure termination of a
given probabilitic rewrite system under strategies.

We plan to apply our techniques on industrially motivated examples of bigger
size. It may be possible to weaken the hypotheses of our theorems since they
mainly use a special case of Proposition 1. As mentioned in the introduction,
any technique to deal with probabilistic systems, must work for classical ones,
since probabilities can be 0/1. The classical (non-probabilistic) counterpart of our



370 O. Bournez and F. Garnier

framework for proving termination under strategies is very poor: the question
of understanding which of the techniques from literature for non-probabilistic
systems can be extended to deal with probabilistic systems seems fascinating.
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Abstract. A prefix property is the property that, given a reduction, the
ancestor of a prefix of the target is a prefix of the source. In this paper we
prove a prefix property for the class of Higher-Order Rewriting Systems
with patterns (HRSs), by reducing it to a similar prefix property of a
λ-calculus with explicit substitutions. This prefix property is then used
to prove that Higher-order Rewriting Systems enjoy Finite Family De-
velopments. This property states, that reductions in which the creation
depth of the redexes is bounded are finite, and is a useful tool to prove
various properties of HRSs.

1 Introduction

Higher-order Rewriting Systems (HRSs), as introduced by Nipkow in 1991 [12,10],
are a powerful tool to study the metatheory of declarative programming lang-
uages, like λProlog and Haskell, on the one hand, and theorem provers and proof
checkers, like Isabelle, on the other. Also, many (extensions of) λ-calculi can be en-
coded as instances of HRSs, so that results obtained for HRSs carry over to other
interesting domains.

In this paper, we prove two properties of HRSs where left-hand sides of rule
are restricted to be patterns. First we prove a prefix property, by reducing this
property to a similar prefix property for a λ-calculus with explicit substitutions.
The prefix property says that, given a step, the ancestor of a prefix of the target is
a prefix of the source. Consider, as an example, the (first-order) rewriting system
with the single rule f(x) → g(f(x), x) and the step f(h(a)) → g(f(h(a)), h(a)).
Now, p = g(f(�), h(�)) is a prefix of the target. Intuitively, its ancestor is
f(h(�)), because s = f(h(�)) → g(f(h(�)), h(�)) = t, and p is contained in
t. And indeed, f(�) is a prefix of the source.

Many different prefix properties are possible: we can, e.g., vary in how the
notions of prefix and ancestor are formalized, and we may impose additional
conditions on the form of the prefixes. Prefix properties are already known for
first-order TRSs [2,13] and (a labelling of) the λ-calculus with β-reductions [2],
and have many applications, such as (head) needed reductions [13, Chap. 8] and
normalization of outermost-fair reductions [13, Chap. 9]. A similar property is
proved in Van Daalen’s Square Brackets Lemma [14].

The second contribution is that we prove Finiteness of Family Developments
(FFD) for HRS, by reducing this property to the prefix property described above.
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FFD states that each reduction, in which the “creation depth”, or family, of
function symbols is bounded, is finite. The intuition behind the notion of family
is that in a step C[lσ] → C[rσ ], the symbols of r depend on the symbols of l,
and therefore have a higher creation depth, while the symbols in C and σ do
not take part in the step and have the same creation depth in both source and
target. For example, consider the following infinite reduction, using the rewrite
system above. We label the function symbols with their creation depth.

f0(a0) → g1(f1(a0), a0) → g1(g2(f2(a0), a0)) → g1(g2(g3(f3(a0), a0), a0)) → · · ·

Clearly, in this infinite reduction, the creation depth of the f’s grows without
bound. FFD states that restricting the creation depth to a finite number, yields
finite reductions. FFD is a useful tool to prove various properties of rewrite
systems, such as termination (e.g. termination of simply typed λ-calculus follows
from FFD, cf. [7, page 31]), existence of standard reductions, etc.

Of some lemmas and theorems the proof is omitted or only sketched. Full
proofs are made available in the technical report [4].

2 Preliminaries

We presuppose knowledge of the simply typed λ-calculus. Here we give a short
overview of Higher-Order Rewrite Systems (HRSs) [10]. In particular, we con-
sider HRSs as HORSs [15] with the simply typed λ-calculus as substitution
calculus. We refer to [13, Sect. 11.2] for a good introduction.

Simple types are generated from a set of base types by the type constructor
→. Let Σ be a signature of simply typed function symbols. We define a preterm
to be a simply typed λ-terms over Σ. We want to consider βη-equivalence classes
of preterms. Since it is well known that β-reduction, combined with restricted η-
expansion (η-reduction), is confluent and terminating, we take βη-normal forms
as unique representatives of the βη-equivalence classes. We define: a term is a
preterm in βη-normal form. In the following, s, t will range over terms (and,
whenever indicated, over preterms as well).

A sequence a1, . . . , an will sometimes be written as an, or just a if the length is
not important or clear from the context. Juxtaposition of two sequences denotes
concatenation.

For terms or preterms s, t1, . . . , tn, we write s(t1, . . . , tn) for st1 · · · tn, or, in
the case of terms, the β-normal form thereof. We also introduce the shorthand
λxn.s for λx1. . . . λxn.s. With FV(s) we denote the set of free variables of term
or preterm s, and with Sym(s) the set of function symbols present in the term
or preterm. If λx.a(s) is a term, then a is called the head of that term (a is a
function symbol or variable).

In the class of HRSs that we consider, the left-hand sides of rules are re-
stricted to be local patterns. For patterns, unification is decidable and unique
most general unifiers exist [11]. Local patterns, additionally, are linear (each free
variable occurs at most once) and fully-extended (free variable have all bound
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variables in scope as argument). These extra requirements have a similar pur-
pose as the requirement of left-linearity in first-order TRS: they keep matching
local. To match a non-linear pattern, it is possible that subterms outside the
pattern need to be checked for equality; to match a non fully extended pattern,
it is possible that such a subterm must be checked for the non-occurrence of a
variable. Because the notion of pattern depends on what the free variables are,
we need to parametrize the notion with a context of variables, and obtain the
following inductive definition:

Definition 2.1 (Pattern). Let x be a sequence of variables.

(i) A term s is an x-pattern if:
– s = a(s1, . . . , sn) and either a ∈ x ∪ Σ and s1, . . . , sn are x-patterns;

or s1, . . . , sn is η-equivalent to a sequence of distinct variables from x.
– s = λy.s0 and s0 is an xy-pattern.

(ii) A term s is linear outside x, if each free variable which is not in x, occurs
in it at most once. A term s is a fully extended x-pattern, if, in the second
case of the above definition, s1, . . . , sn =η x. A term s is a local x-pattern,
if s is linear outside x and a fully extended x-pattern.

Examples of local patterns are f(x), g(λxy.f(z(x, y))) and h(λx.z(x)). Examples
of non-local patterns are g(λxy.f(y)) (not fully-extended) and h(λx.z(x), λx.z(x))
(not linear). An example of a non-pattern is g(z(a)).

In the following, p, q will range over patterns, and the word pattern (without
the sequence of variables) will refer to a ∅-pattern.

Definition 2.2 (HRS). A rewrite rule (for a signature Σ) is a pair λx.l0 →
λx.r0 of closed Σ-terms of the same type, such that l0 = f(s1, . . . , sn) and l0 is
a local pattern not η-equivalent to a variable. An HRS is a tuple H = 〈Σ, R〉,
where Σ is a signature and R a set of rewrite rules for Σ.

The rewrite relation →H is defined as follows: s →H t if there exist a context
C such that s =β C[l] and t =β C[r], for some rule l → r ∈ R.

For arbitrary rewrite system R, we denote with �R the reflexive, transitive
closure of →R.

Note that there is no substitution in the definition of the rewrite relation, such
as in first-order term rewriting systems (but see also Remark 2.4). The leading
abstractions of the rules take the role of the substitution, as can be seen in the
next example:

Example 2.3. Let the HRS Map, implementing the higher-order function map,
be defined by:

λz.map(λx.z(x), nil) → λz.nil
λzuv.map(λx.z(x), cons(u, v)) → λzuv.cons(z(e(u)), map(λx.z(x), v))

Here, cons and nil are the list constructors, viz. list composition and the empty
list, respectively. The reason for the symbol e is to make the HRS non-collapsing
(see Def. 2.5). A reduction of two Map-steps is the following:
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map(λx.f(x), cons(a, nil))
=β (λzuv.map(λx.z(x), cons(u, v)))(λx′.f(x′), a, nil)
→Map (λzuv.cons(z(e(u)), map(λx.z(x), v)))(λx′.f(x′), a, nil)
=β cons(f(e(a)), map(λx.f(x), nil))
=β cons(f(e(a)), (λz.map(λx.z(x), nil))(λx′.f(x′)))
→Map cons(f(e(a)), (λz.nil)(λx′.f(x′)))
=β cons(f(e(a)), nil)

Note how the (underlined) left-hand sides are literally replaced by the (also
underlined) right-hand sides.

In later examples, the leading abstractions of rewrite rules will be omitted; in
other words, we will write l → r for λx.l → λx.r.

Substitutions are maps from variables to terms. Application of a substitution
σ = [x1 �→ t1, . . . , xn �→ tn] to a term s is defined as: sσ = (λx1 . . . xn.s)t1 . . . tn
(where this term is, as always, implicitly reduced to βη-normal form). In the
following, ρ, σ, τ, υ will rangle over substitutions. The composition of substitions
σ and τ is denoted by σ ; τ , where sσ;τ = (sσ)τ . A substitution is called linear,
if each free variable occurs in its codomain at most once, i.e. if all terms of its
codomain are linear and have mutually disjoint free variables. A (fully extended)
x-pattern substitution is a substitution of which the codomain consists of (fully
extended) x-patterns.

Remark 2.4. The rewrite relation of Def. 2.2 can alternatively, and more in the
fashion of first-order TRSs, be defined in the following way: s →H t if s =β C[lσ0 ]
and t =β C[rσ

0 ], where λx.l0 → λx.r0 ∈ R and σ is a substitution with Dom(σ) =
x. This alternative definition, however, requires the notion of substitution to be
defined, and therefore we prefer the other one. In the rest of the paper, we will
sometimes implicitly switch definitions.

Intuitively, a rewrite rule is collapsing, if it can bring context and subtitution,
or different parts of the substitution, together, i.e. if, after the application of the
rule, a function symbol of the context can be directly connected to a function
symbol of the substitution. This can happen in two specific cases, which we will
use as a definition:

Definition 2.5. A term s is collapsing, if one of the following applies:

– (context-subst): s = x(s1, . . . , sn), where x is a free variable; or
– (subst-subst): s = C[x(s1, . . . , sn)], and for some k, sk = λz.y(t1, . . . , tm),

where C is a context, x is a free variable, and y a free or bound variable.

A rewrite rule λx.l → λx.r is collapsing, if r is collapsing, and an HRS is
collapsing, if at least one of its rules is.

Example 2.6.

– The rules λx.f(x) → λx.x and λz.mu(λx.z(x)) → λz.z(mu(λx.z(x))) are
collapsing due to the (context-subst) condition.
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– The rule λyz.g(λx.z(x), y) → λyz.f(z(y)) is collapsing due to the (subst-
subst) condition.

– The rule λyz.app(lam(λx.z(x)), y) → λyz.z(y) is collapsing due to both the
(context-subst) and the (subst-subst) conditions.

3 Labelling HRSs with Natural Numbers

Labelling rewriting systems is a well-known method to formalize the notion of
redex family; see e.g. [8,9]. In this section, we develop a labelling, in the sense of
[17,13], for HRSs, analogous to the labelling for the λ-calculus used by Hyland
[6] and Wadsworth [18]. Each function symbol is labelled by a natural number,
representing the “creation depth” of the function symbol, and the rules are
labelled such that every function symbol of the right-hand side is labelled with
the largest label of the left-hand side plus one.

Definition 3.1 (ω-labelling).

(i) The ω-labelling of a signature Σ is defined as: Σω = {f � | f ∈ Σ, � ∈ N}.
(ii) The family of a term s, denoted fam(s), is the largest label of s, i.e.:

fam(s) = max{� | f � ∈ Sym(s)}
(iii) Let s be a term, and � ∈ N a label. Then:

x(s1, . . . , sn)� = x(s�
1, . . . , s

�
n)

f(s1, . . . , sn)� = f �(s�
1, . . . , s

�
n)

(λx.s0)� = λx.s�
0

(iv) The projection operation |·|ω is the mapping from Σω to Σ given by |f �|ω =
f . The mapping is homomorphically extended to terms.

(v) Let H = 〈Σ, R〉. The ω-labelled version of H is defined as: Hω = 〈Σω, Rω〉,
where Rω consist of all rules l′ → r(fam(l′)+1) such that l → r ∈ R and
|l′|ω = l.

The ω-labelling only labels function symbols, not variables, abstractions or ap-
plications. The reason for this is that we want the ω-labelling of an HRS to
be an HRS itself (otherwise it would not be a labelling in the sense of [17,13]).
Labelling variables is impossible, because α-equivalent terms are identified. La-
belling abstractions and applications is impossible because we have fixed the
(unlabelled) simply typed λ-calculus as substitution calculus.

Example 3.2. The labelled HRS Mapω consists, among others, of the rules:

map0(λx.z(x), nil0) → nil1

map1(λx.z(x), nil1) → nil2

map0(λx.z(x), cons0(u, v)) → cons1(z(e1(u)), map1(λx.z(x), v))
map0(λx.z(x), cons1(u, v)) → cons2(z(e2(u)), map2(λx.z(x), v))
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A labelled reduction corresponding to the reduction of Ex. 2.3 is the following:

map0(λx.f0(x), cons0(a0, nil0))
=β (λzuv.map0(λx.z(x), cons0(u, v)))(λx′.f0(x′), a0, nil0)
→Map (λzuv.cons1(z(e1(u)), map1(λx.z(x), v)))(λx′.f0(x′), a0, nil0)
=β cons1(f0(e1(a0)), map1(λx.f0(x), nil0))
=β cons1(f0(e1(a0)), (λz.map1(λx.z(x), nil0))(λx′.f0(x′)))
→Map cons1(f0(e1(a0)), (λz.nil2)(λx′.f0(x′)))
=β cons1(f0(e1(a0)), nil2)

Notice how only the labels of function symbols involved in the step (i.e. the
underlined ones) are increased.

The following two lemmas provide a correspondence between labelled and unla-
belled reductions, and are easily proved by induction:

Lemma 3.3. Let H be an HRS. Hω is orthogonal/collapsing/erasing, if and
only if H is.

