Frank Pfenning (Ed.)

Term Rewriting
and Applications

17th International Conference, RTA 2006
Seattle, WA, USA, August 2006
Proceedings

LNCS 4098

@ Springer

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Moshe Y. Vardi

Rice University, Houston, TX, USA
Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

4098

Frank Pfenning (Ed.)

Term Rewriting
and Applications

17th International Conference, RTA 2006
Seattle, WA, USA, August 12-14, 2006
Proceedings

@ Springer

Volume Editor

Frank Pfenning

Carnegie Mellon University
Department of Computer Science
Pittsburgh, PA 15213-3891, USA
E-mail: fp@cs.cmu.edu

Library of Congress Control Number: 2006929604

CR Subject Classification (1998): F4, F3.2, D.3,1.2.2-3, .1
LNCS Sublibrary: SL 1 — Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-36834-5 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-36834-2 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11805618 06/3142 543210

Preface

This volume contains the proceedings of the 17th International Conference on
Rewriting Techniques and Applications, which was held on August 12-14, 2006
in Seattle, Washington, as part of of the 4th Federated Logic Conference (FLoC).
RTA is the major forum for the presentation of research on all aspects of rewrit-
ing. Previous RTA conferences took place in Dijon (1985), Bordeaux (1987),
Chapel Hill (1989), Como (1991), Montreal (1993), Kaiserslautern (1995), New
Brunswick (1996), Sitges (1997), Tsukuba (1998), Trento (1999), Norwich (2000),
Utrecht (2001), Copenhagen (2002), Valencia (2003), Aachen (2004), and Nara
(2005).

A total of 23 regular papers and 4 system descriptions were selected for pre-
sentation from 52 submissions. Each paper was reviewed by at least 4 members of
the Program Committee, with the help of 115 external referees. The committee
decided to give the Best Paper Award for RTA 2006 to the contribution “Termi-
nation of String Rewriting with Matrix Interpretations” by Dieter Hofbauer and
Johannes Waldmann for their original and powerful application of SAT solving
in proving termination.

I would like to thank all the members of the Program Committee for their dili-
gent, careful, and timely work and thoughtful deliberation, and Andrei Voronkov
for providing the EasyChair system which greatly facilitated the reviewing pro-
cess, the electronic Program Committee meeting, and the preparation of the
program and the proceedings.

In addition to contributed papers, the program contained a FLoC plenary talk
by Randal Bryant and two invited talks by Javier Esparza and Jiirgen Giesl. I
would like to thank the invited speakers not only for their presentations, but
also for contributing abstracts or full papers to the proceedings.

RTA also sponsored a number of workshops held during FLoC, on the topics
of Higher-Order Rewriting (HOR), Rule-Based Programming (RULE), Unifi-
cation (UNIF), Reduction Strategies in Rewriting and Programming (WRS),
Termination (WST), and a meeting of the IFIP Working Group 1.6 on Term
Rewriting.

Many people helped to make RTA 2006 a success. I am particularly grateful
to Ashish Tiwari, who took on the dual role of Conference Chair and RTA
Workshop Chair, Ralf Treinen, the Publicity Chair, and Thomas Ball, Gopal
Gupta, Jakob Rehof, and Moshe Vardi from the FLoC Organizing Committee
who did an incredible amount of work in the arrangements for RTA and FLoC.

May 2006 Frank Pfenning

Conference Organization

Program Chair

Frank Pfenning Carnegie Mellon University

Program Committee

Zena Ariola University of Oregon

Franz Baader Technical University Dresden
Gilles Dowek Ecole Polytechnique and INRIA
Guillem Godoy Technical University of Catalonia
Deepak Kapur University of New Mexico

Delia Kesner University Paris 7

Denis Lugiez University of Provence

Claude Marché University Paris-Sud

Frank Pfenning Carnegie Mellon University
Ashish Tiwari SRI International

Yoshihito Toyama Tohoku University

Eelco Visser Utrecht University

Hans Zantema Eindhoven University of Technology

Conference Chair

Ashish Tiwari SRI International

RTA Steering Committee

Robert Nieuwenhuis Technical University of Catalonia
Ralf Treinen ENS Cachan, Publicity Chair
Jurgen Giesl RWTH Aachen, Chair

Delia Kesner University Paris 7

Vincent van Oostrom Utrecht University

Ashish Tiwari SRI International

FLoC Sponsors

Cadence
IBM
Microsoft Research

VIII Organization

NEC

The John von Neumann Minerva Center
for the Development of Reactive Systems

FLoC Organizing Committee

Thomas Ball

Armin Biere

Sandro Etalle

Gopal Gupta

John Harrison
Manuel Hermenegildo
Lydia Kavraki

External Reviewers

Cuihtlauac Alvarado
Takahito Aoto
Albert Atserias
Patrick Baillot
Frédéric Blanqui
Eduardo Bonelli
Bernd Brassel
Martin Bravenboer
Pierre Castéran
Taolue Chen
Manuel Clavel
Thomas Colcombet
Evelyne Contejean
Jim Cordy

Solange Coupet-Grimal
Marcel Crabbé
Jeremy Dawson
Marie Duflot

Iréne Durand

Joerg Endrullis
Stephan Falke
Berndt Farwer
Jean-Christophe Filliatre
Robby Findler
Bernd Fischer
Julien Forest

Kim Gabarro

John Gallagher

Stephan Kreutzer

Jacob Rehof

Nicole Schweikardt
Ashish Tiwari
Mirek Truszczynski
Moshe Y. Vardi
Margus Veanes

Thomas Genet
Benny K. George
Silvio Ghilardi
Jirgen Giesl
Guillem Godoy
Bernhard Gramlich
Thomas Hallgren
Michael Hanus
Ryu Hasegawa
Sebastien Hemon
Joe Hendrix

Nao Hirokawa
Dieter Hofbauer
Martin Hofmann
Florent Jacquemard
Wolfram Kahl
Kentaro Kikuchi
Jan Willem Klop
Adam Koprowski
Masahito Kurihara
Pascal Lafourcade
Ugo dal Lago
Stéphane Lengrand
Jean-Jacques Lévy
Jordi Levy
Salvador Lucas
Bas Luttik

Tan Mackie

John Maraist
Luc Maranget
Massimo Marchiori
Ralph Matthes
Michel Mauny
Richard Mayr
Paul-André Mellies
Aart Middeldorp
Oege de Moor
Barbara Morawska
Sara Negri
Monica Nesi
Joachim Niehren
Robert Nieuwenhuis
Mizuhito Ogawa
Vincent van Oostrom
Vincent Padovani
Emir Pasalic
Adolfo Piperno
Emmanuel Polonowski
Jack M. Pullikottil
Femke van Raamsdonk
Jason Reed
Enric
Rodriguez-Carbonell
Albert Rubio
Michel de Rougemont
Michael Rusinowitch

Amr Sabry
Masahiko Sakai
Hideki Sakurada
Luigi Santocanale
Manfred Schmidt-Schaufl
Aleksy Schubert
Klaus Schulz

Peter Sestoft
Sandeep K. Shukla
Mark-Oliver Stehr
Sorin Stratulat

Toshinori Takai
Jean-Marc Talbot
René Thiemann
Andrew Tolmach
Ralf Treinen
Xavier Urbain
Christian Urban
Kumar Neeraj Verma
René Vestergaard
Luca Vigano
Laurent Vigneron

Organization X

Mateu Villaret
Jérome Vouillon
Johannes Waldmann
Daria
Walukiewicz-Chrzaszcz
Andreas Weiermann
Benjamin Werner
Hongwei Xi
Toshiyuki Yamada
Ting Zhang
Calogero G. Zarba

Table of Contents

FLoC Plenary Talk

Formal Verification of Infinite State Systems Using Boolean Methods
Randal E. Bryantco e

Session 1. Constraints and Optimization

Solving Partial Order Constraints for LPO Termination
Michael Codish, Vitaly Lagoon, Peter J. Stuckey

Computationally Equivalent Elimination of Conditions
Traian Florin Serbanuida, Grigore ROSU,

On the Correctness of Bubbling
Sergio Antoy, Daniel W. Brown, Su-Hui Chiang

Propositional Tree Automata
Joe Hendriz, Hitoshi Ohsaki, Mahesh Viswanathan

Session 2. Equational Reasoning

Generalizing Newman’s Lemma for Left-Linear Rewrite Systems
Bernhard Gramlich, Salvador Lucas

Unions of Equational Monadic Theories
Piotr Hoffman o

Modular Church-Rosser Modulo

Jean-Pierre Jouannaud

Session 3. System Verification

Hierarchical Combination of Intruder Theories
Yannick Chevalier, Michaél Rusinowitch

Feasible Trace Reconstruction for Rewriting Approximations
Yohan Boichut, Thomas Genetc. i,

XII Table of Contents

Invited Talk

Javier Esparza
Rewriting Models of Boolean Programs
Ahmed Bouagjani, Javier ESParzao, 136

Session 4. Lambda Calculus
Syntactic Descriptions: A Type System for Solving Matching Equations
in the Linear A-Calculus

Sylvain Salvati 151

A Terminating and Confluent Linear Lambda Calculus
Yo Ohta, Masahito HaS€qawao u e 166

A Lambda-Calculus with Constructors
Ariel Arbiser, Alezandre Miquel, Alejandro Rios 181

Structural Proof Theory as Rewriting
Jose Espirito Santo, Maria Joao Frade, Luis Pinto................. 197

Session 5. Theorem Proving
Checking Conservativity of Overloaded Definitions in Higher-Order
Logic
Steven Obua 212

Certified Higher-Order Recursive Path Ordering
Adam Koprowski 227

Dealing with Non-orientable Equations in Rewriting Induction
Takahito Aoto 242

Session 6. System Descriptions

TPA: Termination Proved Automatically
Adam Koprowski 257

RAPT: A Program Transformation System Based on Term Rewriting
Yuki Chiba, Takahito Aoto 267

The CL-Atse Protocol Analyser
Mathier TUTUGNT .. oot e et 277

Table of Contents XIIT

SLOTHROP: Knuth-Bendix Completion with a Modern Termination
Checker
Ian Wehrman, Aaron Stump, Edwin Westbrook 287

Invited Talk

Jirgen Giesl
Automated Termination Analysis for Haskell: From Term Rewriting
to Programming Languages
Jurgen Giesl, Stephan Swiderski, Peter Schneider-Kamp,
René Thiemann e e 297

Session 7. Termination

Predictive Labeling
Nao Hirokawa, Aart Middeldorp 313

Termination of String Rewriting with Matrix Interpretations
Dieter Hofbauer, Johannes Waldmann 328

Decidability of Termination for Semi-constructor TRSs, Left-Linear
Shallow TRSs and Related Systems
Yi Wang, Masahiko Sakai 343

Proving Positive Almost Sure Termination Under Strategies
Olivier Bournez, Florent Garnierc.coiiiieininen .. 357

Session 8. Higher-Order Rewriting and Unification
A Proof of Finite Family Developments for Higher-Order Rewriting
Using a Prefix Property
Harrie Jan Sander Bruggink 372

Higher-Order Orderings for Normal Rewriting
Jean-Pierre Jouannaud, Albert Rubio 387

Bounded Second-Order Unification Is NP-Complete
Jordi Levy, Manfred Schmidt-Schaufs, Mateu Villaret 400

Author Index 415

Formal Verification of Infinite State Systems Using
Boolean Methods*

Randal E. Bryant

School of Computer Science, Carnegie Mellon University, Pittsburgh, PA
Randy.Bryant@cs.cmu.edu

Most successful automated formal verification tools are based on a bit-level model of
computation, where a set of Boolean state variables encodes the system state. Using
powerful inference engines, such as Binary Decision Diagrams (BDDs) and Boolean
satisfiability (SAT) checkers, symbolic model checkers and similar tools can analyze
all possible behaviors of very large, finite-state systems.

For many hardware and software systems, we would like to go beyond bit-level mod-
els to handle systems that are truly infinite state, or that are better modeled as infinite-
state systems. Examples include programs manipulating integer data, concurrency pro-
tocols involving arbitrary numbers of processes, and systems containing buffers where
the sizes are described parametrically.

Historically, much of the effort in verifying such systems involved automated theo-
rem provers, requiring considerable guidance and expertise on the part of the user. We
would like to devise approaches for these more expressive system models that retain
the desirable features of model checking, such as the high degree of automation and the
ability to generate counterexamples.

We have developed UCLID [1], a prototype verifier for infinite-state systems. The
UCLID modeling language extends that of SMV [9], a bit-level model checker, to in-
clude state variables that are integers, as well as functions mapping integers to integers
and integers to Booleans. Functional state variables can be used to define array and
memory structures, including arrays of identical processes, FIFO buffers, and content-
addressable memories.

System operation is defined in UCLID in terms of the initial values and next-state
functions of the state variables. Integer operations include linear arithmetic and rela-
tional operations. Functions can be defined using uninterpreted function symbols, as
well as via a restricted form of lambda expression. The underlying logic is reason-
ably expressive, yet it still permits a decision procedure that translates the formula into
propositional logic and then uses a SAT solver [7].

UcLID supports multiple forms of verification, requiring different levels of sophisti-
cation in the handling of quantifiers. All styles verify that a safety property of the form
VX P(s) holds for some set of system states s, where X’ denotes a set of integer index
variables. Index variables can be used to express universal properties for all elements
in an array of identical processes, all entries in a FIFO buffer, etc.

The simplest form of bounded property checking allows the user to determine that
property VX P(s) holds for all states reachable within a fixed number of steps k from an

* This research was supported by the Semiconductor Research Corporation, Contract RID
1029.001.

F. Pfenning (Ed.): RTA 2006, LNCS 4098, pp. 1-3, 2006.
(© Springer-Verlag Berlin Heidelberg 2006

2 R.E. Bryant

initial state. Verifying such a property can be done by direct application of the decision
procedure. In practice, the effort required to verify such a property grows exponen-
tially in k, limiting the verification to around 10-20 steps. However, it provides a useful
debugging tool. In our experience, most errors are detected by this approach.

Of course, it is important to verify that properties hold for all reachable states of the
system. Unfortunately, the standard fixed-point methods for bit-level model checking
do not work for infinite-state systems. In many cases, the system will not reach a fixed
point within a bounded number of steps. Even for those that do, checking convergence
is undecidable, and our efforts to implement incomplete methods for this task have had
limited success [2].

To prove that property VX P(s) holds for all reachable states s, UCLID supports in-
ductive invariant checking, where the user provides an invariant) such that) holds
for all initial states, () implies P, and any successor for a state satisfying () must also
satisfy @. This latter condition requires proving the validity of a formula containing
existentially quantified index variables. Although this problem is undecidable for our
logic, we have successfully implemented an incomplete approach using quantifier in-
stantiation [8].

A more automated technique is to derive an inductive invariant via predicate abstrac-
tion [4]. Predicate abstraction operates much like the fixed-point methods of symbolic
model checking, but using the concretization and abstraction operations of abstract in-
terpretation [3] on each step. We have generalized predicate abstraction to handle the
indexed predicates supported by UCLID [6]. Each step requires quantifier elimination
to eliminate the current state variables, much like the relational product step of sym-
bolic model checking. We implement this step by performing SAT enumeration on the
translated Boolean formula.

As a final level of automation, we can automatically discover a set of relevant pred-
icates for predicate abstraction based on the property P and the next-state expressions
for the state variables [5].

We have successfully verified a number of systems with UCLID, including out-of-
order microprocessors, distributed cache protocols, and distributed synchronization
protocols.

References

1. R. E. Bryant, S. K. Lahiri, and S. A. Seshia. Modeling and verifying systems using a logic
of counter arithmetic with lambda expressions and uninterpreted functions. In E. Brinksma
and K. G. Larsen, editors, Computer-Aided Verification (CAV 02), LNCS 2404, pages 78-92,
2002.

2. R.E. Bryant, S. K. Lahiri, and S. A. Seshia. Convergence testing in term-level bounded model
checking. In Correct Hardware Design and Verification Methods (CHARME ’03), LNCS,
September 2003.

3. P. Cousot and R. Cousot. Abstract interpretation : a unified lattice model for the static analysis
of programs by construction or approximation of fixpoints. In Principles of Programming
Languages (POPL ’77), pages 238-252, 1977.

4. S. Graf and H. Saidi. Construction of abstract state graphs with PVS. In O. Grumberg, editor,
Computer-Aided Verification (CAV ’97), LNCS 1254, pages 72-83, 1997.

Formal Verification of Infinite State Systems Using Boolean Methods 3

. S. K. Lahiri and R. E. Bryant. Indexed predicate discovery for unbounded system verification.
In Computer-Aided Verification (CAV '04), LNCS 3114, pages 135-147, 2004.

. S. K. Lahiri and R. E. Bryant. Indexed predicate abstraction. ACM Transactions on Compu-
tational Logic, To appear.

. S. K. Lahiri and S. A. Seshia. The UCLID decision procedure. In Computer-Aided Verification
(CAV °04), LNCS 3114, pages 475-478, 2004.

. S. K. Lahiri, S. A. Seshia, and R. E. Bryant. Modeling and verification of out-of-order mi-
croprocessors in UCLID. In M. D. Aagaard and J. W. O’Leary, editors, Formal Methods in
Computer-Aided Design (FMCAD ’02), LNCS 2517, pages 142-159, 2002.

. K. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1992.

Solving Partial Order Constraints
for LPO Termination

Michael Codish!*, Vitaly Lagoon?, and Peter J. Stuckey?

! Department of Computer Science, Ben-Gurion University, Israel
2 Department of Computer Science and Software Engineering
The University of Melbourne, Australia
3 NICTA Victoria Laboratory
mcodish@cs.bgu.ac.il, {lagoon, pjs}@cs.mu.oz.au

Abstract. This paper introduces a new kind of propositional encoding
for reasoning about partial orders. The symbols in an unspecified partial
order are viewed as variables which take integer values and are inter-
preted as indices in the order. For a partial order statement on n symbols
each index is represented in [log, n| propositional variables and partial
order constraints between symbols are modeled on the bit representa-
tions. We illustrate the application of our approach to determine LPO
termination for term rewrite systems. Experimental results are unequivo-
cal, indicating orders of magnitude speedups in comparison with current
implementations for LPO termination. The proposed encoding is general
and relevant to other applications which involve propositional reasoning
about partial orders.

1 Introduction

This paper formalizes a propositional logic over partial orders. Formulee in
this logic are just like usual propositional formulse except that propositions
are statements about a partial order on a finite set of symbols. For example,
(f=9g)AN{(f >h)V(h>g))is a formula in this logic. We refer to the for-
mula of this logic as partial order constraints. There are many applications in
computer science which involve reasoning about (the satisfiability of) partial or-
der constraints. For example, in the contexts of termination analysis, theorem
proving, and planning. The main contribution of this paper is a new kind of
propositional encoding of partial order constraints in propositional logic.
Contemporary propositional encodings, such as the one considered in [13],
model the atoms (primitive order relations such as f = g or f > h on sym-
bols) in a partial order constraint as propositional variables. Then, propositional
statements are added to encode the axioms of partial orders which the atoms
are subject to. For a partial order constraint on n symbols, such encodings typ-
ically introduce O(n?) propositional variables and involve O(n?) propositional
connectives to express the axioms. In contrast we propose to model the symbols
in a partial order constraint as integer values (in binary representation). For n

* Research performed while visiting the University of Melbourne.

F. Pfenning (Ed.): RTA 2006, LNCS 4098, pp. 4-18, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Solving Partial Order Constraints for LPO Termination 5

symbols this requires k = [log, n| propositional variables for each symbol. The
integer value of a symbol reflects its index in a total order extending the partial
order. Constraints of the form (f = g) or (f > h) are then straightforward to
encode in k-bit arithmetic and involve O(logn) connectives each.

We focus on the application to termination analysis for term rewrite systems
(for a survey see [6]) and in particular on LPO termination [11,5]. Experimen-
tal results are unequivocal, surpassing the performance of current termination
analyzers such as TTT [10,18] and AProVE [8,2] (configured for LPO). The un-
derlying approach is directly applicable to more powerful termination proving
techniques, such as those based on dependency pairs [1], which basically involve
the same kind of constraint solving.

Sections 2 and 3 introduce partial order constraints and their symbol-based
propositional encoding. Section 4 introduces the LPO termination problem and
its relation to partial order constraints. Section 5 describes and evaluates our
implementation for LPO termination which is based on the application of a
state-of-the-art propositional SAT solver [14]. Finally, we present related work
and conclusions.

2 Partial Order Constraints

Informally, a partial order constraint is just like a formula in propositional logic
except that propositions are atoms of the form (f > g) or (f = g). The semantics
of a partial order constraint is a set of models. A model is an assignment of
truth values to atoms which is required to satisfy both parts of the formula: the
“propositional part” and the “partial order part”.

Syntax: Let F be finite non-empty set of symbols and R = {>, :} consist
of two binary relation symbols on F. Since R is fixed we denote by Atomz the
set of atoms of the form (f R g) where R € R and f,g € F. A partial order
constraint on F is a propositional formula in which the propositions are elements
of Atomz. We sometimes write (f > g) as shorthand for (f > g) vV (f =g). We
denote the set of atoms occurring in a partial order constraint ¢ by Atom(p).

Semantics: The symbols in R are interpreted respectively as a strict partial
order and as equality (both on F). Let ¢ be a partial order constraint on F.
The semantics of ¢ is a set of models. Intuitively, a model of ¢ is a set of atoms
from Atomz which satisfies both parts of the formula: the propositional part
and the partial order part. Before presenting a formal definition we illustrate
this intuition by example.

Ezample 1. Let F = {f, g,h}. The following are partial order constraints:
e1=(>gANf>h)V(h>[))
p2=(f2g)N(g=h)A(h=yg)
3= (f>g)A((h>g)V(f>h)

The set of atoms py = {(f > g),(f > h),(f = f),(g=9g),(h=h)} is a model
for . It satisfies the propositional part: ¢, evaluates to true when assigning

6 M. Codish, V. Lagoon, and P.J. Stuckey

the atoms in p the value “true” and the others the value “false”. It satisfies
the partial order part: it is a partial order. The set of atoms { (b > f), (f > g) }
is not a model (for any partial order constraint) because it is not closed under
transitivity (nor reflexivity). However, its extension us = {(h > f), (f > g), (h >
9), (f = 1), (g =g),(h=h)}isamodel for ;. Formula ¢; has additional models
which are extensions of y; to a total order:

,U'S:g(f>g)v(g>h)v(f>h)v(f:f)v(g:g)a(h:h)iv
M4 = (f>h’)’(h>g)7(f>g)7(f:f)7(g:g)’(h:h) , and
;U'5:{(f>g)7<g:h)7(h:g)’(f>h)’(f:f)7(g:g)’(h:h)}

The formula ¢ has two models:
{(f:g)v(g:f)v(g:h)’(h:g)v(f:h)’(h:f)’(f:f)7<g:g)’(h:h)}
{(f>g)7(g:h)7(h:g)7(f>h)v(f:f)v(g:g)v(h:h)}

Focusing on 3 illustrates that there is an additional implicit condition for an
assignment to satisfy a partial order constraint. We recall that a partial order can
always be extended to a total order. The partial order pu = { (f>9) } satisfies
the propositional part of 3 and may appear at first sight to satisfy also the
partial order part (it is a partial order). However, no extension of y to a total
order satisfies the propositional part of ¢3 and hence p will not be considered a
model of ¢3. To solve this, we will restrict models to be total orders.

The following formalizes the proposed semantics for partial order constraints.

Definition 1 (assignment, model). An assignment p is a mapping from
propositions of Atomz to truth values, and can be identified with the set of
propositions it assigns “true”. Let ¢ be a partial order constraint on F. We say
that an assignment 1 is a model for ¢ if: (1) it makes ¢ true as a propositional
formula; (2) it satisfies the axioms for strict partial order and equality; and (3)
it defines a total order on F. More specifically, in (2) and in (3), an assignment
w is required to satisfy (for all f,g,h € F):

reflexivity: (f=fHen

symmetry: (f=g9)en = (g=f)eun

asymmetry: =((f >g) e pn(g>f) € p)

transitivity: (f>g9g)ep N (g>h)ep = (f>h)epn
(f=g9)en N (g=h)ep = (f=h)en

identity: (f>9)ep N (g=h)ep = (f>h)epu
(f=g9)ep N (g>h)ep = (f>h)en

comparability: (f >g)ep V (g>flepw VvV (f=g) en

Given that we fix the models of a partial order constraint to be total orders, we
have that ~(f > g) = (9 > f) V(¢ = f) and that ~(f =g) = (f > 9) V (g > f).
Hence we may assume without loss of generality that partial order constraints
are negation free. For example, the formula ¢3 from Example 1 is equivalent to
o5 =(f>9g)A(g>h)A(h> f) which is clearly unsatisfiable.