Lemma 3.4. Let H be an HRS.

(i) If s →H t, then, for each s′ such that |s′|ω = s, there is a t′ such that
s′ →Hω t′ and |t′|ω = t.

(ii) If s →Hω t, then |s|ω →H |t|ω.

4 The Prefix Property

We call p a prefix of term t, if it is a pattern, and there exists a substitution σ
such that pσ = t. Given a step s → t, a subterm q of s is the ancestor of a subterm
p of t, if the symbols of t “trace to” the symbols of s. This notion is formalized
here using labelling together with the rewrite relation: q is an ancestor of p, if
fam(p) ≥ fam(q) and q �Hω pυ. The substitution υ is necessary because q might
reduce to a “bigger” term than p; typically, υ has only function symbols which
are also in p. Using these formalizations, we prove in this section the following
theorem (proof begins on page 382).

Theorem 4.1 (Prefix Property). Let Hω be the ω-labelling of a non-collaps-
ing HRS, s a term, p a local x-pattern and σ a substitution. If s →Hω pσ,
then there exist a local x-pattern q and a substitution τ , such that s = qτ ,
fam(p) ≥ fam(q), and either:

– q →Hω pυ, for some substitution υ such that υ ; τ = σ; or (trm)
– q = p and τ →Hω σ. (sub)

The theorem states that, given a prefix of the target, its ancestor is a prefix of
the source. There are two possibilities: either the prefix takes part in the step, or
the step occurred fully in the substitution. Note that, in the first case, we do not
only require that its ancestor is a prefix, but also that the suffix stays the same
(except for duplicated subterms). In this regard, the lemma is stronger than e.g.
the prefix property (for the λ-calculus) proved in [2, Prop. 7.4].
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Fig. 1. The interesting case in the proof of the Prefix Property for HRSs

Example 4.2. Consider the following Mapω-step (see page 374):

h1(map3(λx.f2(x), cons2(a5, nil1)) → h1(cons4(f2(e4(a5)), map4(λx.f2(x), nil1)))

First, let the prefix p = h1(cons4(f2(y1), y2)) of the target be given. The suffix is
then given by σ = [y1 �→ e4(a5), y2 �→ map4(λx.f2(x), nil1)]. Then:

q = h1(map3(λx.f2(x), cons2(y1, z2)))
υ = [y1 �→ e4(z1), y2 �→ map4(λx.f(x), z2)]
τ = [z1 �→ a5, z2 �→ nil1]

satisfy the conditions of the (trm) case. Second, let p = h(y) and σ = [y �→
cons4(f2(e4(a5)), map4(λx.f2(x), nil1)))]. Then:

q = h1(y) and τ = [y �→ map3(λx.f2(x), cons2(a5, nil1))]

satisfy the conditions of the (sub) case.

The interesting case in the proof of the Prefix Property is the case that the step
s →Hω pσ occurs at the head. In this case we have that s = lρ and pσ = rρ,
for some rule l → r and substitution ρ. This situation is depicted in Fig. 1. We
want to construct an ancestor q that satisfies the (trm) case. It makes sense
to try to do this by adding to the pattern l the parts of p that are not in r.
However, due to the implicit β-conversions, these “parts of p that are not in r”
are not easily obtained. The key observation is that the β-reduction from pσ to
normal form is a variable renaming, because p is a pattern and has only bound
variables as arguments of free variables. The trick is to translate the prefix and
suffix in such a way, that the variable renamings are already carried out (we need
variable capturing, first-order substitutions for this, called graftings), trace the
prefix back over the β-reduction from rρ to normal form, and find the prefix’s
ancestor, which is a prefix of rρ. Now, we are dealing with terms that are exactly
equal, instead of only equal up to β-equality, and now the problem can be solved
by using first-order unification techniques.

The above proof technique suggests that we need to prove a prefix property
for β-reductions in the λ-calculus. This is difficult, however, since the λ-calculus
does not cope well with graftings, because of the global nature of substitution.
For example, let C = (λx.�)a, D = � and s = x. Then C →β D, and C[s] →β a,
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because the x in s is captured by the abstraction in the context and substituted
for. However, D[s] = x and thus C[s] �→β D[s]. To tackle this problem, we use
a λ-calculus with explicit substitutions, a variant of the λx-calculus, and prove
a prefix property for it. Then, we simulate β-equality with this new calculus. In
[5] a similar approach is taken w.r.t. higher-order unification.

4.1 The Prefix Property of the λx-Calculus

We use a variant of the λx-calculus [3], with explicit renamings. The calculus
has both object variables (x, y, z) and metavariables (X, Y, Z). In the following,
we will refer to it simply by λx-calculus. The terms of the λx-calculus over some
signature Σ are first-order terms given by the following grammar:

Λx := x | X | f | λx.Λx | ΛxΛx | Λx{x\Λx}

where f ∈ Σ and the object variables are considered as constants or names.
M, N will range over λx-terms. Terms of the form M{x\N} will be called explicit
substitutions, and the {x\N} part of an explicit substitution is called a closure.
With MV(M) we will denote the set of metavariables of M , and with Sym(M)
the set of function symbols of M . The reduction rules of the λx-calculus are:

(λx.M)N →B M{x\N}

x{x\N} →x N
y{x\N} →x y
f{x\N} →x f

(λx.M){x\N} →x λx.M
(λy.M){x\N} →x λz.M{y\z}{x\N}

(M1M2){x\N} →x M1{x\N}M2{x\N}
where x �= y and z is a fresh object variable. The subcalculus x consists of all
rules except the B-rule. The reduction relations →Bx and →x are the contextual
closures of the above steps. Note that there is no reduction rule for terms of the
form X{x\N}, where X is a metavariable, and thus x-normal forms are charac-
terized by the fact that sequences of closures are only applied to metavariables.

A λx-term is called passive if no metavariable X occurs in a subterm of the
form Xμ(M1, . . . , Mn), where μ is a sequence of closures; it is called linear, if
every metavariable occurs in it at most once. In the following P, Q will range
over linear, passive λx-terms.

Remark 4.3. It is well-known that the λx-calculus is not confluent on terms
containing metavariables. At first sight, non-confluence seems problematic, be-
cause we’re trying to use the λx-calculus to simulate the (confluent) λ-calculus.
However, the translation to λ-calculus (see page 381) will remove all closures,
and will project normal forms of the same λx-term to the same λ-term (modulo
α-equivalence).

A grafting is a mapping from metavariables to λx-terms. The greek lowercase
letters ζ, η, θ, κ will range over graftings. Applying a grafting ζ to a term M ,
written M [ζ], is defined exactly as first order substitution, i.e.:

x[ζ] = x
X [ζ] = ζ′(X)
f [ζ] = f

(λx.M)[ζ] = λx.M [ζ]
(M1M2)[ζ] = M1[ζ]M2[ζ]

(M{x\N})[ζ] = M [ζ]{x\N [ζ]}
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where ζ′(X) = ζ(X), if X ∈ Dom(ζ), and ζ′(X) = X , otherwise. A grafting
is called linear, if every metavariable occurs in its codomain only once, i.e. its
codomain consists of linear λx-terms with mutually disjoint metavariables. A
grafting is called passive, if all the terms of its codomain are passive.

Because λx-terms are first-order terms, unification is decidable. In the proof of
the Prefix Property, we need the following property: if two λx-terms are unifiable,
there exists a most general unifier (mgu). In fact, if we assume the unifiable terms
to be linear and passive, then the mgu applied to one of the terms is a linear,
passive λx-term again:

Lemma 4.4. Let M, N be linear λx-terms, where MV(M)∩MV(N) = ∅, and let
ζ, η be graftings such that M [ζ] = N [η]. There exist graftings ζ0, η0, κ such that
M [ζ0] = N [η0], ζ0 ; κ = ζ, η0 ; κ = η, Sym(ζ0) ⊆ Sym(N), Sym(η0) ⊆ Sym(M).
Moreover, if M (N) is passive, then η0 (ζ0) consists of passive λx-terms.

Proof. (Sketch) Since λx-terms are basically first-order terms, we can use first-
order unification techniques. Because of disjointness of the metavariables we can
consider the two graftings as one unifier, and the linearity assumption is needed
for the condition on the symbols. ��

Example 4.5. Let:

M = λx.g(f1(X1), X2)
ζ = [X1 �→ a, X2 �→ f2(a)]

N = λx.g(Y1, f2(Y2))
η = [Y1 �→ f1(a), Y2 �→ a]

Then M [ζ] = λx.g(f1(a), f2(a)) = N [η]. We take ζ0 = [X2 �→ f2(Z1)], η0 = [Y1 �→
f1(Z2)] and κ = [Zi �→ a] to satisfy the conditions of the lemma.

In the next theorem, we prove the Prefix Property for the λx-calculus. P is a
prefix of a λx-term M , if it is a linear, passive λx-term, and there exists a grafing
ζ such that P [ζ] = M . The notion of ancestor is again formalized using labelling
and the rewrite relation; however, because we do not count creation depth in
Bx-reductions, now the labels, or more generally, the function symbols of the
prefix must be the same as those of its ancestor. Just like in Theorem 4.1, a
prefix can either take part in the step, or not, resulting in two cases. Item (ii) is
the extension of the Prefix Property to Bx-reductions.

Theorem 4.6 (λx-Prefix Property). Let M be a closed λx-term, P a linear,
passive λx-term and ζ a grafting.

(i) If M →Bx P [ζ], then there exist a linear, passive λx-term Q and a grafting
η such that M = Q[η], Sym(Q) = Sym(P ) and either:
– Q →Bx P [κ] where κ is some grafting such that κ ; η = ζ; or (trm)
– Q = P and η →x ζ. (sub)

(ii) If M �Bx P [ζ], then there exist a linear, passive λx-term Q and a grafting
η such that: M = Q[η], Sym(Q) = Sym(P ), Q �Bx P [κ] where κ is some
grafting such that κ ; η �Bx ζ.
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Proof. (Sketch) Item (i) is proved by induction on the context of the step M →Bx
P [ζ], using a case analysis and Lemma 4.4 in the base case, and (ii) by induction
on the length of the reduction. ��

Example 4.7. Consider the Bx-reduction (λx.g(x, x))(f(a)) �Bx g(f(a), f(a)),
and the prefix P = g(f(X), Y ) of the target. The suffix is ζ = [X �→ a, Y �→ f(a)].
We can take Q = (λx.g(x, x))(f(Y )), κ = [Y �→ f(X)] and η = [X �→ a], satisfy-
ing the conditions of Theorem 4.6 (ii).

4.2 Translating Between Terms, Preterms and λx-Terms

We are now dealing with three types of terms: terms, preterms and λx-terms.
In this section we develop translations between (pre)terms and λx-terms. The
“translation” between terms and preterms will be done completely implicitly,
here. See [4] for a more detailed approach.

Translating Terms. We introduce the operations ·�x and ·⊕, which map λ-
terms to λx-terms, and vice versa, as follows:

y�
x = Y if y �∈ x

x�
x = x if x ∈ x

f�
x = f

(λy.s)�x = λy.s�xy

(s1s2)�x = (s1)�x (s2)�x

M⊕ = (M↓x)⊕N
(Y σ)⊕N = y

x⊕
N = x

f⊕
N = f

(λy.M)⊕N = λy.M⊕

(M1M2)⊕N = M⊕
1 M⊕

2

Note that ·⊕ also normalizes the term to x-normal form and removes explicit sub-
stitutions, and that, for each preterm s and sequence of variables x, (s�x )⊕ = s.
The operations above are naturally generalized to translations between substi-
tutions and graftings.

Lemma 4.8. Let M, N be λx-terms. M �Bx N if and only if M⊕ �β N⊕.

Proof. (⇒) and (⇐) are proved by induction on the length of the reductions
M �Bx N and M⊕ �β N⊕, respectively. ��

Although the above lemma suggests that Bx-reduction in the λx-calculus can eas-
ily simulate β-reduction, there is still a problem: ·⊕ does not distribute properly
over grafting application. The problem is similar to the problem given on page 378.
Consider the λx-term M := (λx.f(Y ))a and grafting ζ := [Y �→ x]. Now M [ζ]⊕ =
(λx.f(x))a, M⊕ = (λx.f(y))a. ζ⊕ = [y �→ x]. Note that (M⊕)(ζ

⊕) = λz.f(x),
because substitutions are capture-avoiding, and thus M [ζ]⊕ �=β (M⊕)(ζ

⊕).
The solution is to add as arguments to the free variables of the preterms as

many (bound) variables as necessary (or more) to make the distribution work.
In the example above we would have s = (λx.f(y(x)))a and σ = [y �→ λx.x].
Now, s and σ are, in a way that will be formalized in the next definition, similar
to M and ζ, but now M [ζ]⊕ =β sσ.
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Definition 4.9. Let M be a λx-term and ζ a grafting. A tuple 〈s, σ〉 of preterm
and substitution is a λ-extension of 〈M, ζ〉 if there are graftings θ1, θ2 such that:

– s = M [θ1]⊕ and σ = (θ2 ; ζ)⊕;
– for each X ∈ MV(M), θ1(X) = X(z) and θ2(X) = λz.X, where z is a list

of variables containing at least the bound variables of M in scope that occur
in ζ(X) (in arbitrary order).

The notion of λ-extension is, again, naturally generalized to graftings and sub-
stitutions as the first component of the tuples.

Lemma 4.10. Let 〈s, σ〉 be a λ-extension of 〈M, ζ〉. Then:

(i) sσ =β M [ζ]⊕;
(ii) for each λx-term N such that M �Bx N , sσ =β N [ζ]⊕.

The lemma works, because the arguments of the free variables in the term and
the leading abstractions in the substitution, take over the role of the explicit
substitutions, as can be seen in the following example:

Example 4.11. Let M = (λx.(λy.Z)b)a be a λx-term, and ζ = [Z �→ f(x, y)] a
grafting. Now, according to Def. 4.9, 〈s, σ〉, where s = (λx.(λy.z(x, y))b)a and
σ = [z �→ λxy.f(x, y)] is a λ-extension of 〈M, ζ〉, with, θ1 = [Z �→ Z(x, y)] and
θ2 = [λxy.Z]. We check both cases of Lemma 4.10:

(i) sσ = (λx.(λy.(λxy.f(x, y))(x, y))b)a =β (λx.(λy.f(x, y))b)a = M [ζ]⊕.
(ii) Let N = Z{y\b}{x\a}. Then M �x N . Let t = z(a, b). Now tσ =β

f(a, b) = M [ζ]⊕. Since s =β t, this means that sσ =β M [ζ]⊕, as required.
(Note that the ·⊕ operation also reduces to x-normal form.)