Solving Partial Order Constraints for LPO Termination 7

Satisfiability: In this paper we are concerned with the question of satisfiability
of partial order constraints: given a partial order constraint ¢ does it have a
model? Similarly to the general SAT problem, the satisfiability of partial order
constraints is NP-complete, and the reduction from SAT is straightforward.

Solution-based interpretation: We propose a finite domain integer-based
interpretation of partial order constraints. In this approach the semantics of a
partial order constraint is a set of integer solutions.

Definition 2 (integer assignment and solution). Let ¢ be a partial order
constraint on F and let |F| = n. An integer assignment for ¢ is a mapping
p:F —{1,...,n}. An integer solution of ¢ is an assignment 6 which makes ¢
true under the natural interpretations of > and = on the natural numbers.

Ezxample 2. Consider again the partial order constraints from Example 1. The
assignments mapping (f, g, h) to (3,2,2), (3,1,1) and (1,1,1) are solutions for
(2. But only the first two are solutions to 1. The formula ¢3 has no solutions.

Theorem 1. A partial order constraint ¢ is satisfiable if and only if it has an
integer solution.

The theorem is a direct consequence of the following lemmata.

Lemma 1. Let 0 be a solution of p. The assignment

pn={(fRg)|{f,g} CF, RER, (9(f) R 0(9)) }
is a model of .

Proof. Clearly p satisfies both the propositional and partial order parts of ¢ since
the integer relation > is a total order. Hence p is a model for ¢ by definition.

Lemma 2. Let p be a model of ¢ on F with n symbols. Then there exists a
solution 0 of ¢ in {1,...,n}.

Proof. Assume F = {f1,..., fn} and let u be a model of . By asymmetry,
identity and comparability, for each 1 < ¢ < j < n exactly one of f; > f; or f; =
fj or f; > fi hold. We can linearize the symbols in F: fr, Rp—1 - - Ra fr, Ri fr,
where for each 1 <i < n, R; € {>,=} and (fk,,, Ri fr,) € p, since p models
transitivity, symmetry, and identity. We can then construct a solution 6, using
values from 1 to no more than n, where

G(fk]) where R]‘_l = (:)

O(Frsia) = {H(fkj) + 1 where R;_1 = (>) forl<j<n

Decomposing partial order constraint satisfaction: The atoms in a for-
mula ¢ induce a graph G, on the symbols in F such that ¢ is satisfiable if and
only if the formulae corresponding to the strongly connected components of G,
are all satisfiable. Considering this graph facilitates the decomposition of a test
for satisfiability to a set of smaller instances. This graph captures all possible
cycles in the partial order and hence all potential contradictions. The following
definition is inspired by [13].

8 M. Codish, V. Lagoon, and P.J. Stuckey

= ((gt > ge) V(= > ge)) A ((ge > gt) V(= > gt)) A QY /
(>0 A(F> =)V (=>#) A ~=X

(s> +) A (k> =)V (= > +) A (s> +) o1 ! T

Fig. 1. A partial order constraint (left) and its domain graph (right). The graph has two
strongly connected components: {gt,ge} and {—,*, +}. Arcs between the components
are dashed.

Definition 3 (domain graph). Let ¢ be a (negation free) partial order con-
straint on F. The domain graph G, = (V,E) is a directed graph with vertices
V =F and edges E={ (f,9)[{ (f > 9),(f = 9). (g = f) } N Atom(p) #0 } .

Figure 1 illustrates a partial order constraint (a) and its domain graph (b).

Definition 4 (restricting a partial order constraint). Let ¢ be a partial
order constraint on F and let F' C F. The restriction of ¢ to the symbols in
F' is the formula obtained by substituting “true” for any atom (f R g) such
that (f,g) € F' x F'. The SCC-partition of ¢ is the set of graphs obtained by
restricting o to the nodes in each of the strongly connected components of G,.

Ezample 3. Consider the partial order constraint ¢ and its domain graph G,
depicted as Figure 1. The graph G, has two strongly connected components.
The SCC-partition for ¢ gives:

(gt > ge) Vtrue) A ((ge > gt) Vtrue) = true
* >) A(((+>#) A (+> =) V(= >) A
(x> H) A (x> =)V (=>+))

= (
= (
(
=GE>H)A(=>)A(—>+)

Lemma 3. A partial order constraint is satisfiable if and only if each of the
formula in its SCC-partition is satisfiable.

Proof. (idea) You can only get a contradiction if z > z along some path in the
graph. Any such path will be contained in a single SCC.

3 A Symbol-Based Propositional Encoding

This section presents a propositional encoding of partial order constraints. A
partial order constraint ¢ on a set of symbols F is encoded by a propositional
formula ¢’ such that each model of ¢ corresponds to a model of ¢’ and in par-
ticular such that ¢ is satisfiable if and only if ¢’ is. The novelty is to construct
the encoding in terms of the solution-based interpretation of partial order con-
straints. We view the n symbols in F as integer variables taking finite domain
values from the set { 1,...,n } Each symbol is thus modeled using k& = [log, n|

Solving Partial Order Constraints for LPO Termination 9

propositional variables which encode the binary representation of its value. Con-
straints of the form (f > g) or (f = g) on F are interpreted as constraints on
integers and it is straightforward to encode them in k-bit arithmetic.

The symbol-based propositional encoding for partial order constraints is de-
fined as follows. For |F| = n we need k = [logy n] bits per symbol. We denote
by [a] the propositional variable corresponding to an atom a € Atomz and by
[¢] the propositional formula obtained when replacing atoms by propositional
variables in partial order constraint (.

1. For f € F, the k-bit representation is f = (f,..., f1) with fi the most
significant bit.
2. A constraint of the form (f = g) is encoded in k-bits by

k

1 =)l = A\ Ui = g0)-

i=1
A constraint of the form (f > g) is encoded in k-bits by

(fi A—gr) k=1

1G> 9l = {gk A=ge) V(i = g) AIGE > g)lliet) k> 1

3. A partial order constraint ¢ is encoded in & bits by replacing each [a] in ¢
by its corresponding k-bit encoding ||a||x, which we write as:

lelle = [l fag/al (1)

Proposition 1. The symbol-based encoding of partial order constraint ¢ with n
symbols involves O(nlogn) propositional variables and O(|p|logn) connectives.

Ezample 4. Consider the partial order constraint @o = (¥>+) A (=>%) A (—>+)
from Example 3. Each of the three symbols in ¢y is represented in 2 bits and
the propositional encoding of ¢ is obtained as
@5 = (()2 AoF2) V (k2 & F2 Axp A1) A
((—2 A\ —|>k2) V (—2 — %9 A —1 A —|*1)) A\
(2 A=F2) V(=2 & +2 A =1 A =t1)

The proof of the following theorem is straightforward.

Theorem 2. A partial order constraint ¢ on symbols F is satisfiable if and only
if its symbol-based propositional encoding encode(p) is.

4 LPO Termination

A term rewrite system is a set of rules of the form ¢ — r where £ and r are terms
constructed from given sets of symbols F and variables V), and such that £ is not

10 M. Codish, V. Lagoon, and P.J. Stuckey

—gt(A, B) — ge(B, A) —(A*B) = (=A) + (=B)
—ge(A, B) — gt(B, A) Ax(A+ B) = (AxB) +(AxC)
—(A+ B) — (—A) * (-B) (B+C)x A— (Bx A)+ (C x A)

Fig. 2. An example term rewrite system: normalizing formulse with propositional con-
nectives: *,+,— (for: and, or, not); and partial orders: gt, ge (for: >,>)

a variable and r only contains variables also in £. A rule ¢ — r applies to a term
t if a subterm s of ¢ matches ¢ with some substitution ¢ (namely, s = £o). The
rule is applied by replacing the subterm s by ro. Such an application is called
a rewrite step on ¢. A derivation is a sequence of rewrite steps. A term rewrite
system is said to be terminating if all of its derivations are finite. An example
term rewrite system is depicted as Figure 2.

Termination of term rewrite systems is undecidable. However a term rewrite
system terminates if there is a reduction order > such that ¢ > r for each rule
¢ — r in the system. There are many methods for defining such orders. Many
of them are based on so-called simplification orders and one such order is the
lexicographic path order (LPO)[11,5].

We assume an algebra of terms constructed over given sets of symbols F
and variables V. Let > denote a (strict or non-strict) partial order on F (a
so-called precedence) and let ~# denote the corresponding equivalence relation.
We denote by ~ the equality of terms up to equivalence of symbols. Observe that
if > £ is strict then =~ and ~ are the identity of symbols and terms respectively.
Each precedence > on the symbols induces a lexicographic path order >;,, on
terms. If for each of the rules £ — r in a system, ¢ >, r then the system is
LPO terminating.

Definition 5 (LPO [11]). The lezicographic path order =i,, on terms induced
by the partial order >F is defined as s = f(s1,...,5n) =ipo t if and only if one
of the following holds:

1. t=g(t1,...,tm) and s =ipo t; for all 1 < j < m and either
(i) f>rg or (i) f~rgand (s1,...,8) >§;§ (t1,. .. tm); or
2. 8 Zipo t for some 1 < i <n.
Here >§;"g is the lexicographic extension of >ipo to tuples of terms and Zipo is
the union of »p, and ~.

The LPO termination problem is to determine for a given term rewrite system
with function symbols F, if there exists a partial order >z such that £ >, r
for each of the rules with the induced lexicographic path order. There are two
variants of the problem: “strict-” and “quasi-LPO termination” depending on if
we require >x to be strict or not. The corresponding decision problems, strict-
and quasi- LPO termination, are decidable and NP complete [12]. In [9], the
authors observe that finding > such that s >, t is tantamount to solving a
constraint obtained by unfolding the definition of s >, ¢ with details depending
on whether > is a strict or non-strict partial order. The strict- and quasi-
LPO termination problems are to decide if conjunctions of these unfoldings are
satisfiable — one conjunct for each rule in the given term rewrite system.

Solving Partial Order Constraints for LPO Termination 11

Example 5. Consider the term rewrite system of Figure 2. Unfolding Definition 5
for strict-LPO termination, we obtain the following:

—(gt(A, B)) >1p0 ge(B, A) <= (gt > ge) V (= > ge)
—(ge(A, B)) >1po gt(B, A) <= (ge > gt) V (= > gt)
—(A+ B) >ipo (=(A)) % (=(B)) <= (+ > #) A (+ >) V(= > %)
—(A% B) >1po (—(A)) + (=(B)) <= (x> F) A (x> =) V(= > +)
Ax (B+C)>po (AxB)+ (AxC) <= x>+
(B+C)*xA>po (BxA)+ (CxA) <= x>+

The term rewrite system is LPO terminating if and only if the conjunction of
the constraints on the right sides is satisfiable. This conjunction is precisely the
partial order constraint ¢ from Figure 1 which by Lemma 3, is satisfiable if and
only if the formula in its SCC-partition are. Coming back to Example 3, it is
straightforward to observe that they are.

The next example illustrates a term rewrite system which is quasi-LPO termi-
nating but not strict-LPO terminating.

Example 6. Consider the following term rewrite system.
div(X,e) — i(X)
i(div(X,Y)) — div(Y, X)
div(div(X,Y), Z) — div(Y, div(i(X), Z))

Unfolding Definition 5 for strict-LPO gives

div(X, e) >ipo i(X) < div >4
i(div(X,Y)) >ipo div(Y, X) < i > div
div(div(X,Y), Z) >ipo div(Y,div(i(X), Z)) <= div > i

The conjunction of the constraints on the right sides is not satisfiable indicating
that there does not exist any strict partial order on F such that the corresponding
lexicographic path order decreases on the three rules. The system is however
quasi-LPO terminating. Unfolding Definition 5 for quasi-LPO gives a satisfiable
partial order constraint equivalent to (div > i) A (i > div) which indicates that
taking div & i provides a proof of quasi-LPO termination.