Translating Patterns. Among the λ-extensions of a pair 〈P, ζ〉 of linear, pas-
sive λx-term and grafting, there is, for each sequence of variables x exactly one
λ-extension 〈p, σ〉 where p is a x-pattern, viz. the one in which in p the free vari-
ables have all bound variables in scope as arguments. We denote by P+

x 〈P, ζ〉
the function which returns this specific λ-extension, and by P−

x the inverse of
P+

x . See [4] for a more detailed definition of these operations.

Example 4.12. Consider the linear, local λx-terms P = f(λxy.g(Z, x)) and Q =
map(λx.Z, nil), and the grafting ζ = [Z �→ f(x)]. Then:

P+
∅ 〈P, ζ〉 = 〈f(λxy.g(z(x, y), x)), [z �→ λxy.f(x)]〉

P+
∅ 〈Q, ζ〉 = 〈map(λx.Z(x), nil), [z �→ λx.f(x)]〉

4.3 Proof of the Prefix Property

Proof (of Theorem 4.1). (Sketch). The interesting case is the case that the step
occurs at the head, i.e.: s = lρ and pσ = rρ, for some rule l → r ∈ R and
substitution ρ. We translate the terms to λx-terms: 〈P, ζ〉 := P−

x 〈p, σ〉, R := r�∅ ,
L := l�∅ and μ := ρ�x . Because pσ =β rρ, and P [ζ] is a Bx-normal form by
construction, it is the case that R[μ] �Bx P [ζ] (using Lemma 4.8).
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Now, we use the λx-Prefix Property (Theorem 4.1) to find the ancestor P ′

of P in this reduction. This gives us, among other things, a graftings η, κ1 such
that P ′[η] = R[μ], and P ′ = P [κ]. Equality here is first-order equality, and thus
we apply first-order unification techniques (Lemma 4.4) to find an mgu 〈η0, μ0〉
for the unifier 〈η, μ〉, and grafting κ2 such that η0 ; κ2 = η and μ0 ; κ2 = μ.

Now we translate everything back to (pre)terms, using the techniques dis-
cussed in the previous subsection: υ is the translation of κ1 followed by η0 (using
λ-extensions to make the two composable), τ is the translation of κ2 and Q is the
translation of L[η0]. This translation is cumbersome, but not hard in principle.
The λ-extensions make sure that Bx-equality can be transformed to β-equality.

The last thing we have to prove is that fam(p) ≥ fam(q). This holds because
Sym(η0) ⊆ Sym(p), because Sym(η0) ⊆ Sym(r), all labels in r are the same and
p and r have at least one symbol in common because r is non-collapsing. ��

5 Finite Family Developments

In this section we apply the prefix property of the previous section to prove that
all family developments of HRSs are finite. We restrict our attention to non-
collapsing HRSs first. In the next section, we will describe a way to generalize
the result to collapsing HRSs as well.

Families are formalized by labelling all function symbols with natural num-
bers, as defined in Def. 3.1. We prove that the resulting system is terminating
if we restrict the labels to some finite bound. The proof is inspired by the proof
by Van Oostrom [16]. The differences between this proof and the one by Van
Oostrom are the following:

– We use a different method of labelling. Our labelling has the property that
one step of the labelled HRS corresponds exactly to one step in the original.
Also, our notion of labelling is an instance of the abstract notion of labelling
put forth in [17,13].

– In Van Oostrom’s paper, the proof of Lemma 15 is omitted. Here, we give
a proof of that lemma (adapted for the different method of labelling) by
reducing it to the Prefix Property.

Lemma 5.1. Let Hω be the labelling of a non-collapsing HRS, s be a term,
p a local pattern, � ∈ N a label and τ and σ substitutions such that for any
x ∈ Dom(σ), σ(x) has a function symbol labelled with � as head. If sσ �Hω pτ ,
then either:

– fam(p) ≥ �; or (int)
– s �H pυ, for some υ such that υ ; σ �Hω τ . (ext)

Proof. By induction on the length of the reduction sσ �Hω pτ . If the length
is 0, the result follows easily. Otherwise, suppose sσ �Hω s′ →Hω pτ . By The-
orem 4.1, there exist a local pattern q and substitution σ′ such that s′ = qσ′

,
fam(p) ≥ fam(q) and either (trm) q �Hω pυ′

and υ′ ; σ′ = τ ; or (sub) p = q and
σ′ �Hω τ . Applying the induction hypothesis to sσ �Hω qσ′

yields that one of
the following cases must apply:
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– (int) fam(q) ≥ �, but then fam(p) ≥ � by transitivity of ≥.
– (ext) s �Hω qυ and υ ; σ �Hω σ′, for some substitution υ. We distinguish

the following cases:
• (trm) s �Hω qυ �Hω pυ′;υ and υ′ ; υ ; σ �Hω υ′ ; σ′ = τ .
• (sub) s �Hω qυ = pυ and υ ; σ �Hω σ′ �Hω τ . ��

Theorem 5.2. Let Hω be the labelling of a non-collapsing HRS, and let R :
s1 →Hω s2 →Hω · · · be a Hω-reduction. R is finite, if and only if there is a
�max ∈ N such that fam(si) ≤ �max for all si.

Proof. (Sketch) (⇒): Trivial. (⇐): We prove the theorem by showing that Hω =
〈Σω, Rω〉 is terminating if we restrict it to rules l → r ∈ Rω where fam(r) ≤ �max.
It suffices to show that rσ terminates for all right-hand sides r and terminating
substitutions σ. We do this by assuming, to the contrary, that a non-terminating
term exists. Let (s�)σ be a minimal non-terminating term such that s is non-
(subst-subst)-collapsing1, and σ is a terminating substitution. By minimality,
this reduction is of the form: (s�)σ �Hω lτ →Hω rτ �Hω · · ·, where λx.l →
λx.r ∈ Rω. We will show, by induction on (�max − �), that (s�)σ is terminating,
contradicting the assumption that it’s not.

The interesting case is that s = λx.y(s1, . . . , sn), where y ∈ Dom(σ). Let
t = σ(y), and σ′ = [xi �→ si]. Then tσ

′ �H lτ . By the fact that s is non-(subst-
subst)-collapsing, the heads of the si are function symbols labelled with �, and
thus we can apply Lemma 5.1. Again, the interesting case is if t �Hω lυ, and now
termination of rτ follows from the fact that σ is terminating by assumption. ��

6 Dealing with Collapsing HRSs

In the previous sections we restricted our attention to non-collapsing HRSs. Both
the Prefix Property and FFD do not hold for collapsing HRSs, as is witnessed
by the following two counterexamples:

Example 6.1 (Prefix Property). Consider the collapsing HRS Mu:

mu(λx.z(x)) → z(mu(λx.z(x))

and the following Muω-step:

mu3(λx.f2(x)) →Muω f2(mu4(λx.f2(x)))

It is easy to check that the prefix p = f2(u) of the target of the step has no
ancestor q that satisfies the requirements of the Prefix Property (Theorem 4.1).

Example 6.2 (FFD). Consider the collapsing HRS Lam :

app(lam(λx.z(x), y)) → z(y)

1 We drop the (context-subst) condition of Def 2.5, because subterms of non (context-
subst)-collapsing terms can be (constext-subst)-collapsing, meaning that an infinite
reduction from a minimal counter example might not contain a head step.
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Then one Lamω-step is the following:
app1(lam1(λx.app1(x, x)), lam1(λx.app1(x, x)))
→Lamω app1(lam1(λx.app1(x, x)), lam1(λx.app1(x, x)))

So we see that Lamω has a one-step cycle, and thus an infinite reduction with
bounded labels.

The problem in both cases is that, because of applying a collapsing rule, a
function symbol can be directly connected to a previously unconnected function
symbol from the context or substitution, or to the root of the term, without the
rule leaving any trace in between, in the form of a label. This can be remedied
by including “empty” function symbols, named εα, for each base type α, in the
right-hand sides of rules, and “saturating” the left-hand sides of rules with those
empty function symbols. The same approach is taken for the first-order case in
[13, Chap. 8]. We sketch the idea of this “ε-lifting”, Hε, by giving two examples;
for a formal definition, see [4].

Example 6.3. The ε-lifting of Mu (types of ε’s omitted):

mu(λx.z(x)) → ε(z(ε(mu(λx.ε(z(ε(x)))))))

Note that more ε’s are added than strictly necessary; this is for ease of definition
(see [4] for details). A (Muε)ω step corresponding to the step of Ex. 6.1 is:

mu3(λx.f2(x)) →(Muε)ω ε4(f2(ε4(mu4(λx.ε(f2(ε(x)))))))

Take the corresponging prefix p = ε4(f2(y)). Now, the Prefix Property is satisfied
with q = mu3(λx.f2(x)), τ = ∅ and υ = [z �→ ε4(mu4(λx.ε(f2(ε(x)))))].

Example 6.4. The ε-lifting of Lam consists of (among others) the following rules:

app(lam(λx.z(x), y)) → ε(z(ε(y)))
app(ε(lam(λx.z(x))), y) → ε(z(ε(y)))

app(ε(ε(lam(λx.z(x)))), y) → ε(z(ε(y)))

Then a (Lamε)ω-step corresponding to the step of Ex. 6.2 is the following:

app1(lam1(λx.app1(x, x)), lam1(λx.app1(x, x)))
→(Lamε)ω ε2(app1(ε2(lam1(λx.app1(x, x))), ε2(lam1(λx.app1(x, x)))))

Now, all redex patterns have a maximum label of 2, instead of 1.

Theorem 6.5 (FFD). Let (Hε)ω be the εω-labelling of an HRS, and let R :
s1 →(Hε)ω s2 →(Hε)ω · · · be a (Hε)ω-reduction. R is finite, if and only if there is
a �max ∈ N such that fam(si) ≤ �max for all si.

7 Applications and Further Research

The Prefix Property and Finite Family Developments are useful tools for proving
various properties of HRSs. For example, an alternative proof of termination of
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the simply typed λ-calculus (encoded as an HRS) uses FFD. Also, in a work in
progress by the author, FFD is used to prove the termination of a higher-order
standardization procedure. This result can be used to formalize the notion of
equivalence of reductions, in a similar way as is done in [13].

For future research, it might be interesting to further investigate the relation
between FFD and the Dependency Pair method [1], both in the higher-order and
first-order case. Since FFD and the Dependency Pair method both essentially
depend on the same principle, that an infinite reduction must have an unbounded
creation depth, it the author’s conjecture that FFD, or the Prefix Property, can
be used to design a higher-order Dependency Pair method.

Acknowledgements. I wish to thank Vincent van Oostrom, Delia Kesner and the
anonymous referees for useful remarks on preliminary versions of this paper.
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Abstract. We extend the termination proof methods based on reduction order-
ings to higher-order rewriting systems à la Nipkow using higher-order pattern
matching for firing rules, and accommodate for any use of eta, as a reduction,
as an expansion or as an equation. As a main novelty, we provide with a mech-
anism for transforming any reduction ordering including beta-reduction, such as
the higher-order recursive path ordering, into a reduction ordering for proving
termination of rewriting à la Nipkow. Non-trivial examples are carried out.

1 Introduction

Rewrite rules are used in logical systems to describe computations over lambda-terms
used as a suitable abstract syntax for encoding functional objects like programs or spec-
ifications. This approach was pioneered in this context by Nipkow [18] and is available
in Isabelle [21]. Its main feature is the use of higher-order pattern matching for firing
rules. A recent generalization of Nipkow’s setting allows one for rewrite rules of poly-
morphic, higher-order type [15], see also [10]. Besides, it is shown that using the η-rule
as an expansion [20] or as a reduction [15] yields very similar confluence checks based
on higher-order critical pairs.

A first contribution of this paper is a general setting for addressing termination of
all variants of higher-order rewriting à la Nipkow, thanks to the notion of a normal
higher-order reduction ordering. While higher-order reduction orderings actually in-
clude βη-reductions, normal higher-order reduction orderings must be compatible with
βη-equality since higher-order rewriting operates on βη-equivalence classes of terms.
This is done by computing with βη-normal forms as inputs. Since this may destroy
stability under substitution, it becomes necessary to use higher-order reduction order-
ings enjoying a stronger stability property. Restricting the higher-order recursive path
ordering [12] to achieve this property is our second contribution. Finally, the obtained
ordering is used inside a powerful schema transforming an arbitrary higher-order re-
duction ordering satisfying the stronger stability property into a normal higher-order
reduction ordering. This is our third contribution. The obtained ordering allows us to
prove all standard examples of higher-order rules processing abstract syntax.

We describe our framework for terms in Section 2, and for higher-order rewriting
in Section 3. The schema is introduced and studied in Section 4. The restricted higher-
order recursive path ordering is given in Section 5. Two complex examples are carried
out in Section 6. Significance of the results is briefly discussed in Section 7.
� Project LogiCal, Pôle Commun de Recherche en Informatique du Plateau de Saclay, CNRS,
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Readers are assumed familiar with the basics of term rewriting [9,16] and typed
lambda calculi [4,5]. Most ideas presented here originate from [14], an unpublished
preliminary draft. A full version is [13].

2 Higher-Order Algebras

Rewrite rules of polymorphic higher type are our target. To define them precisely, we
need to recall the framework of higher-order algebras [12]. We will consider the non-
polymorphic case for simplicity. The general case of polymorphic higher-order rewrite
rules is carried out in [13].

2.1 Types

Given a set S of sort symbols of a fixed arity, denoted by s : ∗n → ∗, the set of types is
generated by the constructor → for functional types:

TS := s(T n
S ) | (TS → TS) for s : ∗n → ∗ ∈ S

Types are functional when headed by the → symbol, and data types otherwise. →
associates to the right. We use σ, τ, ρ, θ for arbitrary types. The type σ = τ1 → . . . →
τn → τ , τ not functional, has arity ar(σ) = n.

2.2 Signatures

Function symbols are meant to be algebraic operators equipped with a fixed number n
of arguments (called the arity) of respective types σ1 ∈ TS , . . . , σn ∈ TS , and an output
type σ ∈ TS . Let

F =
⊎

σ1,...,σn,σ

Fσ1×...×σn→σ

The membership of a given function symbol f to Fσ1×...×σn→σ is called a type decla-
ration and written f : σ1 × . . . × σn → σ. A type declaration is first-order if it uses
only sorts, and higher-order otherwise.