5 Implementation and Experimentation

We have implemented a prototype analyzer, poSAT, for strict- and quasi- LPO
termination based on the encoding proposed in Section 3. The implementation
is a written primarily in SWI-Prolog [19,15] and interfaces the MiniSat solver
[7,14] for solving SAT instances.

We have integrated MiniSat and SWI-Prolog through <190 lines of C-code
and ~140 lines of Prolog code. For details concerning this interface see [3]. SAT

12 M. Codish, V. Lagoon, and P.J. Stuckey

solvers typically consider propositional formulee in conjunctive normal form. The
transformation of a propositional formula with m connectives and n literals is
performed using a (linear) Tseitin transformation [17] (for details on our im-
plementation see [3]) and results in a conjunctive normal form with O(m + n)
variables and O(m) clauses.

The rest of poSAT is implemented in 2800 lines of Prolog code. This includes
a parser (for term rewrite systems), modules to translate strict- and quasi- LPO
termination problems into partial order constraints, the module converting par-
tial order constraints into SAT instances, and finally a head module processing
the command line, running the components, pretty-printing the results etc. The
current implementation does not decompose partial order constraints to their
SCC-components (Lemma 3). The experimental results indicate that the im-
plementation would not benefit from that: (a) Most of the tests are very fast
without this decomposition; and (b) It is typical for hard cases of LPO termina-
tion (see Table 2) to have a large strongly connected component including the
majority of the symbols.

For experimentation we have taken all 751 term rewrite systems from the Ter-
mination Problem Data Base [16] which do not specify a “theory” or a “strategy”.
In the following, the names of term rewrite systems are indicated in typewriter font
and can be found in [16]. We report on the comparison of poSAT for both strict-
and quasi- LPO termination analysis with the TTT analyzer[18].

For the experiments, poSAT runs on a 1.5GHz laptop running GNU/Linux
FC4. The TTT analyzer is applied via its Web interface [18] and runs on a Xeon
2.24GHz dual-CPU platform which is a considerably faster machine than ours. Ex-
periments with AProVE running on our local (laptop) platform give results which
are considerably slower than TTT (on its faster machine). For example, running
AProVE configured for LPO-termination with a 10 minute timeout on the 25 ex-
amples highlighted in Table 2 takes 47 minutes and encounters three timeouts. In
contrast TTT analyzes the same set of examples in about one minute (see Table 2).
Hence for comparison with poSAT we provide the numbers only for TTT.

With regards to precision, as expected, both analyzers give the same results
(with the exception of a single test which TTT cannot handle within the max-
imum timeout allocation). From the 751 example systems, 128 are LPO termi-
nating and 132 are quasi-LPO terminating. For poSAT, run times include the
complete cycle of processing each test: reading and parsing the file, translation
to partial order constraints and then to propositional formula, solving by the
SAT solver and printing the results. The run time of each test is computed as
an average of ten identical runs.

Table 1(a) summarizes the results for strict LPO termination analysis. The
columns contain times (in seconds) for our poSAT analyzer and for TTT con-
figured to run with a timeout of 10 minutes (the maximum allowed by its Web
interface). Note that the times are taken on different machines which makes the
precise comparison impossible. Nevertheless, the results are indicative showing
that poSAT is fast in absolute terms and scales better for hard cases. Notably,
the hardest test of LPO termination for poSAT (HM/t005.trs) completes in

Solving Partial Order Constraints for LPO Termination 13

Table 1. Summary of experimental results: total, average and maximum times (sec)
for 751 tests

poSAT | TTT poSAT | TTT
Total 8.983| 647.48 Total 8.609| 2167.44
Average 0.012 0.86 Average 0.011 2.89
Max 0.477| 317.63 Max 0.544| 600.00
(a) strict LPO termination (b) quasi-LPO termination

under a half second, while the hardest test for TTT (various 14.trs) takes
more than 5 minutes.

Table 1(b) presents the results for quasi-LPO termination analysis. For this
variant, poSAT completes the 751 tests in 8.6sec. The same task takes TTT
over 34 minutes with one test (currying/Ste92/hydra.trs) running out of 10
minutes timeout. The next hardest test for TTT is currying/AGO1 No 3.13.trs
which completes in 182.6sec (3min). The same two tests take poSAT 0.054sec
and 0.021sec respectively. The hardest quasi-LPO test for poSAT is Zantema/z30
which takes 0.54sec in our analyzer and 5.02sec in TTT.

Once again, the timings are indicative despite the fact that the two analyzers
run on different machines. By comparing the results in Table 1(a) and (b) we
observe that for quasi-LPO, TTT runs about an order of magnitude slower than
for strict LPO. In contrast, poSAT demonstrates similar performance for both
LPO and quasi-LPO.

Table 2 presents a detailed analysis for the 25 most challenging examples
for poSAT chosen by maximum total time for strict- and quasi- LPO analysis.
The two parts of the table present the respective results for strict- and quasi-
LPO termination analyses. The following information is provided: The columns
labeled “Sym” and “CNF” characterize the partial order constraints derived
from the given term rewrite systems. “Sym” indicates the number of symbols
in the complete formula and in the largest component of its SCC-partition (0/0
in this column means that the partial order constraint is trivial i.e., true or
false). “CNF” indicates the numbers of propositional variables and clauses in the
translation of the propositional (symbol-based) encoding to conjunctive normal
form. The columns labeled “poSAT” and “TTT” indicate run times (in seconds)
for the poSAT and TTT solvers.

All of the tests in Table 2 are neither strict- nor quasi-LPO terminating.
This is not surprising for the 25 hardest tests, as proving unsatisfiability is
typically harder than finding a solution for a satisfiable formula. It is interesting
to note that four examples among the hardest 25, result in trivial partial order
constraints. Obviously, the challenge in these examples is not in solving the
constraints but rather in obtaining them by unfolding Definition 5. Interestingly,
our translation and simplification mechanisms are sometimes more powerful than
those of TTT. For instance, currying/AGO1 No 3.13 is simplified to false in
poSAT but not in TTT, leading to a long search for TTT. The difference is due
to the fact that in the case of poSAT the generation of a partial order formula

14 M. Codish, V. Lagoon, and P.J. Stuckey

Table 2. The 25 hardest tests for poSAT

LPO quasi-LPO

Test Sym CNF poSAT TTT Sym CNF poSAT TTT
AProVE AAECC-ring 28/10 642/2369 0.088 0.11 28/25 786/2951 0.093 0.12
Cime mucrll 0/0 0/1 0.298 2.56 O/O 0/1 0.248 13.88
currying AGO1 No 313 0/0 0/1 0.12739.24 0/0 0/1 0.027 184.24
higher-order Bird H* 0/0 0/1 0.089 0.15 0/0 0/1 0.025 1.30
HM t005 0/0 0/1 0477 11.75 0/0 0/1 0.040 2.13
HM t009 19/11 773/2779 0.167 0.14 19/18 1388/4880 0.175 0.16
Ex1 2 AEL03 C 19/17 630/2301 0.115 0.23 19/19 1286/4877 0.141 88.30
Ex1 2 AEL03 GM 22/17 506/1805 0.058 0.04 22/22 693/2475 0.060 19.39
Ex26 Luc03b C 15/12 384/1307 0.055 0.08 15/15 816/2847 0.079 6.00
Ex2 Luc02a C 15/12 390/1332 0.063 0.08 15/15 838/2939 0.086 6.09
Ex3 3 25 Bor03 C 12/10 285/945 0.050 0.06 12/12 605/2100 0.061 0.72
Ex4 7 37 Bor03 C 13/11 287/962 0.061 0.11 13/13 577/2067 0.072 0.83
Ex5 7 Luc97 C 18/15 614/2181 0.093 0.15 18/18 1341/4871 0.139 92.51
Ex6 15 AEL02 C 23/22 906/3312 0.159 0.37 23/23 1862/6756 0.215 123.47
Ex6 15 AEL02 FR 26/20 599/2146 0.060 0.05 26/26 867/3152 0.065 40.01
Ex6 15 AEL02 GM 29/25 745/2761 0.079 0.07 29/29 1074/3920 0.099 155.26
Ex6 15 AEL02 Z 26/20 587/2105 0.060 0.05 26/26 869/3196 0.061 18.31
Ex7 BLR02 C 14/11 299/1013 0.044 0.07 14/14 627/2289 0.064 1.70
Ex8 BLR02 C 12/10 280/930 0.048 0.07 12/12 546/1906 0.060 0.38
Ex9 BLR02 C 12/9 296/968 0.054 0.06 12/12 608/2071 0.065 0.37
ExAppendixB AEL03 C 20/18 700/2576 0.121 0.29 20/20 1410/5294 0.152 109.39
ExIntrod GM99 C 16/13 423/1428 0.080 0.11 16/16 848/3017 0.088 21.36
ExIntrod Zan97 C 15/12 344/1167 0.051 0.08 15/15 709/2544 0.069 2.02
ExSecll 1 Luc02a C 16/13 439/1490 0.067 0.12 16/16 985/3353 0.098 29.32
Zantema z30 2/2 65/106 0.119 291 3/3 12827/18205 0.544 5.02
Total time: 2.683 58.95 2.83 922.30

never introduces trivial sub-formula (“true” or “false”), these are evaluated on-

the-fly.

Another observation based on the results of Table 2 is that the partial or-

der constraints derived from the tests typically have domain graphs with large
strongly-connected components. Almost every test in the table has a “core” com-
ponent including the majority of the symbols. Therefore, it is unlikely that the
performance of poSAT for the presented tests can be improved by using the
SCC-based decomposition of the formula.

As Table 2 shows, the maximum CNF instance solved in our tests includes
12827 propositional variables and 18205 CNF clauses. This is well below the ca-
pacity limits of MiniSat, which is reported to handle benchmarks with hundreds
of thousands of variables and clauses [14].

6 Related Works

The idea of mapping LPO termination problems to a corresponding propositional
formula is first addressed in [13] where the authors assume that partial order

Solving Partial Order Constraints for LPO Termination 15

constraints contain only disjunction and conjunction of atoms of the form (f > g)
(no equality and no negation). This suffices for strict-LPO termination analysis.
We present here a generalization of that approach which can be applied also for
quasi-LPO termination and then compare it with the approach proposed in this
paper.

The basic strategy is the same as in Section 3: to encode a partial order
constraint ¢ on F by an equivalent propositional formula ¢’ such that each model
of ¢ corresponds to a model of ¢’ and in particular such that ¢ is satisfiable if and
only if ¢’ is. The main difference is that the approach in [13] is “atom-based”. The
encoding for a partial order constraint ¢ is obtained by: (a) viewing the atoms in
 as propositional variables, and (b) making the axioms for partial order explicit.
As in Section 3, we let [a] denote the propositional variable corresponding to an
atom a € Atomz and [¢] the propositional formula obtained by replacing each
atom a in partial order constraint ¢ by the propositional variable [a]. For a set
of symbols F the following propositional formulae make the axioms explicit:

_ RE:f/\F[[f:fﬂ — SE—M{\F[[f:g]e[[g:f]]
>

~az= A (> el Al > 1] TE=A_E>elnle>bl = 1>
e SEGERES

CTE A _=elnle=hl = =0 = A >aale=h] (>0
,9,h €
FAGERES LaneT

IE =N [f=elAls>B = IE>0] g2 A [rs gl vg>f] V=g
f,9,h €F
Frg#h#] B

The atom-based propositional encoding of a (negation free) partial order con-
straint ¢ on symbols F which does not involve equality is obtained as encode(ip)
= [¢] ATZ AN AZ [13]. In the general case when ¢ may contain also equality the
encoding is obtained as

encode(p) = [p] NREANSFATZ ANTE ANAZANTENTENCF (2)

The two variants of atom-based propositional encodings both result in large
propositional formula. For |F| = n they introduce O(n?) propositional variables
and involve O(n?) connectives (e.g., for transitivity).