2.3 Terms

The set T (F ,X ) of raw algebraic λ-terms is generated from the signature F and a
denumerable set X of variables according to the grammar:

T := X | (λX : TS .T ) | @(T , T ) | F(T , . . . , T ).

The raw term λx : σ.u is an abstraction and @(u, v) is an application. We may omit σ in
λx : σ.u and write @(u, v1, . . . , vn) or u(v1, . . . , vn), n > 0, omitting applications. The
raw term @(u, v) is a (partial) left-flattening u being possibly an application. Var(t) is
the set of free variables of t. A term t is ground if Var(t) = ∅. The notation s shall be
ambiguously used to for a list, a multiset, or a set of raw terms s1, . . . , sn.

Raw terms are identified with finite labeled trees by considering λx : σ.u, for each
variable x and type σ, as a unary function symbol taking u as argument to construct the
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raw term λx : σ.u. Positions are strings of positive integers. Λ and · denote respectively
the empty string (root position) and string concatenation. Pos(t) is the set of positions
in t. t|p denotes the subterm of t at position p. We use t�t|p for the subterm relationship.
The result of replacing t|p at position p in t by u is written t[u]p. A raw term t[x : σ]p
with a hole of type σ at position p is a context.

Given a binary relation −→ on raw terms, a raw term s such that s|p −→ t for some

position p ∈ Pos(s) is called reducible. Irreducible raw terms are in normal form. A
raw term s is strongly normalizable if there is no infinite sequence of −→-steps issuing
from s. The relation −→ is strongly normalizing, or terminating or well-founded, if all
raw terms are strongly normalizable. We denote by ←→ the symmetric closure of the
relation −→, by

∗−→ its reflexive, transitive closure, and by
∗←→ its reflexive, symmet-

ric, transitive closure. The relation −→ is confluent (resp. Church-Rosser) if s−→∗ u
and s−→∗ v (resp. u←→∗ v) implies u−→∗ t and v−→∗ t for some t.

2.4 Typing Rules

Definition 1. An environment Γ is a finite set of pairs written as {x1 : σ1, . . . , xn :
σn}, where xi is a variable, σi is a type, and xi �= xj for i �= j. Var(Γ ) = {x1, . . . , xn}
is the set of variables of Γ . Given two environments Γ and Γ ′, their composition is the
environment Γ · Γ ′ = Γ ′ ∪ {x : σ ∈ Γ | x �∈ Var(Γ ′)}. Two environments Γ and Γ ′

are compatible if Γ · Γ ′ = Γ ∪ Γ ′.

Our typing judgements are written as Γ �F s : σ. A raw term s has type σ in the
environment Γ if the judgement Γ �F s : σ is provable in our inference system given
at Figure 1. Given an environment Γ , a raw term s is typable if there exists a type σ
such that Γ �F s : σ. Typable raw terms are called terms. An important property of our
simple type system is that a raw term typable in a given environment has a unique type.

Variables:
x : σ ∈ Γ

Γ 	F x : σ

Functions:
f : σ1 × . . . × σn → σ ∈ F

Γ 	F t1 : σ1 . . . Γ 	F tn : σn

Γ 	F f(t1, . . . , tn) : σ

Abstraction:
Γ · {x : σ} 	F t : τ

Γ 	F (λx : σ.t) : σ → τ

Application:
Γ 	F s : σ → τ Γ 	F t : σ

Γ 	F @(s, t) : τ

Fig. 1. The type system for monomorphic higher-order algebras

Because variables are typed, they must be replaced by typable terms:

Definition 2. A substitution γ = {(x1 : σ1) �→ (Γ1, t1), . . . , (xn : σn) �→ (Γn, tn)},
is a finite set of quadruples made of a variable symbol, a type, an environment and a
term, such that

(i) ∀i ∈ [1..n], ti �= xi and Γi �F ti : σi,
(ii) ∀i �= j ∈ [1..n], xi �= xj , and
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(iii) ∀i �= j ∈ [1..n], Γi and Γj are compatible environments.
We may omit the type σi and environment Γi in (xi : σi) �→ (Γi, ti).
The set of (input) variables of γ is Var(γ) = {x1, . . . , xn}, its domain is the en-
vironment Dom(γ) = {x1 : σ1, . . . , xn : σn} while its range is the environment
Ran(γ) =

⋃
i∈[1..n] Γi.

Definition 3. A substitution γ is compatible with the judgement Γ �F s : σ (or simply,
with Γ ) if (i) Dom(γ) is compatible with Γ , and
(ii) Ran(γ) is compatible with Γ \ Dom(γ).

A substitution γ compatible with a judgement Γ �F s : σ operates classically as an
endomorphism on s, resulting in a term denoted by sγ.

Lemma 1. Given a signature F and a substitution γ compatible with the judgement
Γ �F s : σ, then Γ · Ran(γ) �F sγ : σ.

2.5 Conversions

We consider α-convertible terms as identical, and hence α-conversions are omitted. The
congruence generated by the β- and η-equalities
(λx.u, v) =β u{x �→ v} λx.@(u, x) =η u if x �∈ Var(u)
is written =βη. An important property, subject reduction, is that typable terms u, v such
that u =βη v have the same type. Both equalities can be oriented as rewrite rules.
There are two possible choices for rewriting with η, either as a reduction or as an ex-
pansion, in which case termination is ensured by restricting its use to positions other
than the first argument of an application. Typed lambda-calculi have all termination and
confluence properties one may need, with respect to: βη-reductions; β-reductions and
η-expansions; β-reductions modulo η-equality. Using the notations u−→β v for one
β-rewrite step, u−→∗

β v for its transitive closure, u ↓β (u↓ for short) for the β-normal
form of u, and ←→∗

η or =η for η-equality, the Church-Rosser property of β-reductions
modulo η-equality for typable terms can be phrased as

s =βη t iff s↓β=η t↓β

3 Normal Higher-Order Rewriting of Higher Type

Normal higher-order rewriting [20,18] allows defining computations on λ-terms used
as a suitable abstract syntax for encoding functional objects like programs or specifica-
tions. Nipkow’s framework assumes that rules are of basic type, and that left-hand sides
of rules are patterns in the sense of Miller [19], assumptions which are not made here,
nor in [15].

Nipkow’s normal higher-order rewriting uses βη-equalities in two different ways:
given a term s to be rewritten with a set R of rules, s is first normalized, using η-
expanded β-normal forms, before to be searched for left-hand sides of rules in R via
higher-order pattern matching, that is, matching modulo =βη. In this section, we define
higher-order rewriting so as to capture the different ways in which a term can be βη-
normalized before pattern matching its subterm with a left-hand side of rule.



Higher-Order Orderings for Normal Rewriting 391

Definition 4. A normal rewrite rule is a rewrite rule Γ � l → r : σ such that l and
r are higher-order terms in β-normal form satisfying Γ �F l : σ and Γ �F r : σ. A
normal term rewriting system is a set of normal rewrite rules.

Given a normal term rewriting system R, an environment Γ , two β-normal terms s
and t, and a type σ such that Γ �F s : σ, we say that s rewrites to t at position p with
the normal rule Γi � li → ri : σi and the term substitution γ, written Γ � s−→p

Rβη
t,

or s−→p
Rβη

t assuming the environment Γ , if the following conditions hold:

(i) Dom(γ) ⊆ Γi (iii) s|p =βη liγ
(ii) Γi · Ran(γ) ⊆ Γs|p (iv) t =η s[riγ]p↓β

where Γs|p is the environment of the judgement Γs|p �F s|p : σi, obtained as a subterm
of the proof of the judgement Γ �F s : σ.

Note that t is any term in the η-equivalence class of s[riγ]p↓β . Higher-order rewriting
is therefore defined up to η-equivalence of target terms. By providing a method for
proving termination of this relation, we do provide a termination method for all variants
of higher-order rewriting based on higher-order pattern matching. A key observation is
this:

Lemma 2. Assume Γ �F s : σ and Γ � s →Rβη
t. Then Γ �F t : σ.

Example 1. We present here an encoding of symbolic derivation in which functions are
represented by λ-terms of a functional type. We give two typical rules of higher type.
Both rules have the same environment Γ = {F : real → real}, and x, y stand for real
values. Let S = {real}, and

F = { sin, cos : real → real; diff : (real → real) → real → real
+,× : (real → real) → (real → real) → real → real}

diff(λx. sin(@(F, x))) → λx. cos(@(F, x)) × diff(λx.@(F, x))
diff(λx.@(F, x) × λy.@(F, y)) → (diff(λx.@(F, x)) × λy.@(F, y))+

(λx.@(F, x) × diff(λy.@(F, y)))

This example makes sense when using normal higher-order rewriting, because using
plain pattern matching instead would not allow to compute the derivative of all ex-
pressions: diff(λx.sin(x)) =β diff(λx.sin((λy.y) x)) does require higher-order pattern
matching. We shall give a mechanical termination proof of both rules in Section 5.

3.1 Normal Higher-Order Reduction Orderings

We shall use well-founded relations for proving strong normalization properties. For
our purpose, these relations may not be transitive, but their transitive closures will be
well-founded orderings, justifying some abuse of terminology. Reduction orderings op-
erating on judgements turn out to be an adequate tool for showing termination of normal
rewriting. We consider two classes of reduction orderings called higher-order reduction
ordering when they include β-reductions and normal higher-order reduction ordering
when they are compatible with =βη.
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Definition 5. A binary relation � on the set of judgements is

– coherent iff for all terms s, t such that (Γ �F s : σ) � (Γ �F t : σ), and for all
environment Γ ′ such that Γ and Γ ′ are compatible, Γ ′ �F s : σ and Γ ′ �F t : σ,
then (Γ ′ �F s : σ) � (Γ ′ �F t : σ);

– stable iff for all terms s, t such that (Γ �F s : σ) � (Γ �F t : σ), and all
substitution γ whose domain is compatible with Γ , then (Γ · Ran(γ) �F sγ :
σ) � (Γ · Ran(γ) �F tγ : σ);

– monotonic iff for all terms s, t and type σ such that (Γ �F s : σ) � (Γ �F t : σ),
for all Γ ′ compatible with Γ and ground context u[] such that Γ ′ �F u[x : σ] : τ ,
then (Γ · Γ ′ �F u[s] : τ) � (Γ · Γ ′ �F u[t] : τ) (note the assumption that u[] is
ground);

– normal-monotonic iff for all terms s and t such that (Γ �F s : σ) � (Γ �F t : σ),
for all Γ ′ compatible with Γ and for all ground context u[] such that Γ ′ �F u[x :
σ] : τ and u[s] is in β-normal form, then (Γ ·Γ ′ �F u[s] : τ) � (Γ ·Γ ′ �F u[t] : τ);

– functional iff for all terms s, t such that (Γ �F s : σ−→β t : σ), then (Γ �F s :
σ) � (Γ �F t : σ);

– compatible iff for all terms s′, s, t, t′ such that (Γ �F s′ : σ =βη s : σ), (Γ �F t :
σ =βη t′ : σ) and (Γ �F s : σ) � (Γ �F t : σ) then (Γ �F s′ : σ) � (Γ �F t′ :
σ).

A higher-order reduction ordering � is a well-founded ordering of the set of judge-
ments satisfying coherence, stability, monotonicity and functionality.

A normal higher-order reduction ordering �n is a well-founded ordering of the set
of judgements satisfying coherence, stability, normal-monotonicity and compatibility.

Let us show that no ordering � can satisfy monotonicity, stability, compatibility and
well-foundedness, therefore explaining the need for the weaker notion of normal-
monotonicity. Assume s : σ � t : σ (omitting judgements), where s : σ is in β-normal
form. Consider the term λy.a : σ → τ where a : τ is a constant. Then, by monotonicity,
@(λy.a, s) : τ � @(λy.a, t) : τ and by compatibility, a : τ � a : τ , contradicting
well-foundedness. Normal-monotonicity removes the problem since @(λy.a, s) is not
in β-normal form. As a consequence, we cannot have @(X, s) � @(X, t) when s � t,
but only @(X, s) = @(X, t).

Theorem 1. Let R = {Γi � li → ri : σi}i be a higher-order rewrite system and �
a normal higher-order reduction ordering s.t. (Γi �F li) � (Γi �F ri) ∀i. Then the
relation −→Rβη

is strongly normalizing.

Proof. Without loss of generality, let s be a ground normal term such that
Γ �F s

p−→
Γi � li→ri:σi

t. By definition 4, t is a ground normal term. It therefore suf-

fices to show that Γ � F s � t, which we proceed to do now. By assumption,
Γi � F li � ri. By stability, Γi · Ran(γ) � F liγ � riγ, therefore, by co-
herence, Γs|p �F liγ � riγ. By definition, s|p =βη liγ, hence, by compatibility,
Γs|p �F s|p � riγ. By monotonicity of � for normal ground terms (of equal type),
Γs|p · Γ �F s � s[riγ]p. By coherence Γ �F s � s[riγ]p, hence Γ �F s � t by
compatibility. �
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By lemma 2, higher-order rewriting can be seen as a type preserving relation on terms
in a given environment Γ typing the term originating the sequence of rewrites. We
can therefore simplify our notations by omitting the typing judgements unless they are
really necessary.

4 Building Normal Higher-Order Reduction Orderings

In this section, we assume given a new function symbol ⊥σ for every type σ and a func-
tion fnew for some of the function symbols in F . We denote by Fnew the augmented
signature. We write ⊥σ for ⊥σ(). The higher-order rules we want to prove terminat-
ing are built from terms in T (F ,X ), not in T (Fnew,X ). We successively introduce
neutralization, and the neutralized ordering schema. Neutralization replaces a term of
functional type by its application to a term headed by a ⊥-operator seen as a container
for its arguments. Neutralizing an abstraction creates a redex which will be later elimi-
nated by a β-normalization step.

Definition 6. The neutralization of level i (i-neutralization in short) of a term t : τ ∈
T (Fnew,X ) w.r.t. a list of (typable) terms 〈u1 : θ1, . . . , un : θn〉 in T (Fnew ,X ), is the
term Ni(t, 〈u1, . . . , un〉) defined as follows:

1. N0(t, 〈u1, . . . , un〉) = t;
2. Ni+1(t, 〈u1, . . . , un〉) = t if τ is a data type;
3. Ni+1(t, 〈u1, . . . , un〉) =

Ni(@(t,⊥θ1→...→θn→σ(u1, . . . , un)), 〈u1, . . . , un〉) if τ = σ → ρ.

From now one, we shall very precisely control for each function symbol which of its
arguments of a functional type are neutralized:

Definition 7. A signature F is neutralized if each symbol f : σ1 × . . . × σn → σ ∈ F
comes along with, for each argument position j ∈ [1..n]:

– a natural number Lj
f ≤ ar(σj), called neutralization level of f at position j. We

call neutralized those positions j for which Lj
f > 0.

– a subset Aj
f ⊆ [1..n] of argument positions of f used to filter out the list t of

arguments of f by defining t
j
f = 〈tk | k ∈ Aj

f 〉.

The role of full neutralization is to neutralize terms of functional type recursively from
arguments of function symbols up to a given depth depending on the function symbol
itself and its selected argument. This will allow us to eventually eliminate undesirable
abstractions. This huge flexibility provided by levels and argument positions allows us
to tune our coming normal higher-order ordering and carry out difficult and important
examples taken from the literature. In most of them, the chosen level is 1, implying that
neutralization applies to the top of the arguments only, and the set of argument positions
is empty, implying that ⊥ is a constant.

To neutralize terms recursively, we need to introduce new function symbols in the
signature : for every declaration f : σ1× . . .×σn → σ, we assume given a new symbol
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fnew : σ′
1 × . . . × σ′

n → σ whose type declaration depends upon the neutralization
level of its argument positions: if σi = τ1 → . . . → τk → τ and Li

f = q ≤ k, then
σ′

i = τq+1 → . . . → τk → τ .

Definition 8. The full neutralization of a term t is the term FN (t) s.t.

1. if t ∈ X , then FN (t) = t;
2. if t = λx.u, then FN (t) = λx.FN (u);
3. if t = @(t1, t2), then FN (t) = @(FN (t1),FN (t2));
4. if t = f(t1, . . . , tn) with f ∈ F , then

FN (t) = fnew(NL1
f
(FN (t1), t

1
f ), . . . ,NLn

f
(FN (tn), tnf )).

Our definition makes sense since, in all cases, FN (t) is typable with the same type
as t. Note also that using Case 3 repeatedly for flattened applications yields
FN (@(t1, . . . , tn)) = @(FN (t1), . . . ,FN (tn)).

Example 1 (continued). We show here the full neutralization of the left-hand and right-
hand of the rules of Example 1 after β-normalizing. To this end, we choose a neutral-
ization level for each function symbol and argument position. The associated subsets of
argument positions are all chosen empty. As a consequence, ⊥real is a constant abbrevi-
ated as ⊥.

L1
diff = 1 L1

sin = 0 L1
cos = 0

A1
diff = {} A1

sin = {} A1
cos = {}

L1
× = 1 L2

× = 1 L1
+ = 1 L2

+ = 1
A1

× = {} A2
× = {} A1

+ = {} A2
+ = {}

We now compute the β-normalization of the full neutralization of both sides of the first
rule:

FN ( diff ( λx. sin(@(F, x)) ) )↓
= diffnew ( sin(@(F,⊥)) )

FN ( λx. cos(@(F, x)) × diff ( λx.@(F, x) ) )↓
= cos(@(F,⊥)) ×new @(diffnew ( @(F,⊥) ) ,⊥)

and of both sides of the second rule:

FN ( diff ( λx.@(F, x) × λy.@(F, y) ) )↓
= diffnew ( @( @(F,⊥) ×new @(F,⊥) ,⊥) )

FN ((diff(λx.@(F, x)) × λy.@(F, y))+(λx.@(F, x) × diff(λy.@(F, y))))↓=
@(@(diffnew(@(F,⊥)),⊥)×new@(F,⊥),⊥)+new@(@(F,⊥)×new@(diffnew(@(F,⊥)),⊥),⊥)

Definition 9. Given a neutralized signature, two typable terms s, t and a higher-order
ordering �, we define the neutralized ordering �n as:

s �n t if and only if FN (s)↓� FN (t)↓

Note that normalization applies after neutralization: we will actually see that these two
operations commute, therefore implying compatibility of �n. Well-foundedness fol-
lows from well-foundedness of �. Stability and normal-monotonicity depend upon the
particular ordering � used in the construction, which must satisfy two stronger proper-
ties:
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Definition 10. An ordering � on higher-order terms satisfies
(i) schema-stability if for all βη-normal terms s, t and substitutions γ, s � t implies

tγ −→∗
βη t′γ for some term t′ such that sγ↓� t′γ.

(ii) schema-monotonicity if for all βη-normal terms λx.v : σ → ρ � t : σ → ρ, and
for all sequences of βη-normal terms 〈u1, . . . , un〉,

– if t = λx.w, then v{x �→⊥σ(u1, . . . , un)}�w{x �→⊥σ(u1, . . . , un)}
– otherwise, v{x �→ ⊥σ(u1, . . . , un)} � @(t,⊥σ(u1, . . . , un)).

Theorem 2. Let � be a higher-order reduction ordering fulfiling the schema-stability
and schema-monotonicity properties. Then �n is a normal higher-order reduction or-
dering.

The proof of this theorem requires several preliminary technical lemmas stating proper-
ties of neutralization with respect to normalization, before to start proving stability and
normal-monotonicity of �n.

5 Normal Higher-Order Recursive Path Orderings

While the higher-order recursive path ordering satisfies schema-monotonicity, it does
not satisfy schema-stability. Fortunately, a simple natural restriction suffices in case of
an application on left (Cases 5 and 7 of the coming definition). In order to ease the
presentation, we present a simple version of the (restricted) higher-order recursive path
ordering, which will be sufficient for all examples to come. We assume given:

1. a partition Mul &Lex of F and a quasi-ordering ≥F on F , called the precedence,
such that >F is well-founded;

2. a quasi-ordering ≥TS on types such that >TS is well-founded and preserves the
functional structure of functional types [12].

Because of type comparisons, the higher-order recursive path ordering enjoys but a
weak subterm property A used in its definition:

Definition 11. Given s : σ and t : τ, s �
rhorpo

t iff σ≥TS τ and

1. s = f(s) with f ∈ F , and u �
rhorpo

t for some u ∈ s

2. s = f(s) and t = g(t) with f >F g, and A
3. s = f(s) and t = g(t) with f =F g ∈ Mul and s( �

rhorpo
)mult

4. s = f(s) and t = g(t) with f =F g ∈ Lex and s( �
rhorpo

)lext, and A

5. s = @(s1, s2), s1 is not of the form @(X, w) with X ∈ X and u�rhorpot for some
u ∈ {s1, s2}

6. s = f(s), @(t) is an arbitrary left-flattening of t, and A
7. s = @(s1, s2), s1 is not of the form @(X, w) with X ∈ X , @(t) is an arbitrary

left-flattening of t and {s1, s2} (�rhorpo)mul t
8. s = λx : α.u, t = λx : β.v, α=TS β and u �

rhorpo
v
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9. s = @(λx.u, v) and u{x �→ v} �
rhorpo

t

where

⎧⎨⎩
s�rhorpo t iff s�rhorpo t or s =α t or

s = @(X, u), t = @(X, v) and u�rhorpo v
A = ∀v ∈ t s�rhorpo v or u�rhorpo v for some u ∈ s

Of course, making bound variables fit may need renaming in Case 8, and as usual,
�mul and �lex denote respectively the multiset and lexicographic extensions of the
relation �.

Theorem 3. (�rhorpo)+ is a higher-order reduction ordering satisfying schema-
stability and schema-monotonicity.

The relation �rhorpo being non-transitive in general because of case 9, taking its tran-
sitive closure is needed to make it into an ordering.

The property of being a higher-order reduction ordering is inherited from the non-
restricted version of the ordering, for which Cases 5 and 7 do not restrict the form
of s1 [12]. Without this restriction, we run into the aforementioned problem that any
ordering satisfying monotonicity, compatibility and well-foundedness must violate sta-
bility. Note that the pairs which cause this violation do not become incomparable in the
(quasi-) ordering: they are used to enrich its equality part.

Schema-monotonicity is straightforward, while schema-stability is by induction on
the term structure. As a consequence of Theorems 2 and 3:

Theorem 4. (�rhorpo)∗n is a normal higher-order reduction ordering.

We will approximate (�rhorpo)∗n by (�rhorpo)n in all coming examples. As can be
guessed, we need to define the precedence on the extended signature. In practice, we
always make ⊥σ-function symbols small.

Example 1 (end). Let diffnew >F {×new, +new, cos,⊥} and diffnew ∈ Mul.
First rule: s = diffnew(sin(@(F,⊥)))�rhorpo cos(@(F,⊥))×new@(diffnew(@(F,⊥)),⊥)
Applying first case 2, we recursively obtain two subgoals:
(i) s�rhorpo cos(@(F,⊥)) and (ii) s�rhorpo @(diffnew(@(F,⊥)),⊥).

(i): applying Case 2 yields s�rhorpo@(F,⊥) shown by Case 1 twice.
(ii): applying Case 6 generates two new subgoals
(iii) s�rhorpo diffnew(@(F,⊥)) , which holds by case 3, then case 1.
(iv) diffnew(sin(@(F,⊥)))�rhorpo ⊥ , which holds by case 2.

Second rule: s = diffnew(@(@(F,⊥) ×new @(F,⊥),⊥))�rhorpo

@(@(diffnew(@(F,⊥)),⊥)×new@(F,⊥),⊥)+new@(@(F,⊥)×new@(diffnew(@(F,⊥)),⊥),⊥)
Case 2 generates two subgoals:
(i) s�rhorpo @(@(diffnew(@(F,⊥)),⊥) ×new @(F,⊥),⊥)

(ii) s�rhorpo @(@(F,⊥) ×new @(diffnew(@(F,⊥)),⊥),⊥).
By Case 6, (i) generates two new subgoals:
(iii) s�rhorpo @(diffnew(@(F,⊥)),⊥) ×new @(F,⊥) and (iv) s�rhorpo ⊥.
The latter holds by case 1 and then case 5. By Case 2, (iii) yields two subgoals:
(v) s�rhorpo @(diffnew(@(F,⊥)),⊥) and (vi) s�rhorpo @(F,⊥).
By Case 6, (v) generates (vii) s�rhorpo diffnew(@(F,⊥)) and (viii) s�rhorpo ⊥
(vii) is solved by Case 3, 5, and 1 successively, and (viii) is solved by cases 1 and 5.
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6 Examples

We present two complex examples proven terminating with (�rhorpo)∗n. For all of them,
we give the necessary ingredients for computing the appropriate neutralizations and
comparisons. The precise computations can be found in the full version of the paper
available from the web. An implementation is available for the original version of the
ordering which will be extended to the present one in a near future.

As a convention, missing neutralization levels are equal to 0, in which case the corre-
sponding subset of argument positions will be empty. In all examples, we use a simple
type ordering ≥TS equating all data types, which satisfies the requirements given in
Section 5. Precedence on function symbols and statuses will be given in full.

In all examples we write F (X) instead of @(F, X) to ease the reading.

Example 2. The coming encoding of first-order prenex normal forms is adapted
from [20], where its local confluence is proved via the computation of its (higher-order)
critical pairs. Formulas are represented as λ-terms with sort form. The idea is that
quantifiers are higher-order constructors binding a variable via the use of a functional
argument.

S = {form}, F = { ∧,∨ : form × form → form;¬ : form → form;
∀, ∃ : (form → form) → form}.

P ∧ ∀(λx.Q(x)) → ∀(λx.(P ∧ Q(x)))
∀(λx.Q(x)) ∧ P → ∀(λx.(Q(x) ∧ P ))
P ∨ ∀(λx.Q(x)) → ∀(λx.(P ∨ Q(x)))
∀(λx.Q(x)) ∨ P → ∀(λx.(Q(x) ∨ P ))
¬(∀(λx.Q(x))) → ∃(λx.¬(Q(x)))

P ∧ ∃(λx.Q(x)) → ∃(λx.(P ∧ Q(x)))
∃(λx.Q(x)) ∧ P → ∃(λx.(Q(x) ∧ P ))
P ∨ ∃(λx.Q(x)) → ∃(λx.(P ∨ Q(x)))
∃(λx.Q(x)) ∨ P → ∃(λx.(Q(x) ∨ P ))
¬(∃(λx.Q(x))) → ∀(λx.¬(Q(x)))

Ingredients for neutralization: L1
∀ = 1, L1

∃ = 1, A1
∀ = {}, A1

∃ = {}.
Precedence: ∧ >F {∀new, ∃new}, ∨>F {∀new, ∃new}, ¬ >F {∀new, ∃new}.
Statuses: ∀new, ∃new ∈ Mul �

Example 3. Encoding of natural deduction, taken from [6].
Let S = {o, c : ∗×∗ → ∗}. Because we did not consider polymorphism, the following
signature and rules is parameterized by all possible types σ, τ, ρ ∈ TS .

F = { appσ,τ : (σ → τ) × σ → τ ; absσ,τ : (σ → τ) → (σ → τ);
Πσ,τ : σ × τ → c(σ, τ); Π0

σ,τ : c(σ, τ) → σ; Π1
σ,τ : c(σ, τ) → τ ;

∃+
σ : o × σ → c(o, σ); ∃−σ,τ : c(o, σ) × (o → σ → τ) → τ }.

X = { X : σ; Y : τ ; Z : o; T : c(o, ρ), F : σ → τ ; G : o → σ → τ,
H : o → ρ → (σ → τ), I : o → ρ → c(σ, τ), J : o → ρ → c(o, σ)}.

appσ,τ(absσ,τ (F ), X) → F (X)
Π0

σ,τ (Πσ,τ (X, Y )) → X
Π1

σ,τ (Πσ,τ (X, Y )) → Y
∃−σ,τ (∃+

σ (Z, X), G) → G(Z, X)
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appσ,τ (∃−ρ,σ→τ (T, H), X) → ∃−ρ,τ (T, λx : o y : ρ.appσ,τ(H(x, y), X))
Π0

σ,τ (∃−ρ,c(σ,τ)(T, I)) → ∃−ρ,τ (T, λx : o y : ρ.Π0
σ,τ (I(x, y)))

Π1
σ,τ (∃−ρ,c(σ,τ)(T, I)) → ∃−ρ,τ (T, λx : o y : ρ.Π1

σ,τ (I(x, y)))
∃−σ,τ (∃−ρ,c(o,σ)(T, J), G) → ∃−ρ,τ (T, λx : o y : ρ.∃−σ,τ (J(x, y), G))

Neutralization:L2
∃−

σ,τ
=2 and A2

∃−
σ,τ

={1}for all possible types σ and τ .