In [13] Kurihara and Kondo propose two optimizations. They note that for a
given formula ¢, the domain graph G, is often sparse and hence they propose
to specialize the explicit representation of the axioms for those symbols from
F actually occurring in ¢. However, in view of Lemma 3 we may assume that
we are testing satisfiability for partial order constraints which have strongly
connected domain graphs. Moreover, as indicated by our experimental evaluation
(see Table 2), the domain graphs for some of the more challenging examples have
strongly connected components with up to 30 symbols.

In a second optimization Kurihara and Kondo observe that the axioms for
transitivity and asymmetry can be replaced by a simpler axiom (they call it A*)

16 M. Codish, V. Lagoon, and P.J. Stuckey

introducing a single clause of the form —=((f1 > f2)A(f2 > f3)A- - A(fu—1 > fe)A
(frx > f1) for each simple cycle (f1 > f2), (f2 > f3),- -, (fe—1 > fx), (fx > f1) in
G, to assert that that cycle is not present in a model. They claim correctness of
the encoding and report considerable speedups when it is applied. The problem
with this approach is that in general there may be an exponential number of
simple cycles to consider.

Hence, the encoding described in [13] either requires O(n?) propositional vari-
ables and introduces O(n?) connectives or else relies on a potentially exponential
phase of processing the simple loops in the domain graph.

It is insightful to compare the two encodings of a partial order constraint
¢ given as Equations (1) and (2). The common part in both encodings is the
subformula [¢] in which atoms are viewed as propositional variables. The dif-
ference is that Equation (2) introduces explicit axioms to relate the atoms in a
partial order where Equation (1) interprets the n symbols as indices represented
in [log, n]-bits. This is why the symbol-based encoding introduces O(nlogn)
propositional variables instead of O(n?) for the atom-based approach. Moreover
the symbol-based encoding does not require the expensive encoding of the ax-
ioms because the encoding as integers ensures that they hold “for free”. Hence
the number of connectives is O(|¢|logn) instead of O(n3 + |p|). Obviously for
small n the symbol based encoding can be larger than the atom-based encoding.
However, the search space is determined by the number of variables, where the
O(nlogn) of the symbol-based encoding is clearly superior to the O(n?) for the
atom-based approach.

An implementation of the atom-based approach of [13] is described in the
recent report [20] together with an experimental evaluation and comparison with
our symbol-based approach. It shows the symbol-based approach is orders of
magnitude faster on its benchmark set.

Testing for satisfiability of partial order constraints comes up in many other
applications. First of all in the context of term rewrite systems where LPO is
just one example of a simplification order and analyses based on other types
of orders may also be encoded into propositional logic. Moreover, for programs
which cannot be shown to terminate using these kinds of simplification orders,
the dependency pairs approach [1] has proven very successful in generating sets
of constraints such that the existence of a (quasi-)order satisfying them is a
sufficient condition for termination. Our constraint solving technique is directly
applicable and improves considerably the performance of implementations for
these techniques. Initial results are described in [4].

In practice LPO termination tests are often performed in an incremental fash-
ion, adding constraints to orient the rules in a term rewrite system one rule at a
time. Methods that construct a partial order thus seek to incrementally extend
that partial order if possible. In our approach, we construct a linearization of the
partial order and are hence less likely to be able to extend a previous order to sat-
isfy new constraints. However, both approaches make choices which may have to
be undone to satisfy all constraints. For poSAT, the encoding (which often takes
a good proportion of the analysis time) is clearly incremental. Moreover, given

Solving Partial Order Constraints for LPO Termination 17

the raw speed advantages, and the fact that the hardest instances are unsatisfi-
able, where incrementality is not useful, we are confident that in an incremental
context the poSAT is still superior.

7 Conclusion

We have introduced a new kind of propositional encoding for reasoning about
partial orders. Previous works propose to represent the atoms in a formula as
propositional variables and to explicitly encode the axioms for partial order.
Our novel approach is to interpret the symbols in a formula as finite domain
variables corresponding to the indices in the partial order. We illustrate the ap-
plication of our approach for LPO termination analysis for term rewrite systems.
Experimental results are unequivocal indicating orders of magnitude speedups
in comparison with current implementations for LPO termination analysis. The
proposed technique is directly applicable to more powerful termination proving
techniques, such as those based on dependency pairs [1], which basically involve
the same kind of constraint solving.

Acknowledgment

We are grateful to Bart Demoen for useful insights regarding the implementation
and to Samir Genaim who donated the Prolog parser for term rewrite systems.
Jirgen Giesl and Aart Middeldorp assisted with the use of the AProVE and
TTT analyzers. Yefim Dinitz and anonymous reviewers provided many useful
comments on the presentation.

References

1. T. Arts and J. Giesl. Termination of term rewriting using dependency pairs. The-
oretical Computer Science, 236(1-2):133-178, 2000.

2. Automated program verification environment (AProVe).
http://www-1i2.informatik.rwth-aachen.de/AProVE. Viewed December 2005.

3. M. Codish, V. Lagoon, and P. J. Stuckey. Logic programming with satisfiability.
http://www.cs.bgu.ac.il/~mcodish/Papers/Sources/lpsat.pdf, (submitted).

4. M. Codish, P. Schneider-Kamp, V. Lagoon, R. Thiemann, and J. Giesl. SAT solving
for argument filterings. Available from http://arxiv.org/abs/cs.0H/0605074.

5. N. Dershowitz. Termination of rewriting. J. Symb. Comput., 3(1/2):69-116, 1987.

6. N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In J. van Leeuwen, ed-
itor, Handbook of Theoretical Computer Science, volume B: Formal Models and
Semantics, pages 2435-320. Elsevier and MIT Press, 1990.

7. N. Eén and N. Soérensson. An extensible sat-solver. In E. Giunchiglia and A. Tac-
chella, editors, Theory and Applications of Satisfiability Testing, 6th International
Conference, SAT 2003 (Selected Revised Papers), volume 2919 of LNCS, pages
502-518. Springer, 2004.

18

10

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

M. Codish, V. Lagoon, and P.J. Stuckey

J. Giesl, R. Thiemann, P. Schneider-Kamp, and S. Falke. Automated termination
proofs with AProVE. In V. van Qostrom, editor, Proc. of the 15th International
Conference on Rewriting Techniques and Applications, volume 3091 of LNCS, pages
210-220, Aachen, Germany, 2004. Springer.

N. Hirokawa and A. Middeldorp. Tsukuba termination tool. In R. Nieuwenhuis,
editor, Proc. of the 14th International Conference on Rewriting Techniques and
Applications, volume 2706 of LNCS, pages 311-320, Valencia, Spain, 2003.

N. Hirokawa and A. Middeldorp. Tyrolean termination tool. In Proc. of the 16th
International Conference on Rewriting Techniques and Applications, volume 3467
of LNCS, pages 175-184, Nara, Japan, 2005. Springer.

S. Kamin and J.-J. Levy. Two generalizations of the recursive path ordering.
Department of Computer Science, University of Illinois, Urbana, IL. Available at
http://www.ens-1lyon.fr/LIP/REWRITING/OLD_PUBLICATIONS_ON_TERMINATION
(viewed December 2005), 1980.

M. Khrishnamoorthy and P. Narendran. On recursive path ordering. Theoretical
Computer Science, 40:323-328, 1985.

M. Kurihara and H. Kondo. Efficient BDD encodings for partial order constraints
with application to expert systems in software verification. In Innovations in Ap-
plied Artificial Intelligence, 17th International Conference on Industrial and En-
gineering Applications of Artificial Intelligence and Expert Systems, Proceedings,
volume 3029 of LNCS, pages 827-837, Ottawa, Canada, 2004. Springer.

MiniSAT solver.
http://www.cs.chalmers.se/Cs/Research/FormalMethods/MiniSat. Viewed De-
cember 2005.

Swi-prolog. http://http://www.swi-prolog.org. Viewed December 2005.

The termination problems data base. http://www.lri.fr/~marche/tpdb/. Viewed
December 2005.

G. Tseitin. On the complexity of derivation in propositional calculus. In Studies in
Constructive Mathematics and Mathematical Logic, pages 115-125. 1968. Reprinted
in J. Siekmann and G. Wrightson (editors), Automation of Reasoning, vol. 2, pp.
466-483, Springer-Verlag Berlin, 1983.

Tyrolean termination tool. http://cl2-informatik.uibk.ac.at/ttt. Viewed
December 2005.

J. Wielemaker. An overview of the SWI-Prolog programming environment. In
F. Mesnard and A. Serebenik, editors, Proceedings of the 13th International Work-
shop on Logic Programming Environments, pages 1-16, Heverlee, Belgium, Dec.
2003. Katholieke Universiteit Leuven. CW 371.

H. Zankl. Sat techniques for lexicographic path orders.
http://arxiv.org/abs/cs.SC/0605021, May 2006.

Computationally Equivalent Elimination
of Conditions

Traian Florin Serbanuta and Grigore Rosu

Department of Computer Science,
University of Illinois at Urbana-Champaign
{tserban2, grosu}@cs.uiuc.edu

Abstract. An automatic and easy to implement transformation of con-
ditional term rewrite systems into computationally equivalent uncondi-
tional term rewrite systems is presented. No special support is needed
from the underlying unconditional rewrite engine. Since unconditional
rewriting is more amenable to parallelization, our transformation is ex-
pected to lead to efficient concurrent implementations of rewriting.

1 Introduction

Conditional rewriting is a crucial paradigm in algebraic specification, since it pro-
vides a natural means for executing equational specifications. Many specification
languages, including CafeOBJ [8], ELAN [4], Maude [6], OBJ [10], ASF/SDF
[21], provide conditional rewrite engines to execute and reason about specifi-
cations. It also plays a foundational role in functional logic programming [11].
Conditional rewriting is, however, rather inconvenient to implement directly. To
reduce a term, a rewrite engine needs to maintain a control context for each con-
ditional rule that is tried. Due to the potential nesting of rule applications, such
a control context may grow arbitrarily. The technique presented in this paper
automatically translates conditional rewrite rules into unconditional rules, by
encoding the necessary control context into data context. The obtained rules can
be then executed on any unconditional rewrite engine, whose single task is to
match-and-apply unconditional rules. Such a simplified engine can be seen as a
rewrite virtual machine, which can be even implemented in hardware, and our
transformation technique can be seen as a compiler. One can also simulate the
proposed transformation as part of the implementation of a conditional engine.
Experiments performed on three fast rewrite engines, Elan[4], Maude[6] and
ASF/SDF [21], show that performance increases can be obtained on current
engines if one uses the proposed transformation as a front-end. However, since
these rewrite engines may be optimized for conditional rewriting, we expect sig-
nificant further increases in performance if one just focuses on the much simpler
problem of developing optimized unconditional rewrite engines and use our tech-
nique. Moreover, one can focus on developing parallel rewrite machines without
worrying about conditions, which obstruct the potential for high parallelism.

On computational equivalence. Let us formalize the informal notion of “compu-
tationally equivalent elimination of conditions”. Consider a conditional term

F. Pfenning (Ed.): RTA 2006, LNCS 4098, pp. 19-34, 2006.
© Springer-Verlag Berlin Heidelberg 2006

20 T.F. Serbanuta and G. Rosu

rewriting system (CTRS) R over signature X and an (unconditional) term
rewriting system (TRS) R’ over signature X’. Also, assume some mapping ¢
from X-terms to X’-terms and some partial mapping ¢ from X’-terms to X-
terms that is an inverse to ¢ (i.e., ¥(p(s)) = s for any Y-term s). X’/-terms p(s)
are called initial, while terms t’ with ¢(s) —%, t’ are called reachable in R’. The
(partial) mapping ¢ only needs to translate reachable X’-terms into X-terms.
¢ can be thought of as translating input terms for R into input terms for R’,
while 1) as taking results of rewritings in R’ into corresponding results for R.
In other words, ¢ and ¢ can wrap a X’ rewrite engine into a X rewrite engine.
Typically, ¢ and v are straightforward linear translators of syntax.

R’ is complete for R iff any reduction in R has some corresponding reduction
in R': s —% t implies p(s) —%, ¢(t). Completeness is typically easy to prove
but, unfortunately, has a very limited practical use: it only allows to disprove
reachability tasks in R by disproving corresponding tasks in R'. R’ is sound for
R iff any reduction in R’ of an initial term corresponds to some reduction in
R: p(s) =%, t' implies s —% 9(t'). The soundness of R’ allows to compute
partial reachability sets in R: applying v to all ¢’ reached from ¢(s) in R’, we
get X-terms (not necessarily all) reachable from s in R. The soundness and
completeness of R’ gives a procedure to test reachability in the CTRS R using
any reachability analysis procedure for the TRS R': s =% t iff p(s) =%, ©(t).