Precedence: {appσ,τ , Π0
σ,τ , Π1

σ,τ} >F ∃−new ρ,τ and ∃−new ρ,τ = ∃−new σ,τ for all possible
types ρ, σ and τ .
Statuses: ∃−new σ,τ ∈ Lex and appσ,τ , Π0

σ,τ , Π1
σ,τ ∈ Mul for all ρ σ and τ ; �

7 Conclusion

Proving termination properties of Nipkow’s rewriting was considered in [8] and [2].
The former yields a methodology needing important user-interaction to prove that the
constructed ordering has the required properties. Here, our method does provide with
an ordering having automatically all desired properties. The user has to provide with a
precedence and statuses as usual with the recursive path ordering. He or she must also
provide with neutralization levels together with filters selecting appropriate arguments
for each function symbols. This requires of course some expertise, but can be imple-
mented by searching non-deterministically for appropriate neutralization levels and fil-
ters, as done in many implementations of the recursive path ordering for the precedence
and statuses.

The higher-order recursive path ordering generalizes the notion of general schema as
formulated in [3] where the notion of computability closure was introduced. However,
what can be done with the schema can be done with the higher-order recursive path
ordering when using the computability closure of f(t) in the subterm case, instead of
simply the set of subterms t itself. The general definition of the higher-order recursive
path ordering with closure is given in [12]. It is however interesting to notice that the
neutralization mechanism is powerful enough so as to dispense us with using the closure
for all these complex examples taken from the literature that we have considered here
and in [13]. It remains to be seen whether the closure plays in the context of normal
higher-order rewriting, a role as important as for proving termination of recursor rules
for inductive types for which plain pattern matching is used instead of higher-order
pattern matching.
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Abstract. Bounded Second-Order Unification is the problem of decid-
ing, for a given second-order equation t ?= u and a positive integer m,
whether there exists a unifier σ such that, for every second-order vari-
able F , the terms instantiated for F have at most m occurrences of every
bound variable.

It is already known that Bounded Second-Order Unification is decid-
able and NP-hard, whereas general Second-Order Unification is undecid-
able. We prove that Bounded Second-Order Unification is NP-complete,
provided that m is given in unary encoding, by proving that a size-minimal
solution can be represented in polynomial space, and then applying a
generalization of Plandowski’s polynomial algorithm that compares com-
pacted terms in polynomial time.

1 Introduction

Second-order unification (SOU) is a generalization of first-order unification,
where variables are permitted also at the position of function symbols, hence
they may have arguments. These variables are also called second-order vari-
ables. When solving an equation, the second-order variables can stand for an
arbitrary first-order term with holes for plugging in the arguments, which must
be terms. In lambda-notation, a second-order variable may be instantiated by a
term λx1 . · · ·λxn . t, where t is a first-order term, and the variables xi also stand
for first-order terms. SOU extends the expressivity of first-order unification, and
is a restriction of higher-order unification (see [6,3]). It is known that SOU is
undecidable [5], even under severe syntactic restrictions [4,20,10,11].

A decidable variant is bounded second-order unification (BSOU) [17], which
restricts the possible instantiations of second-order variables by limiting the
number of occurrences of bound variables. However, the described algorithm
for BSOU has non-elementary complexity. Recently, we described an improved
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algorithm for monadic SOU [9] —which is BSOU where only unary function
symbols and constants are permitted— and determined its complexity to be
NP-complete.

In this paper we apply and extend methods used in [9] for monadic SOU to
improve the BSOU algorithm by compressing the computed solution, and as a
main result we prove that BSOU is in NP, which means that it is NP-complete.
To obtain this result requires compression techniques and, as a basis, the BSOU-
algorithm in [17]. This result shows that BSOU may become a practically useful
restriction of higher-order unification, perhaps via using a SAT-solver.

To illustrate the difficulties in proving the membership of BSOU in NP, we
will compare this problem with other unification problems. Most general first-
order unifiers σ have a very nice property: for every solvable equation E and
variable Xi there exists a subterm ti of the equation E such that σ can be
decomposed in the form σ = [X1 �→ t1] ◦ · · · ◦ [Xn �→ tn]. This representation is
polynomial and ensures that the problem is in NP. In [13] it is proved that the
search of these subterms can be done very efficiently and the problem is in fact
linear. Well-nested context unifiers [8] —this is, context unifiers where instances
of variables do not overlap— have the same property, but replacing subterms ti
by subcontexts ci of the equation. This property is used to prove that well-nested
context unification is in NP. However, in this case the search of these subcontexts
cannot be done efficiently. The property held by these two problems suggested
us to represent substitutions as compositions of instantiations to save space. In
monadic SOU we have a weaker property: instead of just one subcontext, we need
to compose a bounded number of subcontexts, and in some cases raise them to an
exponent. Moreover, we get the instance of only one of the variables [X1 �→ t1].
This means that we have to use the same property applied to [X1 �→ t1] E to find
the instance of another variable. Notice that [X1 �→ t1] E may be bigger than E,
and the size of the instance of Xn could be exponential in n. In [9] it is proved
that this is not the case, if we represent such an instance using a context free
grammar (CFG). If we have a CFG generating E, to represent a subcontext of
E, we have to enlarge the grammar, and in the worst case to duplicate the size,
obtaining an exponential representation. To avoid this problem in [9] we propose
the conjugation of size and depth of the grammar —the depth of the parse tree—
, which has an effect similar to balancing conditions. Then, the representation
of a subcontext preserves the depth and requires to increase the size of the
grammar only on the depth (see Lemma 4). Showing PSPACE [16] as an upper
complexity bound for stratified context unification used an ad-hoc compression
technique composed of sharing and exponentiation. The algorithm given there
does not look for a polynomial-sized solution, and erases partial solution as early
as possible to keep the PSPACE-bound.

Compared with monadic SOU, the situation in BSOU is even worse. Given an
equation E we can only find a “partial” instance of some variable. This means
that we remove a variable, say X , but we have to introduce new variables, say
X ′, by instantiating [X �→ c[X ′[•]]] where c is a context composed by a bounded
number of subcontexts of E. Moreover, this context is not ground, contrarily



402 J. Levy, M. Schmidt-Schauß, and M. Villaret

to the monadic SOU case. Fortunately, we have a well-founded ordering where
[X �→ c[X ′[•]]] E is smaller than E.

This paper proceeds as follows. After some preliminaries, we define an exten-
sion of singleton CFG for trees in Section 3. In Section 4 we define an order
on equations and show a polynomial upper bound for the length of decreasing
sequences. Then, in Section 5 we prove that given an equation E, and a size-
minimal solution σ, we can find a polynomial-sized partial description ρ of σ,
such that ρ(E) is strictly smaller than E and σ = σ′ ◦ ρ. Finally, in Section 6 we
show how we can get a compact representation of these partial instantiations,
and represent σ in polynomial size. Using an extension of Plandowski’s [14,15]
result for CFG, we can check in polynomial time if a substitution in such a
representation is a solution, proving that BSOU is in NP.

2 Preliminary Definitions

We consider one base (first-order) type o, and second-order types described by
the syntax τ ::= o → o | o → τ , with the usual convention that → is associative
to the right. We deal with a signature Σ =

⋃
i≥0 Σi, where constants of Σi

are i-ary, and a set of variables X =
⋃

i≥0 Xi, where variables of Xi are also
i-ary. Variables of X0 are therefore first-order typed and those of Xi, with i ≥
1, are second-order typed, and similarly for Σ. We use the convention that
X, Y (possibly with primes and subindexes) mean free first-order or second-
order variables (unknowns), while constants are denoted by lower-case letters
a, b, . . . , for first-order, and f, g, . . . , for second-order ones.

Terms are built as usual in simply typed λ-calculus. We assume that they are
in βη-long normal form, or are immediately reduced, so we will use a first-order
notation, if possible. We denote terms with lower case letters like t, u, . . . .

Contexts are first-order typed terms with one hole at some position, notated
as •. We call Z-contexts to the union of first-order terms and contexts, hence they
may contain zero or one hole. We denote contexts and Z-contexts by lower case
letters: c, d, . . . for contexts and c, d, . . . , t, u, . . . for Z-contexts. If the Z-context
d is plugged into the hole of a Z-context c, we denote the result as the Z-context
c[d]. (In the special case that c is a term, c[d] = c). We sometimes abbreviate
c1[c2[c3 . . . ]] as c1 c2 c3 . . . and c[c[c n. . .]] as cn. For any pair of Z-contexts c1 and
c2, if for some Z-context d we have c1 = c2[d], then c2 is said to be a prefix
of c1 (notated c2 ( c1 and c2 ≺ c1 for strict prefixes), and if for some context
d (with hole) we have c1 = d[c2], then c2 is said to be a suffix of c1. Notice
that, if c2 is a suffix of c1, then c1 contains a hole iff c2 contains a hole. On
the contrary, a subterm u of a context c does not need to contain a hole. This
distinguishes a suffix from a subterm. If c is a prefix of a subterm of d, then c is
called a subcontext of d. The size of a Z-context c is denoted |c|, and defined as
its number of symbols (including the hole).

We use positions in terms, noted p, q, as sequence of positive integers following
Dewey’s notation. The empty word is notated ε, p ≺ q notates the prefix relation,
p · q the concatenation, and t|p the subterm at position p of t. For a context c,
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its main path is the position of the hole. A position p is in the main path of c if
p is a prefix of the main path of c.

Second-order substitutions are functions from terms to terms, defined as usual.
The application of a substitution σ to a term t is written σ(t). An instance of
the bounded second-order problem (BSOU) is an equation t ?= u, where t and
u are first-order terms, and a number m given in unary encoding. The set of
variables (unknowns) occurring in an equation E is denoted by V ar(E), and the
notational size by |E|. We assume that equations are symmetric. A substitution
σ is said to be a unifier of (t ?= u, m), iff σ(t) = σ(u), and for all X ∈ V ar(E)
every bound variable in σ(X) occurs at most m times. A unifier σ is said to be a
solution of (E, m), iff σ(t) and σ(u) are ground (do not contain free variables).

It is easy to see that it suffices to consider only unifiers and solutions built
from constant, and function symbols that occur in E. A solution σ of (t ?= u, m)
is said to be size-minimal if it minimizes |σ(t)| among all solutions of (t ?= u, m).

As already shown in [17], there is an NP-reduction of BSOU to the specialized
problem, where m = 1, and every second-order variable is unary. Hence in the
following, we will only treat this case. In the simplification of the problem we go
a step further by considering only second-order variables. To do so we can replace
all occurrences of the first-order variable X by the term X ′(a) where X ′ is a fresh
(unary) second-order variable and a is any 0-ary constant. This transformation
allow us to P-reduce BSOU to BSOU without first-order variables. Therefore,
from now on, all variables will have type o → o, and all terms type o, or o → o.
Moreover, we will represent second-order typed terms λy . t as the Z-context
resulting from replacing in t the occurrence of y (if any) by the hole. Thus, from
now on, we will only deal with Z-contexts, and terms will be assumed to be
first-order typed.

We know that size-minimal solutions of a BSOU equation satisfy the exponent
of periodicity lemma [12,7,19,17]. However, since we have a slightly different
definition of size-minimality, after some encoding by enlarging E, we have a
quadratic dependency on |E|:
Lemma 1 ([17], Lemma 4.1). There exists a constant α ∈ R such that, for
every BSOU-problem E, every size-minimal unifier σ, and every variable X, if
dn is a nonempty subcontext of σ(X), then n ≤ 2α|E|2 .

3 Singleton Tree Grammars

We generalize singleton context free grammars (SCFG) to trees, since we require
a device for a compressed representation of solutions. We extend the expressivity
of SCFGs by permitting terms and contexts. The definition is a special case of
the context free tree grammars defined in [2].

Definition 1. A singleton tree grammar (STG) is a tree grammar, i.e. a 4-tuple
(T N , CN , Σ, R), where T N are tree nonterminals, CN are context nontermi-
nals, and Σ is a signature of terminals symbols (variables and constants), such
that the sets T N , CN , Σ are pairwise disjoint. The set of nonterminals N is
defined as N = T N ∪ CN . The rules in R may be of the form:
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– A ::= f(A1, . . . , An), where A, Ai ∈ T N , and f ∈ Σ is an n-ary terminal
symbol.

– A1 ::= C[A2] where A1, A2 ∈ T N , and C ∈ CN .
– C1 ::= C2C3, where Ci ∈ CN .
– C ::= f(A1, . . . , Ai−1, [•], Ai+1, . . . , An), where Ai ∈ T N , C ∈ CN , [•] is

the hole, and f ∈ Σ an n-ary terminal symbol.

The tree grammar must be non-recursive (the relation +−→ has no cycles).
Furthermore, for every non-terminal N there is exactly one rule having N as
left hand side. Give a term t where nonterminals may occur, the derivation by G
is an exhaustive iterated replacement of the nonterminals by the corresponding
right hand sides.

Definition 2. The size of a grammar (STG) G is the number of its rules and
denoted as |G|.
The depth of a nonterminal D is defined as the maximal number of →G-steps
from D, where D′ →G D′′ for two nonterminals D′, D′′, iff D′ ::= T is a rule
of G, and D′′ occurs in T .
The depth of a grammar is the maximum of the depths of all nonterminals.
When a grammar G generates a Z-context t from a non-terminal symbol D (and
the grammar is clear from the context) we write depth(t) to denote depth(D).

The following theorem is a generalization to trees of Plandowski’s one in [14,15].

Theorem 1 ([1,18]). Given an STG G, and two tree nonterminals from G, it
is decidable in polynomial time depending on |G| whether they generate the same
tree or not.

The following lemmas state how the size and the depth of a grammar are in-
creased by extending it with concatenations, exponentiation, prefixes and suffixes
of Z-contexts. Proofs may be adapted from the extended version of [9].

Lemma 2. Let G be an STG defining the Z-contexts d1, . . . , dn for n ≥ 1. Then
there exists an STG G′ ⊇ G that defines the Z-context d1 · · · dn and satisfies
|G′| ≤ |G|+n−1 and depth(d1 · · · dn) ≤ max{depth(d1), . . . , depth(dn)}+*log n+.
Lemma 3. Let G be an STG defining the context d. For any n ≥ 1, there exists
an STG G′ ⊇ G that defines the context dn and satisfies |G′| ≤ |G| + 2 ,logn-
and depth(dn) ≤ depth(d) + *log n+.
Lemma 4. Let G be an STG defining the context d. For any nontrivial prefix
or suffix context d′ of d, there exists an STG G′ ⊇ G that defines d′ and satisfies
|G′| ≤ |G| + depth(d) and depth(d′) ≤ depth(d).

Similarly if d is a Z-context and d′ is a subterm of d.

Lemma 5. Let G be an STG defining the term t. For any nontrivial prefix con-
text d of the term t, there exists an STG G′ ⊇ G that defines d and satisfies |G′| ≤
|G|+ 2 depth(t) (log(depth(t)) + 1) and depth(d) ≤ depth(t) + 2 + log(depth(t)).

Notice that for prefixes of contexts we get better bounds than for prefixes of
terms.
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4 A Well-Founded Ordering on Equations

In this section we define an ordering on the equations. This order is similar to
the one proposed in [17] to prove the decidability of BSOU. However, in our
case, the order is not only well-founded: we prove that the length of any strictly
decreasing sequence is polynomially bounded on the size of the first element.

Definition 3. We say that p is a surface position of t if there are no variable
occurrences strictly above p.

Given an equation E = (t ?= u), the relation ≈E ⊆ V ar(E) × V ar(E) is the
reflexive-transitive closure of the relation defined by: if X occurs at the surface
position p of t and Y occurs at the same surface position p of u, then X ≈E Y .

The relation �E ⊆ V ar(E) × V ar(E) is the relation defined by: if X occurs
at the surface position p of t and, for some nonempty sequence q, Y occurs at
the surface position p · q of u, then X �E Y . We extend this relation to classes
of equivalences with if X �E Y then X �E Y .

If p is a surface position of t and of u, then t|p ?= u|p is called a subequation
of t ?= u.

In first-order unification all variable occurrences are at surface positions. More-
over, if �+

E is not irreflexive then there is occur-check and the equation is unsolv-
able. In second-order unification this is not the case, �+

E may be not irreflexive
and E solvable.

Definition 4. A cycle in an equation E = (t ?= u) is a sequence of variables
X1, . . . , Xn and pairs of positions 〈p1, p1 · q1〉, . . . , 〈pn, pn · qn〉, such that, for
i = 1, . . . , n, Xi is at the surface position pi of t, and Xi+1 is at the surface
position pi · qi of u, and there is at least one nonempty qi.1

The length of the cycle is n.

Notice that an equation E contains a cycle iff the relation ≺+
E for classes of

equivalences is not irreflexive. The shortest cycle in an equation E is shorter
than |V ar(E)|.

Definition 5. Given an equation E, the measure μ(E) is a lexicographic com-
bination 〈μ1(E), μ2(E), μ3(E)〉 of the following components:

1. μ1(E) = |V ar(E)| is the number of variables occurring in E.
2. μ2(E) is the length of the shortest cycle in E, or ∞ if there are no cycles.
3. μ3(E) is zero, if E contain cycles, otherwise

μ3(E) = | V ar(E)| − | V ar(E)/ ≈E | + 2|�E| =
C ∈ V ar(E)/≈E

(|C|−1) +
X,Y ∈V ar(E)

X
E Y

2

1 When the length n of the cycle is clear from the context, all indexes i greater than
n are replaced by ((i − 1) mod n) + 1.
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Lemma 6. Any decreasing sequence of equations {Ei}i≥1, i.e. where μ(Ei) >
μ(Ei+1), terminates in at most 2 |V ar(E1)|3 steps.

Proof: Let n = |V ar(E1)|. The first component of μ(Ei) can have values
from j = n, . . . , 1. When the first component is j, the second component can
have values from ∞, j, . . . , 1. When there are no cycles, the third component is
maximal when all the equivalence classes are singletons, and is j(j−1). Therefore,
the set of possible values of μ(Ei) is smaller than

∑n
j=1 j + j (j − 1) + 1 =

1/3n3 + 1/2n2 + 7/6n ≤ 2n3.

5 Finding the Partial Instance of Some Variable

In this section we show how, given an equation E and a minimal solution σ,
we can find an instantiation [X �→ t] or a partial instantiation [X �→ c[X ′(•)]]
for every variable X ∈ V ar(E) such that the composition ρ of all them satisfies
σ = σ′ ◦ ρ, where σ′ is a size-minimal solution of ρ(E), and the new equation
ρ(E) is smaller than E w.r.t. μ. Moreover the (partial) instantiation can be built
up from a linear number of pieces (subcontexts) of E, which as we show in the
next section, ensures that it can be efficiently represented.

Lemma 7 (Partial instance). Given an equation E and a size-minimal so-
lution σ, with exponent of periodicity bounded by e, there exist substitutions
ρ = ρ2 ◦ ρ1 such that the ρi’s have the form

[X1 �→ c1[X ′
1(•)] , . . . , Xn �→ cn[X ′

n(•)]]
such that:

1. n ≤ |V ar(E)|,
2. X ′

1, . . . , X
′
n are fresh variables not occurring in E,

3. the Z-contexts ci can be constructed taking O(n)-many subcontexts of E [or of
ρ1(E) in the case of ρ2], composing them, raising the result to some exponent
smaller than e and taking a prefix,

4. ρ is coherent with σ, i.e. σ decomposes as σ = σ′ ◦ ρ, for some σ′, and
5. μ(E) > μ(ρ(E)).

Remark 1. Notice that Lemma 7 and 6 allow us to decompose σ = ρm ◦ · · · ◦ ρ1,
where m is polynomial on the size of the original equation E, and ρi can be
represented polynomially on the size of ρi−1 ◦ · · · ◦ ρ1(E) using singleton tree
grammars. From this we can only conclude that σ has a representation bounded
by a composition of a polynomial number of polynomials, i.e. that σ has an
exponential-size representation. Obviously, this is not enough for proving the
NP-completeness of BSOU. We need an important result that will be proved in
Section 6.

Lemma 7 is proved in the following subsections. We also need the following
Lemma.

Lemma 8. If σ is a size-minimal solution of E, and σ decomposes as σ = σ′◦ρ,
then σ′ is a size-minimal solution of ρ(E).
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5.1 There Are Cycles in the Set of Equations

If E = (t ?= u) contains a cycle defined by X1, . . . , Xn and 〈p1, p1 ·q1〉, . . . , 〈pn, pn ·
qn〉, then, for every i = 1, . . . , n, we have a subequation t|pi

?= u|pi of the form

Xi(vi)
?= ci[Xi+1(wi)]

for some terms vi and wi, and some context ci that has its hole at position qi

and has no variables in its main path. Note that there is at least one context ci

different from •. The unifier σ of t ?= u has to solve all these subequations.
Now we find how long each variable “stays” in the cycle: For i = 1, . . . , n, let

ri be the longest prefix of (qi · . . . · qn · q1 · . . . · qi−1)∞ such that, if σ(Xi) has no
hole, then ri is a position inside the term σ(Xi) and, if σ(Xi) has a hole, then
this hole must be below or at position ri.

We select a minimal ri: Let minlength = mini∈{1,...,n} |ri|, and assume w.l.o.g.
that r1 is minimal, i.e. minlength = |r1|.

We make all variables copy along this distance: For i = 1, . . . , n, let si be
the prefix of (qi · . . . · qn · q1 · . . . · qi−1)∞ of length minlength, and let di be the
context resulting from putting a hole at position si of (ci . . . cn c1 . . . ci−1)∞.
Note that, since the exponent of periodicity of σ does not exceed e, then di has
the form (ci . . . cn c1 . . . ci−1)ei d′i where ei ≤ e and the context d′i is a prefix of
ci . . . cn c1 . . . ci−1.

Since di is a prefix of σ(Xi), the substitution ρ1 = [X1 �→ d1[X ′
1(•)], . . . , Xn �→

dn[X ′
n(•)]] is coherent with σ. Moreover, the sequences X ′

1, . . . , X
′
n and 〈p1 ·

s1, p1 · q1 · s2〉, 〈p2 · s2, p2 · q2 · s3〉, . . . , 〈pn · sn, pn · qn · s1〉 define a cycle in
ρ1(E) of the same length as the original cycle. Now, we define a new substitution
ρ2 such that ρ = ρ2 ◦ρ1 is coherent with σ and μ(ρ(E)) < μ(E). There are three
cases:

Case 1: If σ(X1) does not contain any hole, then r1 corresponds to the position
of a first-order constant in σ(X1). Since r1 and q1 · r2 are both prefixes
of (q1 · . . . · qn)∞ and |r1| ≤ |r2|, r1 is a prefix of q1 · r2. Since σ solves
X1(v1) = c1[X2(w1)], and r2 is a position inside σ(X2), σ(X2) has a first-
order constant at position r2 and r1 = q1 · r2. Therefore, since |r1| ≤ |r2|,
we have q1 = ε and c1 = •. Thus, |r2| = minlength and σ(X2) also has a
constant at position r2. Repeating this argument we would get ci = •, for
every i = 1, . . . , n, which contradicts the assumption that we have a cycle
(for some i, ci �= •). Therefore this situation is not possible.

Case 2: If for some i = 1, . . . , n, si corresponds to the position of the hole in
σ(Xi) then take ρ2 = [X ′

i �→ •]. The variable Xi is completely instantiated,
and the first component of μ decreases. This situation corresponds to some
variable that “finishes inside the cycle, i.e. it is completely instantiated”.

Case 3: Otherwise, r1 corresponds to some proper prefix of the hole position
of σ(X1). Let m be the minimal index such that c1 = · · · = cm−1 = • and
cm �= •. Notice that q1, . . . , qm−1 are empty, r1 = s1 = · · · = sm−1, and, for
j = 2, . . .m − 1, r1 ≺ rj strictly. For i = 1, . . . , m − 1, let li ∈ N satisfy: the
hole of σ(Xi) is below or at r1 · li, if σ(Xi) has a hole, or li = 1, otherwise.
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Let l ∈ N satisfies r1 ·l ( qm ·sm+1. The equation ρ1(E) contains as subequa-
tions {X ′

1(ρ1(v1))
?= X ′

2(ρ1(w1)), · · · , X ′
m−1(ρ1(vm−1))

?= X ′
m(ρ1(wm−1)),

X ′
m(ρ1(vm)) ?= ρ1(cm[dm+1[X ′

m+1(wm)]]|r1)} where r1 is a proper prefix of
the main path of cm[dm+1[•]], i.e. ri ≺ qm · sm+1. Let f be the constant at
the root of cm[dm+1[X ′

m+1(wm)]]|r1 . We take

ρ2 = [X ′
i �→ f(w1

i , . . . , wli−1
i , X ′′

i (•), wli+1
i , . . . , w

arity(f)
i )]i∈{1,...,m}

where, for k �= lm, wk
m = ρ1(cm[dm+1[X ′

m+1(wm)]]|r1·k). And, for every i =
m−1, . . . , 1, let X ′

i(ρ1(vi))
?= X ′

i+1(ρ1(wi)) be the subequation of ρ1(E). For
every k �= li, li+1, we have wk

i = wk
i+1 and, if li �= li+1, w

li+1
i = X ′

i+1(ρ1(wi)).
The new equation ρ2 ◦ ρ1(E) contains a cycle defined by the variables
X ′

m+1, . . . , X
′
n and the variables X ′′

i that do not leave the cycle, i.e. that
satisfy li = l. Among the pairs of positions we have 〈pn ·sn, pn ·qn ·qm ·sm+1〉.
This cycle is shorter than the original one because l1 �= l. This situation cor-
responds to some variable that “leaves the cycle”. Notice that in the special
situation where n = 1, we always fall into case 2.

5.2 There Are No Cycles

If the surface positions of variables in t are the same as in u, then either σ(X) = a
or σ(X) = •, for every X ∈ V ar(E). Therefore if we take ρ = σ we fulfil the
requirement of the lemma. Notice that the size-minimality of σ is only needed
in this point and in the exponent of periodicity lemma.

Otherwise, there exists a ≺∗
E-maximal ≈E-equivalence class {X1, . . . , Xn}

such that, there exists a variable (assume w.l.o.g. that it is X1) and a surface
position q of X1 in t, satisfying u|q has not a variable in the root. Let v = u|q,
then X1(. . . )

?= v is a subequation of E. We consider two cases:

Case 1. If, for all i = 1, . . . , n, σ(Xi) does not contain the hole, then take
ρ = [X1 �→ v, . . . , Xn �→ v]. It is easy to prove that ρ is coherent with σ, and
since it completely instantiates some variable, μ(ρ(E)) < μ(E).

Case 2. Otherwise, let p be the largest sequence such that, for all i = 1, . . . , n

1. if σ(Xi) contains a hole, then p is a prefix of this hole occurrence,
2. if σ(Xi) does not contain a hole, then p is inside σ(Xi), and
3. for any q and r, if q is a surface occurrence of Xi in t, and u|q has not a

variable on the root, and q · r is a surface occurrence of a variable in u,
then r �≺ p.

Notice that p is a position of v, and there are not variables in v above or at p.
Roughly speaking, p is the result of following the main path of the Z-contexts
σ(Xi) until they split, or someone finish, or we find another variable below.
Let c be the context resulting of putting a hole at position p of v. Then
ρ1 = [X1 �→ c[X ′

1(•)], . . . , Xn �→ c[X ′
n(•)]] is coherent with σ. Moreover

X ′
1, . . . , X

′
n belong to the same equivalence class of ρ1(E), and X ′

1(. . . )
?=

ρ1(v|p) is a subequation of ρ1(E). Now there are three possibilities:
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Case 2a. For some i = 1, . . . , n, the hole of σ(Xi) is at position p. Then take ρ =
[X ′

i �→ •]◦ρ1. The first component of μ decreases. This situation corresponds
to the case when one of the main paths finish.

Case 2b. If there exists a surface position q of some variable Xi in t, and q ·p is a
surface position of some variable Y in u (hence Xi �E Y ) then take ρ = ρ1.
This situation corresponds to the case when we have found a variable Y
(belonging to a smaller equivalence class) before two main paths split or
some one finishes.
In this situation ρ(E) either contains a cycle, or the equivalence class C =
{X1, . . . , Xn} is merged getting C′ = {X ′

1, . . . , X
′
n} ∪ Y ∪ . . . . In the second

case, |C′| > |C|, but we pass from Xi �E Y to X ′
i ��ρ(E) Y , and no new

� related pairs are added. The increasing in the first term of μ3 is strictly
compensated by the decreasing in the second term of μ3.