Soundness and completeness may seem the ideal properties of a transfor-
mation. Unfortunately, they do not yield the computational equivalence of the
original CTRS to (the wrapping of) the resulting TRS. By computational equiv-
alence of R’ to R we mean the following: if R terminates on a given term s
admitting a unique normal form ¢, then R’ also terminates on ¢(s) and for any
of its normal forms t’, we have that ¢ (¢') = t. In other words, the unconditional
R’ can be used transparently to perform computations for R. Example 3 shows
that the soundness and completeness of a transformation do not imply computa-
tional equivalence, even if the original CTRS is confluent and terminates! Note
that termination of R is not required. Indeed, termination of the CTRS may be
too restrictive in certain applications, e.g., in functional logic programming [2].

On Termination. Rewriting of a given term in a CTRS may not terminate for two
reasons [19]: the reduction of the condition of a rule does not terminate, or there
are some rules that can be applied infinitely often on the given term. In rewrite
engines, the effect in both situations is the same: the system loops forever or
crashes running out of memory. For this reason, we do not make any distinction
between the two cases, and simply call a X-CTRS operationally terminating [13)
on Y-term s iff it always reduces s to a normal form regardless of the order
rules apply. Note that this notion is different from effective termination [14];
Example 6 shows a system that is confluent and effectively terminating but not
operationally terminating. Operational termination is based on the assumption
that, in general, one cannot expect a rewrite engine to be “smart” enough to
pick the right rewrite sequence to satisfy a condition. Formally, a CTRS R is
operationally terminating on s if for any ¢, any proof tree attempting to prove

Computationally Equivalent Elimination of Conditions 21

that s —% ¢ is finite. Operational termination is equivalent to decreasingness for
normal CTRSs (and with quasi-decreasingness for deterministic CTRSs) [13].

We give an automatic transformation technique of CTRSs into TRSs, taking
ground confluent normal CTRSs R into computationally equivalent TRSs R’.
This technique can be extended to more general CTRSs including ones with ex-
tra variables in conditions (see [20]). Experiments show that the resulting TRSs
yield performant computational engines for the original CTRSs. On the the-
oretical side, our main new result is that if R is finite, ground confluent and
operationally terminating on a term s then R’ is ground confluent on reachable
terms and terminating on ¢(s) (Theorem 6). This effectively gives computa-
tional equivalence of our transformation for (ground) confluent (finite) systems.
To achieve this main result, we prove several other properties: the completeness
of our transformation (Theorem 1); ground confluence (Theorem 2) or left linear-
ity (Theorem 3) of R implies the soundness of R'; if R is left linear, then ground
confluence of R implies ground confluence of R’ on reachable terms (Theorem 4)
and operational termination of R on s implies termination of R’ on ¢(s) (The-
orem 5). Part of these properties recover the power of previous transformations;
note however that they are not simple instances of those, due to the particular-
ities of our transformation. Additionally, we show that left linearity and ground
confluence of R’ on reachable terms implies ground confluence of R (Proposition
2), and termination of R’ on reachable terms implies operational termination of
R (Proposition 4); these results potentially enable one to use confluence and/or
termination techniques on unconditional TRSs to show confluence and/or op-
erational termination of the original CTRS, but this was not our purpose and
consequently have not experimented with this approach.

Section 2 discusses previous transformations of CTRSs into TRSs. We only
focus on ones intended to be computationally equivalent and discuss their li-
mitations. Section 3 presents our transformation. Section 4 shows it at work
on several examples; some of these examples have been experimented with on
the rewrite engines Elan [4], Maude [6] and ASF/SDF [21], with promising per-
formance results. Section 5 lists theoretical results. All proofs can be found in
the companion report [20], which will be published elsewhere soon. Section 6
concludes the paper.

2 Previous Transformations

Stimulated by the benefits of transforming CTRSs into equivalent TRSs, there
has been much research on this topic. Despite the apparent simplicity of most
transformations, they typically work for restricted CTRSs and their correctness,
when true, is quite involved. We focus on transformations that generate TRSs
intended to be transparently used to reduce terms or test reachability in the
original CTRSs. Significant efforts have been dedicated to transformations pre-
serving only certain properties, e.g., termination or confluence [18]; we do not
discuss these here. We use the following two examples to illustrate the different
transformations and to analyze their limitations.

22 T.F. Serbanuta and G. Rosu

Ezample 1. [14, 18]. The CTRS R, will be used to test if a transformation is
sound and R; to test if it preserves termination. Let R4 be the CTRS

A — h(f(a), f(D)) g(d,z,z) — B a—c b—>c c—e d—m
hz,z) — g(z,z, f(k) f(x)—xifr—e a—d b—>d c—1 k—l
k—m

Let Ry be Rs U{B — A}; then A /% B and R; operationally terminates. O

Ezample 2. [2]. The two-rule canonical CTRS {f(g(x)) — « if x — 0,9(g9(z)) —
g(x)} will be used to test whether a transformation preserves confluence. O

Bergstraé9Klop. The first CTRS-to-TRS transformation appeared in [3]: start
with a rule Ix — z and to each rule p; : | — 7 if cl — cr associate rules
pi ol — oi(c)r and pf : oy(cr) — I. The transformation is proved to be
complete in [3] and claimed to also be sound. Let us apply this transformation
on R, in Example 1. Rule f(z) — = if x — e is replaced by f(z) — o1(z)x and
o1(e) — I, and rule Iz — x is added. Then:

A—>h((@), f(b)) = h(a1(a)a, f(b)) — h(o1(a)d, f(b)) — h(ai(c)d, f(b))

(b)d
h(o1 (), r1(5)b) — h(o1()d,01(b)d) — h(or(c)d, 1 (c)d)
— g(o1(e)d, o1 (c)d, f(k)) = g(o1(e)d,01(c)d, f(K)) — g(Id,01(c)d, f(K))
— 9(d o (e)d, f(K)) — g(d,o1(1)d, (k) — g(d,os([ym. J(k))
— g(d,o1()m, o1(k)k) — g(d, o1 (l)m, o1 (Dk) — g(d, o1(l)m, 1 (l)m) — B

So this transformation is not sound. Transforming R, we can see that this trans-
formation does not preserve termination, because A —1 A. For the system in Ex-
ample 2, f(g(x)) — « if x — 0 is replaced by f(g(z)) — o1(z)x and 01(0) — I,
so f(g(9(0))) — f(g(0)) — 01(0)0 — 10 — 0 and f(g(9(0))) — o1(9(0))g(0),
both of them normal forms. Thus the resulting TRS is not confluent. Conse-
quently, this transformation does not produce computationally equivalent TRSs.

Giovanettiéé Moiso. The transformation in [9] (suggested in [7]) replaces each rule
pi:l—=r ifcl — cr byl — if;(Var(l), cl) and if;(Var(l), cr) — r (where Var(l) is
the list of variables of I). However, this transformation is complete and computa-
tionally equivalent only when the original CTRS is safely transformable [9], that
is, has no superposition, is simply terminating, and is non-overlapping on condi-
tions. The “safely transformable” CTRSs are too restrictive; our transformation
yields computationally equivalent TRSs imposing only ground confluence (safely
transformable CTRSs are ground confluent) on the original CTRS.

Hintermeier [12] proposes a technique where an “interpreter” for a CTRS is
specified using unconditional rewrite rules, defining the detailed steps of the
application of a conditional rewrite rule including rewrite-based implementations
of matching and substitution application; this result is rather expected, since
unconditional term rewriting is Turing complete. Also, it has little practical
relevance - this “meta” stepwise simulation leads to dramatic performance loss).

Marchiori’s Unravellings. An abstract notion of transformation, called unravel-
ling, and several concrete instances of it, were introduced by Marchiori in [14];

Computationally Equivalent Elimination of Conditions 23

these were further studied in [15, 17, 18, 16]. An unraveling is a computable map
U from CTRSs to TRSs over the same signature, except a special operation
U, for each rule p, such that |rC |y(g) (| stands for “join”, i.e., —;«) and
UTUR) =TUU(R) if T is a TRS. The concrete instance transformations
are similar to that in [9]: each conditional rule p : | — r if ¢l — cr is replaced
by its unravelling, rules | — U,(cl, Var(r)) and U,(cr, Var(r)) — r. Complete-
ness holds, but soundness does not hold without auxiliary hypotheses [14] (see
Example 1) such as left linearity [14, 18]. Also, (quasi) decreasingness and left
linearity of the CTRS imply termination of the corresponding TRS.

Ezample 8. A sound and complete transformation does not necessarily yield
computational equivalence even if the original CTRS is canonical. The unravel-
ling of the system in Example 2 is {f(g(z)) — U1(z, z), U1(0,2) — =z, g(g(x)) —
g(x)}. The original CTRS is left linear, so the unravelling is sound and complete,
but is not computationally equivalent: f(g(g(0))) reduces to U1 (g(0), g(0)), a nor-
mal form with no correspondent normal form in the original CTRS. |

Unfortunately, no unravelling preserves confluence or termination [14] (i.e., for
any unravelling U, there are confluent and/or terminating CTRSs R such that
U(R) is not a confluent and/or terminating TRS), thus they do not yield compu-
tationally equivalent TRSs. Therefore, it is not surprising that the more recent
transformations discussed next that aim at computational equivalence, including
ours, are not unravellings (they modify the original signature).

Viry. The transformation in [22] (inspired from [1]) inspired all subsequent ap-
proaches. It modifies the signature by adding to each operation as many argu-
ments as conditional rules having it at the top of their lhs. Two unconditional
rules replace each conditional rule, one for initializing the auxiliary arguments
and the other for the actual rewrite step. Formally: let p,; denote the ¢th rule
whose lhs is topped in o; add as many arguments to o as the number of rules p, ;;
let ¢,; be the number arity(c) + i, corresponding to the i*" auxiliary argument
added to o; transform each rule p,; : { — r if ¢l — cr into

p:,’i cpi —L] — lco,i < [cl, Var(l)]] and pg)i :eqi — [er, Var(D)]] — r,

where “17” is a special constant stating that the corresponding conditional rule
has not been tried yet on the current position, s lifts a term by setting all
new arguments to L, § lifts a term with fresh variables on the new arguments,
and s* replaces all variables in § with fresh variables. Structures [u,s’] com-
prise the reduction status of conditions (u) together with corresponding sub-
stitutions (§) when they were started. The substitution is used to correctly
initiate the reduction of the rhs of the original conditional rule. Viry gave
a wrong proof that his transformation sound and complete and that it pre-
serves termination. We believe the completeness indeed holds, but have counter-
examples for the other properties. Let us transform the CTRS R from Exam-
ple 1. First, rules h(z,z) — g(z,z, f(k)) and g(d,xz,z) — B are replaced by
h(z,y) — gz, F(K)) if eqw,y) — true and g(d,a,y) — B if eqla,y) — true
to resolve non-left linearity, where eq(z,x) — true is the only non-left linear

24 T.F. Serbanuta and G. Rosu

rule allowed [22]. Then these conditional rules and f(xr) — z ifz — e and
A — h(f(a), f(b)) are transformed into:

[, L) — fla, [z, 2]) W, y, L) — h(z,y, [eq(z, y), 2, 9]

[y, [e,2]) — W'y’ [true z,y]) — g(z, z, f(k, 1), L)

g(d7 xl’ y/7 [true7 m7 y]) - B g(d7 1.7 y7 J‘) - g(d T y7 [eq mV y)7 :I/', y])
A — h(f(a, L), f(b, 1), 1)

The following is then a valid sequence in the generated unconditional TRS:

A = h(f(a, L), f(b, L), L) — h(f(a,a,al), f(b, L), L) — h(f(d,a, a]),

f(b, 1), L) — h(f(d;[¢,a]), f(b, L), L) — h(f(d; ¢, c]), f(b, L), L) — h(f(d,]c, c]),

((
[, [b,0]), L) — h(f(d,[c,c]), f(d,[b,0]), L) — h(f(d,c,d]), f(d,]cb]), L) —
h(f(d, e, c]), f(d, [c,c]), L) = h(f(d, [c,c]), f(d, [c, c]), [ea(f(d; [c, c]), £(d, [c, c])),
f(d,[e,d]), f(d,[c,c)]) — h(f(d,[e,c]), f(d, e, c]), [true, f(d, [e, c]), f(d, e, c])]) —
9(f(d,[c,d]), f(d,[c,c]), f(k, L), L) — g(f(d,[e,c]), f(d,[c,c]), f(k, L), L) —
9(f(d,[ee]), f(d,[c,c]), f(k, L), L) — g(d, f(d,[c,c]), f(k, L), L) —
g(d, f(m, [c,d]), f(k, L), L) — g(d, f(m,[l,c]), f(k, L), L) — g(d, f(m, [1,1]),
[k, L), L) — g(d, f(m, [1,1]), f(k, [k, k]), L) — g(d, f(m, [1,1]), f(m, [k, k]), L)
— g(d, f(m, [1,1]), f(m, [l K]), L) — g(d, f(m, [1,1]), f(m, [L,1]), L) —
g(d, f(m, [1,1]), f(m, [1,1]), [eq(f(m, [L,1]), f(m, [1,1])), f(m, [L,1]), f(m, [I,1])])
g(d, f(m, [1,1]), f(m, [1,1]), [true, f(m, [I,1]), f(m, [I,1])]) — B

Hence, Viry’s transformation is not sound. Using R; instead of R, whose cor-
responding TRS just adds rule B — A to that of R4, we can notice that it
does not preserve termination either. Let us now transform the CTRS in Ex-
ample 2 to {f(g(z), L) — f(g(2), [z,2]), f(2,[0,y]) — y,9(9(x)) — g(z)}; note
that R’ is not confluent [2] (with or without Viry’s conditional eagerness [22]):
f(g(g(0)), L) can be reduced to both 0 and f(g(0), [g(0), (¢(0))]). Therefore, this
transformation does not fulfill the requirements of computational equivalence.

Antoy, Brasseléd Hanus proposed in [2] a simple fix to Viry’s technique, namely
to restrict the input CTRSs to constructor-based (i.e., the lhs of each rule is a
term of the form f(¢1,...,t,), where f is defined and t1, ..., t, are all construc-
tor terms) and left linear ones. Under these restrictions, they also show that the
substitution needed by Viry’s transformation is not necessary anymore, so they
drop it and prove that the new transformation is sound and complete; moreover,
if the original CTRS is additionally weakly orthogonal, then the resulting TRS
is confluent on reachable terms. It is suggested in [2] that what Viry’s trans-
formation (or their optimized version of it) needs to generate computationally
equivalent TRSs is to reduce its applicability to only constructor-based, weakly
orthogonal and left linear CTRSs. While constructor-baseness and left linearity
are common to functional logic programming and are easy to check automati-
cally, we believe that they are, in general, an unnecessarily strong restriction on
the input CTRS, which may make the translation unusable in many situations
of practical interest (see, e.g., the bubble-sort algorithm in Section 4).

Rosu. The transformation in [19] is defined for join CTRSs and requires the
rewrite engine to support some simple contertual rewriting strategies, namely

Computationally Equivalent Elimination of Conditions 25

an if(, ,) eager on the condition and an equal? eager on both arguments.
As in Viry’s transformation, additional arguments are added to each opera-
tion o for each conditional rule p,;, but they only need to keep truth val-
ues. The distinctive feature of this transformation is the introduction of the
{ } operation, which allows the rewriting process to continue after a condi-
tion got stuck provided changes occur in subterms. Each conditional rule ps; :

I — rifcller is encoded by one unconditional rule p, ; : l[co; « true] —

if (equal?({cl}, {cr}), {r},l[cs,i < false]). The bracket clears the failed condi-
tions on the path to the top: o(z1, .., {Zi}, ., Tarity(o), Y1, - Ym) — {o(21, .., 245 -0,
T arity(a)s LTUE, .., true) }. It is shown in [19] that this transformation is sound and
that operational termination is preserved and implies completeness and preserva-
tion of ground confluence, that is, computational equivalence. Left linearity needs
not be assumed. Although most modern rewrite systems support the rewrite
strategies required by the transformation in [19], we argue that imposing re-
strictions on the order of evaluation makes a rewrite engine less friendly w.r.t
parallelism and more complex; in some sense, contextual strategies can be seen
as some sort of conditional rules: apply the rule if the context permits.

Our transformation basically integrates Rosu’s { } operation within Viry’s
transformation, which allows us to also eliminate the need to carry a substitution.
We recently found out! that a related approach was followed by Brassel in his
master thesis [5], but we can’t relate our results since we were unable to obtain
an English translation of his results.

3 Our Transformation

Like in the last three transformations above, auxiliary arguments are added
to some operators to maintain the control context information. For simplicity,
we here discuss only the transformation of normal CTRSs, that is, ones whose
conditional rules have the form I — r if ¢l — cr, cr is a constant in normal
form and all variables from ¢l and r also occur in ! (and ! is not a variable).
In [20] we discuss extensions of our technique to more complex cases, including
ones with extra variables and matching in conditions. Let R be any >-CTRS. A
o-conditional rule [22] is a conditional rule with o at the top of its lhs, i.e., one
of the form o(t1,...,t,) — 7 if cl — cr. Let k, be the number of o-conditional
rules and let p, ; denote the it" o-conditional rule in R.

The signature transformation. Let X be the signature containing: a fresh con-
stant L; a fresh unary operator { }; for any o € X, (i.e., 0 € X hasn arguments),
an operation o € X, 1. (the additional k, arguments of o are written to the
right of the other n arguments). An important step in our transformation is
to replace X-terms by corresponding X-terms. The reason for the additional
arguments is to pass the control context (due to conditional rules) into data
context: the additional i-th argument of ¢ at some position in a term main-
tains the status of appliance of p, ;; if L then that rule was not tried, otherwise

! From a private communication with Bernd Brassel.

26 T.F. Serbanuta and G. Rosu

the condition is being under evaluation or is already evaluated. Thus, the cor-
responding Y-term of a X-term is obtained by replacing each operator o by
o with the k, additional arguments all L. Formally, let X be an infinite set
of wariables and let - : Ty(X) — Ty (X) be defined inductively as: x = x for
any x € X and o(ty,...,tn) = o(t1,..-,tn,L,..., L) for any ¢ € X, and
any t1,...,t, € Ts(X). Let us define another map, ™ : Tx(X) — Ty (X),

this time indexed by a finite set of variables X C X, as X = z for any

X ~X ~X
x € X, and as o(ty,...,t,) = oty ,...,tn ,21,...,25,) for any o € X,

and t1,...,t, € Tx(X), where z1,...,2,, € X — X are some arbitrary but fixed

different fresh variables that do not occur in X or in ﬂX, e ,thX. Therefore,
tX transforms the Y-term ¢ into a X-term by replacing each operation o € X
by ¢ € X and adding some distinct fresh variables for the additional arguments,
chosen arbitrarily but deterministically.

The rewrite rules transformation. Given a Y-CTRS R, let R be the X-TRS
obtained as follows. For each o-conditional rule ps;: | — r ifcl — cr over
variables X in R, add to R two rules, namely p, ; : Xcg; —L] — X[y — {cl}]
and pf, ; : X [¢oi < {cr}] — {r}, where ¢, is the number arity(c) + ¢ corres-
ponding to the fh conditional argument of . For each unconditional rule [— r
in R, add rule [— {r} to R. For each 0 € ¥, and each 1 <i < n, add to R
arule o(T1, .., Ti1, {Ti}, Tit1y oo, Ty 215 ooy 2k) L0 (T1 5 ooy Tim1, Tiy Ti 1y oy Ty L
, .., L)}, intuitively stating that a condition tried and potentially failed in the past
at some position may hold once an immediate subterm changes; the operation
{ }, symbolizing the change, also needs to be propagated bottom-up, reseting
the other started conditions to L. The applicability information of an operation
can be updated from several of its subterms; to keep this operation idempotent,
we add {{z}} — {2} to R. The size of Ris 1 +u+2xc+3) -,n x |X,|, where
u is the number of unconditional rewrite rules and c is the number of conditional
rewrite rules in R.

4 Examples and Experiments

We next illustrate our transformation on several examples.

Confluence is preserved. Let us transform the CTRS in Example 2:

flg(@), L) — f(g(x),{=}) [f(g(x),{0}) — {z} 9(9(z)) — {g(=)}
g({z}) — {g(2)} f{z}0) = {f(x, L)} {{z}} — {«}

The problem that appeared in Viry’s transformation is avoided in our trans-
formation by the rules of {-}, which allow the evaluation of a condition to be
restarted at the top of a term once a modification occurs in a subterm. Thus,
given the X-term {f(g(g(0)), L)}, even if a rewrite engine first tries to evaluate
the condition at the top, a “correct” rewriting sequence is eventually obtained:

{£(9(9(0)), L)} = {f(9(9(0)); {g(O)N} = {f({9(0)},{9(0)})} —r {{f(9(0), L)}},

and now the condition can be tried again and this time will succeed.

Computationally Equivalent Elimination of Conditions 27

Odd/Even [19]. Let us consider natural numbers with 0 and successor s, con-
stants true and false and the following on purpose inefficient conditional rules
defining odd and even operators on natural numbers (here denoted as o and e):

0(0) — false o(s(x)) — true if e(x) — true o(s(x)) — false if e(x) — false
e(0) — true e(s(xz)) — true if o(z) — true e(s(x)) — false if o(x) — false

In order to check whether a natural number n, i.e., a term consisting of n succes-
sor operations applied to 0, is odd, a conditional rewrite engine may need O(2")
rewrites in the worst case. Indeed, if n > 0 then either the second or the third
rule of odd can be applied at the first step; however, in order to apply any of those
rules one needs to reduce the even of the predecessor of n, twice. Iteratively, the
evaluation of each even involves the reduction of two odds, and so on. Moreover,
the rewrite engine needs to maintain a control context data-structure, storing
the status of the application of each (nested) rule that is being tried in a reduc-
tion. It is the information stored in this control context that allows the rewriting
engine to backtrack and find an appropriate rewriting sequence. As shown at the
end of this section, some rewrite engines perform quite poorly on this system.
Let us apply it our transformation. Since there are two odd-conditional rules
and two even-conditional rules, each of these operators will be enriched with
two arguments. The new TRS is (for aesthetic reasons we overline only those
operations that change; z; and 2o are variables):

0(0, z1, z2) — {false} e(0, z1, z2) — {true}

o(s(z), {false} z2) — {false} e(s(x), {false}, z2) — {false}

o(s(x), z1, {true}) — {true} e(s(x), z1, {true}) — {true}

o(s(x), L, z2) = o(s(x),{e(x, L, L)}, 22) e(s(x), L,22) — e(s(x),{o(z, L, L)}, 22)
o(s(x), z1, L) = o(s(x), z1,{e(x, L, 1L)}) e(s(z),21, 1) — e(s(x), 21, {o(z, L, L)})
s({z}) — {s(z)} o({}, 21, 22) — {o(z, z1,22)}

{z}} — {=} e({z}, 21, 22) — {e(w, 21, 22)}

If one wants to test whether a number n, i.e., n consecutive applications of
successor on 0, is odd, one should reduce the term {o(n, L, L)}.

Bubble sort. The following one-rule CTRS sorts lists of numbers (we assume
appropriate rules for numbers) implementing the bubble sort algorithm:

'(‘Tv (yvl)) - (y7 (mvl)) Zfl' <y — true
This CTRS is ground confluent but not constructor-based. Its translation is:

'('7;’ '(y’lac)vJ-) - '('7;’ '(y’lac)v {l‘ > y}) {{l}} - {l}
'('T’ '(y’lac)v {true}) - {(yv '(J?,l, J—)’ J—)} '(l‘, {l}vc) - {($7Z7J-)}

Ezperiments. Our major motivation to translate a CTRS into a computationally
equivalent TRS that can run on any unrestricted unconditional rewrite engine
was the potential to devise highly parallelizable rewrite engines. It was there-
fore an unexpected and a pleasant surprise to note that our transformation
can actually bring immediate benefits if implemented as a front-end to existing,

28 T.F. Serbanuta and G. Rosu

non-parallel rewrite engines. Note, however, that current rewrite engines are op-
timized for both conditional and unconditional rewriting; an engine optimized
for just unconditional rewriting could probably be even more efficient.