Case 2c. For every i = 1, . . . , n, let li ∈ N satisfy: if σ(Xi) has a hole, then it
is below or at p · li, otherwise, li = 1. If cases 2a and 2b does not apply, then
there exists at least two distinct li’s. This situation corresponds to the case
when two main paths of variable instantiations split.
Let f be the constant symbol at the root of v|p.We take ρ = ρ2 ◦ ρ1 where

ρ2 = [X ′
i �→ f(w1

i , . . . , wli−1
i , X ′′

i (•), wli+1
i , . . . , w

arity(f)
i )]i∈{1,...,n}

Now we show how the subterms wk
i are chosen. First wj

1 = ρ1(v|p·j), for every
j �= l1, being X1(. . . )

?= v a subequation of E. Then, for every i, j = 1, . . . , n,
if Xi(w′) ?= Xj(w′′) is a subequation of E, then wk

i = wk
j , for any k �= li, lj ,

and, if li �= lj , then w
lj
i = X ′′

j (w′′) and wli
j = X ′′

i (w′). The existence of
a connection between any pair of variables of the same equivalence class
ensures that we define all the wk

i ’s. We can prove that ρ is coherent with σ.
Moreover ρ2 can be built up from a linear number of pieces of ρ1(E), and
ρ1 from a linear number of pieces of E.
If we compare ≈E and �E with ≈ρ(E) and �ρ(E), we see that the equivalence
class C = {X1, . . . , Xn} has been split into arity(f) (possibly empty) subsets
Ck = {X ′′

i | li = k}. The existence of two distinct li’s ensures that there are
at least two nonempty of such equivalence classes, and the first term of μ3
has decreased. There can also be merges between equivalence classes, but
then the second term of μ3 decreases and compensates the increasing in the
first term of μ3. There can also appear cycles, but then μ2 decreases.

6 Compacting the Solutions

One of the key ideas to compact the representation of a unifier is notating it as
a composition of instantiations [X1 �→ v1] ◦ · · · ◦ [Xn �→ vn]. Another key idea
is representing the Z-contexts vi using a STG. Finally, the representation of the
instance of a variable may involve the computation of subcontext of a term t
represented as t = [X1 �→ v1]◦· · ·◦ [Xn �→ vn] u. In this section we show how this
can be done efficiently without increasing very much the depth of the grammar.
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To understand the main ideas, assume that the vi’s, t and u are words, and we
have a grammar G that generates Ai →∗ vi and A0 →∗ u. We can get a grammar
G′ that generates B →∗ t replacing in G the variables Xi by the nonterminals
Ai. This preserves the size of the grammar, but not the depth: in the worst case
depth(B) =

∑n
i=0 depth(Ai). This means that, to represent a prefix t′ of t, we

have to enlarge G′ in depth(B). A less expensive solution is finding a prefix v′i of
vi and u′ of u such that t′ = [X1 �→ v1] ◦ · · · ◦ [Xn �→ vn] u′ v′n . . . v′1, and enlarge
G in order to generate B →∗ A′

0 A′
n · · ·A′

1 →∗ u′ v′n . . . v′1. Then, in the worst
case the depth is only depth(B) = log n + maxn

i=0{depth(Ai)}.

Definition 6. We say that a term t is compactable as t = [X1 �→ v1]◦· · ·◦[Xn �→
vn]u with a grammar G, if

1. Xi �= Xj, when i �= j,
2. Xi does not occur in v1, . . . , vi−1,
3. G generates vi, for i = 1, . . . , n, and u.

Similarly when t and u are equations.

The following is a technical lemma used to handle the proof by induction of
Lemma 10.

Lemma 9. Let σ = [X1 �→ v1] ◦ · · · ◦ [Xn �→ vn]. For any context t compactable
as t = σ(Xi(u)) with a grammar G, and any prefix c ( t satisfying σ(Xi) �≺ c, c
is compactable as c = σ(d) with a grammar G′ ⊇ G satisfying

depth(d) ≤ 3 i + M
|G′| ≤ |G| + i2 + 3 i + 2 i M

where M = max{depth(u), depth(v1), . . . , depth(vn)}.

Proof: We proceed by induction on i.
In the base case i = 1 we have c ( t = σ(X1(u)) = v1[σ(u)]. The position

of the hole of c must correspond to some position inside v1 (otherwise σ(X1) =
v1 ≺ c, contrarily to the assumptions). Therefore, either c does not contain any
part of σ(u) or contains it completely. So, there exists a prefix d of v1[u] such
that c = σ(d). Now, by Lemmas 2 and 4 we can generate any prefix d of v1[u]
with depth(d) ≤ depth(v1[u]) = 1 + max{depth(v1), depth(u)} using a grammar
G′ with size |G′| ≤ |G| + 2 + max{depth(v1), depth(u)}.

In the induction case i > 1 we have c ( σ(Xi(u)) = σ(vi[u]). Let di be the
largest prefix of vi[u] such that σ(di) ( c. This prefix is uniquely defined.

By Lemmas 2 and 4, since di ( vi[u], we can generate di with depth(di) ≤
1 + max{depth(vi), depth(u)} using a grammar G′′ of size |G′′| ≤ |G| + 2 +
max{depth(vi), depth(u)}.

If σ(di) = c, taking d = di and G′ = G′′ we fulfil the requirements of the
lemma.

Otherwise σ(di) ≺ c, and the hole of c fall inside the instance of some variable
Xk occurring in vi, with k < i (remember that σ(Xi) �≺ c). This position may
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be in the main path of vi or not. In the first case, we have vi[u] = di[Xk[v′i[u]]],
for some suffix Z-context v′i of vi, i.e. di does not contain any part of u. In
the second case, we have vi[u] = di[Xk[v′i]], for some subterm v′i of vi, i.e. di

completely contains u.
In the first case, we can decompose c = σ(di)[ĉ], for some Z-context ĉ sat-

isfying ĉ ≺ σ(Xk[v′i[u]]) and σ(Xk) �≺ ĉ. Using Lemmas 2 and 4, we see
that there exists a grammar Ĝ deriving Xk[v′i[u]] with depth(Xk[v′i[u]]) ≤
2+max{depth(vi), depth(u)} and satisfying |Ĝ| ≤ |G′′|+2+depth(vi). Moreover,
σ(Xk[v′i[u]]) is compactable with Ĝ. Since k < i, by induction hypothesis, we
can compact ĉ = σ(d̂) with a grammar Ĝ′ that generates d̂ with

depth(d̂) ≤ 3k + max{depth(Xk[v′i[u]]), depth(v1), . . . , depth(vn)}
≤ 3k + 2 + M

and has size

|Ĝ′| ≤ |Ĝ| + k2 + 5 k + +2 k max{depth(v1), . . . , depth(vn), depth(v′i[u])}
≤ |Ĝ| + k2 + 3 k + 2 k (1 + M)

Now since c = σ(di)[ĉ] and ĉ = σ(d̂), we have c = σ(di[d̂]). Therefore, by
Lemmas 2 and 4, we can find a grammar G′ with |G′| ≤ |Ĝ′|+ 1 that generates
d = di[d̂] with depth(d) = 1+max{depth(di), depth(d̂)} and allow us to compact
c.

In the second case we obtain lower bounds. Finally, all the inequalities allow
us to conclude

depth(d) = 1 + max{depth(di), depth(d̂}
≤ 1 + max{ 1 + max{depth(vi), depth(u)} ,

3k + max{depth(Xk[v′i[u]]), depth(v1), . . . , depth(vn)}}
≤ 1 + max{1 + M, 3k + max{2 + M, M}}
= 3(k + 1) + M ≤ 3i + M

|G′| ≤ |Ĝ′| + 1
≤ |Ĝ| + k2 + 3 k + 2 k (M + 1) + 1
≤ |G′′| + 2 + M + k2 + 3 k + 2 k (M + 1) + 1
≤ |G| + 2 + M + 2 + M + k2 + 3 k + 2 k (M + 1) + 1
= |G| + (k + 1)2 + 3 (k + 1) + 1 + 2 (k + 1)M ≤ |G| + i2 + 3 i + 2 i M

Lemma 10. For any Z-context t compactable as t = [X1 �→ v1]◦· · ·◦[Xn �→ vn]u
with a grammar G, any prefix, subterm or subcontext t′ of t, is also compactable
as t′ = [X1 �→ v1] ◦ · · · ◦ [Xn �→ vn]u′, for some Z-context u′, with a grammar
G′ ⊇ G satisfying

depth(u′) ≤ M + O(n)
|G′| ≤ |G| + O(n M)

where M = max{depth(u), depth(v1), . . . depth(vn)}.
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Proof: We only show the proof when t′ is a prefix of t, and t is a context. We can
write t = [X1 �→ v1]◦· · ·◦[Xn �→ vn]u as t = [X1 �→ v1]◦· · ·◦[Xn �→ vn]◦[Xn+1 �→
u]Xn+1(•) for any fresh variable Xn+1. Then we can apply Lemma 9.

For subterms we need a variant of Lemma 9, and for subcontexts the appli-
cation of a subterm and then a prefix. For prefixes of terms we need a variant of
Lemma 9 based on Lemma 5. These proofs exceeds the length of this paper.

Lemma 11. For any equation E, and any substitution τ = [X �→ c[X ′(•)]],
where c is a Z-context not containing X, and built up using O(|V ar(E)|) sub-
contexts of E, and one exponentiation to e, if E is compactable as

E = [X1 �→ v1] ◦ · · · ◦ [Xn �→ vn]E′

with a grammar G, then, for some Z-context d, some m ∈ {0, . . . , n}, and some
permutation π, τ(E) is also compactable as

τ(E) = [Xπ(1) �→ vπ(1)] ◦ · · · ◦ [Xπ(m) �→ vπ(m)] ◦ [X �→ d]
◦[Xπ(m+1) �→ vπ(m+1)] ◦ · · · ◦ [Xπ(n) �→ vπ(n)] E′

with a grammar G′ ⊇ G deriving d and satisfying

depth(d) ≤ M + O(|V ar(E)|n + log e)
|G′| ≤ |G| + O(|V ar(E)|n M + log e)

where M = max{depth(E), depth(v1), . . . , depth(vn)}.

Proof: By Lemma 10, we can compact each one of the O(V ar(|E|) subcontexts
ci of E that compound c as ci = σ(di) with the same grammar G′ increasing
the size of G in O(V ar |E|)O(n M) and the depth of the symbols generating di

being at most M +O(V ar |E|)O(n). Let d be constructed from the pieces di as
c is constructed from the pieces ci.

By Lemmas 3 and 2, applied as many-times as pieces we have to assemble,
we can prove that there exists a grammar G′′ ⊇ G′ that generates d with depth
M + O(|V ar(E)|n + log e) , and satisfying |G′′| = |G′| + O(log e). Using this
grammar G′′, we can compact τ(E) as

τ(E) =
[
X �→ [X1 �→ v1] ◦ · · · ◦ [Xn �→ vn] d

]
E

=
[
X �→ [X1 �→ v1] ◦ · · · ◦ [Xn �→ vn] d

]
◦ [X1 �→ v1] ◦ · · · ◦ [Xn �→ vn] E′

= [X1 �→ v1] ◦ · · · ◦ [Xn �→ vn] ◦ [X �→ d] ◦ [X1 �→ v1] ◦ · · · ◦ [Xn �→ vn] E′

Let � be the transitive closure of the relation: if Xi occurs in vj then Xi �

Xj . By definition of compaction this relation is irreflexive. Extend this relation
considering X � Xi when X occurs in vi and and Xi � X when Xi occurs in
d. Then, for every i = 1, . . . , n, either Xi �� X or X �� Xi. (Otherwise we would
get X � X and either c1 or c2 would contain X , contrarily to our assumption).
Now,for every i, if Xi �� X we can remove [Xi �→ vi] from the left of [X �→ d],
and if X �� Xi we can remove [Xi �→ vi] from the right of [X �→ d]. In this way we
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obtain the desired compaction. Notice that we have to re-order the Xi according
to the extension of �, i.e. Xπ(1) < · · · < Xπ(m) < X < Xπ(m+1) < · · · < Xπ(n)
is a total ordering of the variables compatible with the partial ordering �.

Theorem 2. If σ is a size-minimal solution of E = (t ?= u), then σ(t) is com-
pactable as σ(t) = [X1 �→ v1] ◦ · · · ◦ [Xm �→ vm] t′ with a grammar of depth
O(|E|9) and size O(|E|18), where m = O(|E|4).

Similarly for u.

Proof: Using Lemmas 7 and 8 inductively, we can get a decomposition σ =
ρn ◦ · · · ◦ ρ1 such that μ(ρi ◦ · · · ◦ ρ1(E)) < μ(ρi−1 ◦ · · · ◦ ρ1(E)). Therefore, by
Lemma 6, we have n = O(|E|3). Moreover, each one of the ρi’s is the composition
of at most |V ar(E)| many (partial) instantiations of just one variable. So, there
are m = O(|E|4) of these instantiations.

Each one of these partial instantiations τj fulfill the requirements of
Lemma 11. So, using this Lemma 11 inductively, we can prove that τi◦· · ·◦τ1(E)
is compactable with a grammar Gi such that the maximal depth di of a
Z-context derived by Gi is di ≤ di−1 + O(|V ar(E)| i + log e), i.e. di =
O(|V ar(E)| i2+i log e), and for the size |Gi| ≤ |Gi−1|+O(|V ar(E)| i di+log e) =
|Gi−1| + O(|V ar(E)|2 i3 + |V ar(E)| i2 log e), i.e. |Gi| = O(|V ar(E)|2 i4 +
|V ar(E)| i3 log e).

We have i ≤ O(|E|4). The exponent of periodicity lemma ensures that log e =
O(|E|2). We have also |V ar(E)| = O(|E|).

Finally, composing all the bounds we get the polynomial bounds stated in the
Theorem.

Corollary 1. Bounded Second-Order Unification is NP-complete.

Proof: For any equation E, and any size-minimal solution σ, there exists a STG
of polynomial size in |E| that generates σ(X), for every X ∈ V ar(E). Notice
that we represent σ as a composition of substitutions, and the grammar can
generate each one of the compositions, but replacing variables by non-terminal
symbols of the grammar, we can (increasing the depth, but without increasing
the size) generate σ. A small enlargement of the grammar allow us to generate
σ(t) and σ(u).

Now, a nondeterministic algorithm, guessing a representation of the substi-
tution σ not exceeding the polynomial bound, and using Theorem 1 to check if
σ(t) = σ(u) can decide if t ?= u is solvable or not.

NP-hardness is proved in [17].
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Roşu, Grigore 19
Rubio, Albert 387
Rusinowitch, Michaël 108

Sakai, Masahiko 343
Salvati, Sylvain 151
Schmidt-Schauß, Manfred 400
Schneider-Kamp, Peter 297
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