We next give some numbers regarding the speed of the generated TRS. We
used Elan and Maude as interpreters and ASF/SDF as a compiler - our goal
was not to compare rewrite engines (that’s why we did not use same input
data for all engines) but rather to compare how our transformation performs on
each of them. Besides the two examples presented above (Odd/Even and Bub-
ble sort), we tested our transformation on two other CTRSs: Quotient/Reminder
(inspired from [18]) and the evaluation of a program generating all permutations
of n elements and counting them written for a rewriting based interpreter of a
simple programming language with arrays (using both matching in conditions
and rewriting modulo axioms - see [20] for a discussion of when our transforma-
tion is sound for rewriting modulo axioms). We have tested how long it took for
a term to be rewritten to a normal form. In the table below, Cond shows the
results using the original system, Ucond those using the presented transforma-
tion and Ucond* the transformation enhanced with some simple but practical
optimizations described below. Times were obtained on a machine with 2 GHz
Pentium 4 CPU and 1GB RAM.

Odd/Even
Elan - odd(18) Maude - odd(24) ASF/SDF - odd(25)
Cond Uncond Uncond* Cond Uncond Uncond* Cond Uncond Uncond*
85.79s 5.55s ~0s 84.97s 17.05s ~0s 0.02s 7.46s 0.01s
Bubble Sort
Elan 100 Maude 5000 ASF/SDF 5000
Cond Uncond(*) Cond Uncond(*) Cond Uncond(*)
28.19s 3.46s 72.34s 43.53s 81.64s 85.71s
Quotient(Reminder)
Elan 10°/6 Maude 107 /2 ASF/SDF 10°/2
Cond Uncond Uncond* Cond Uncond Uncond* Cond Uncond Uncond*
10.85s 5.82s 5.23s 75.98s 67.59s 41.61s 13.96s 15.28s 14.53s
Rew.-based interpreter of a simple PL with arrays - permutation generation
Maude ASF/SDF
8 9 8 9
Cond Uncond* Cond Uncond* Cond Uncond* Cond Uncond*
18.06s 12.76s -2 144.56s 5.72s 14.20s 49.56s -2

The optimized transformation always outperformed the original CTRS in our
experiments on rewrite engine interpretors. We cannot say what exactly made it
slower on some tests performed on ASF/SDF - it might be because the compiler
is aimed to be efficiently executed on sequential machines; we actually expect our
transformation to perform significantly better on parallel rewrite engines. Note
that on the odd/even example, ASF /SDF already performs condition elimination
as a stage of its compilation process.

2 The machine ran out of memory while attempting to reduce the term.

Computationally Equivalent Elimination of Conditions 29

A simple and very practical optimization is as follows: if two or more o-condi-
tional rules have the same lhs and their conditions also have the same lhs, then
we can add only one auxiliary argument to ¢ in ¢ for all of these and only one
rule in the TRS for starting the condition. With this, e.g., the optimized TRS
generated for the odd/even CTRS is:

0(0,21) — {false} o(s(x),{false}) — {false} o(s(z),L) — o(s(z),{e(z,L)})
e(0, z1) — {true} o(s(zx), {true}) — {true} e(s(z), L) — e(s(x),{o(z,L1)})
{z}} — {=} e(s(x), {false}) — {false} o({z},21) — {o(z,21)}
s({zh) — (s} els(e), {true}) — {true} el 21) — {ele,21)}

Another optimization easy to perform statically is to restrict the number of
additional conditional arguments added to each operation ¢ to the maximum
number of overlapping rules whose lhs is rooted in ¢. The intuition here is
that if two conditional rules are orthogonal, their conditions can’t be started
at the same time for the same term. For orthogonal systems (as our language
definition), for example, this means adding at most one argument per operation.

5 Theoretical Aspects

We use the terminology in [18] and, as mentioned, here only consider normal
CTRSs. Before we formalize the relationship between CTRSs and their uncon-
ditional variants, we define and discuss several classes of X-terms that will be
used in the sequel. First, let = : T (X) — T's(X) be a partial map, forgetting
zﬂl\ the auxiliary arguments of operations, defined as: T = x for any variable x,
{t'} =¥ and o(t, sty 21, ey 2y) = O'(t//;, .#"). In particular, ¢t = ¢. The map ~

St
is partial (not defined for X-terms such as, e.g., 1). A Y-term t’ is structural iff
t is defined, that is, if it is "resembling” a X-term. Note that the lhs and rhs of
any (unconditional) rule in R are structural.

A position « is a string of numbers representing a path in a term seen as a tree.
Let us define two mutually recursive important types of positions in structural
XY terms. A position « is structural for ¢’ iff o has no conditional position as a
prefix. A position « is conditional for ¢’ iff & = /¢, ; such that o' is structural
for ¢ and t/, = o(W) (recall ¢, is associated to p,;’s conditions).

A rewriting step s’ — 4 t' is structural iff it occurs at a structural position in
s" and either uses a rule of form p/, ; or one corresponding to an unconditional
rule in R. A ground Y-term ¢’ is reachable iff there is some ground X-term ¢
such that {t} —* {t'}. The set of all conditions started for a reachable term
s', written cond(s’), is defined as |J,({s'|a} U cond(s’|o)) where C' is the set of
conditional positions « in s’ such that s'|, #.L.

Proposition 1. (1) Any subterm of a structural term on a structural position is
also structural; (2) Ift' is a structural term with variables on structural positions
and 0 is a substitution giving structural terms for variables of t' then 6(t') is also
structural; (3) Structural terms are closed under R; (4) Any reachable term is
also structural; (5) Reachable terms are closed under R.

30 T.F. Serbanuta and G. Rosu

Completeness means that rewriting that can be executed in the original CTRS
can also be simulated on the corresponding TRS. We show that for any X-term
s, “everything that can be done on s in R can also be done on {s} in R”.

Theorem 1. If s =% ¢ then {s} — {t} with k structural steps.
Although it may not seem so, {s} —7, {t} does not generally imply that s —7% t:

Ezample 4. Consider the transformation for R from Example 1:
A—=A{h(f(a, L), f(b, L)} [z} y) = {f(z, L)} a—{c}
h(z,z) = {g(z,z, f(k, L))} h({z},y) — {h(z,y)} a—Ady o
g(d,z,z) — {B} h(z,{y}) — {h(z,y)} b—dcy ., {(m}
fle, L) = f(z,{z}) g({z}y,2) = {9(z,y,2)} b—Ad} | {m}
[z, {e}) — {z} 9(z{y} 2) = {g(z,y,2)} c—{e}
Hz}} — {=} 9,y {z}) = {9(z,y,2)} c—{l}
Then the following rewrite sequence can be obtained in R:
{A} =g {r(f(a, L), f(b, L)} —g {h(f({d}, {c}), f(b, L))}
—r {h(f{d} {c}), F({d}, {c})} =g {g(f({d}, {c}), F({d}, {c}), f(k, L))}
—r {9(f{d},{e}), f({d}, {c}), f(k, L))} =g {g(d, fF({d}, {c}), f(k, L))}
—r 19(d, f({m},{1}), f(k, L)} —g {9(d, f({m}, {1}), f({m} {1}))} — {B}.
but it is not the case that A —% B. O

Even though Theorem 1 is too weak to give us a procedure in R to test reacha-
bility in R, it still gives us a technique to test whether a term ¢ is not reachable
from a term s in R: if it is not true that {s} —7, {t} then it is also not true
that s —% t. Of course, in order for this to be mechanizable, the set of terms
reachable from {s} must be finite. This does not give us much, but it is the most
we can get without additional restrictions on R.

Soundness means that rewrites {s} —7 t' in R correspond to rewrites s —7% v
in R. Unfortunately, as shown by Example 4, soundness does not hold without
restricting R. We show that ground confluence or left linearity suffices.

Theorem 2. If R is ground confluent and s’ is reachable such that s’ —% t' in

k structural steps, then s —=k¥. In particular, our transformation is sound.
The claim above may not hold if the original CTRS is not ground confluent:

Example 5. Consider the following CTRS and its corresponding TRS:

a — true a — {true} a — {false}
(R) § a — false (R)q f(@, L) = f(x,{z}) f(z,{true}) — {true}
f(x) — true if x — true fdzhy) = {f(x, D)} {{z}} — {=}

The following sequence is valid in R, but it is not the case that f(false) —r true:
{f(a, L)} =r {f(a,{a})} —=r {F({false} {a})} —r ‘{f({false}’ {true})} — & {tme}‘

In Theorem 2, let s’ = {f({false}, {true})} (reachable) and t' = {true}. |

Computationally Equivalent Elimination of Conditions 31

However, the next result shows that our transformation is also sound when the
original CTRS is left linear instead of ground confluent:

Theorem 3. If R is left linear and {s} —7, t' then s —% . Moreover, if

{s} =% t" has k structural steps, then s -k ' with k' > k.

Thus, our transformation is sound for Example 5. However, Example 4 shows
that soundness may not hold if R is neither ground confluent nor left linear.

Corollary 1. If R is ground confluent or left linear, then our transformation
is sound and complete, i.e., s =75 t iff {s} -5 {t} for any s,t € Ts.

This gives us a semi-decision procedure for reachability problems s —% ¢ in a
ground confluent or left linear CTRS: (1) transform R to the TRS R; (2) do a
breadth-first search in R starting with {s}; (3) if {¢} is reached then return true.
The breadth-first search may loop forever if there is no solution for the original
problem. However, it will return true iff the original problem has a solution. This
reachability result is operationally important, since searching is very difficult in
CTRSs and it can sometimes lead to defectuous implementations.

Ezxample 6. Consider the following three-rule CTRS: ¢ — ¢ ifa — band a — b
and ¢ — b. A rewrite engine sensitive to the order in which rules are given may
crash when asked to verify a —% c; indeed, Maude does so if the rules are given
in the order above. The reason is that although Maude does breadth-first search
in general, it chooses not to do it within conditions.

This CTRS is transformed to: a(l) — a({a(Ll)}), ¢ — {b}, a({b}) — {c},
a(x) — {b}, {{z}} — {z}. Although this TRS does not terminate either, we can
use any rewrite engine which supports breadth-first searching, including Maude,
to verify any reachability problem which has solutions in the original system. 0O

If R is left linear, due to soundness and completeness, ground confluence of R
on reachable terms yields ground confluence of R.

Proposition 2. If R is left linear and ground confluent on reachable terms,
then R is ground confluent.

Even though a transformation is sound and complete, one may not necessarily
simulate R through R (see Example 3). We show that if R is ground confluent
and left linear then = defines a simulation relation between R and R:

Proposition 3. (Simulation) If R is ground confluent and left linear then R
weakly simulates R on reachable terms: for any reachable s’ with s’ —>% t, there
is a X-term t' with t' =t and s’ —% t' using exactly k structural steps.

It is worthwhile noticing that the confluence of R does not imply the confluence
of R, as the following (counter-)example shows.

Ezample 7. Consider the confluent one-rule CTRS R f(z) — = if g(x) — false
and its corresponding TRS R: f(z, L) — f(z,{9(2)}), f{z},y) — {f(z, L
)}, [z, {false}) — {z}, {{z}} — {z}. Then f({false}, {false}) rewrites in one
step to {false}, in normal form, and f({false},{false}) — {f(false, L)} —5
{f(false,{g(false)})}, also in normal form. Hence R is not confluent. O

32 T.F. Serbanuta and G. Rosu

In fact, for computational equivalence purposes, R does not need to be confluent.
What is needed is its confluence on reachable terms. The next result shows that
(ground) confluence is preserved in the presence of left linearity.

Theorem 4. IfR is left linear and ground confluent then R is ground confluent
on reachable terms, or, even stronger, for any reachable terms s}, s5, if s} and
sh are joinable in t then s§ and sy are joinable in t' such that t' = t.

The termination of R on reachable terms implies operational termination of R:
Proposition 4. If R terminates on {s}, then R operationally terminates on s.

The other implication does not hold without additional requirements on R. We
will show that confluence or left linearity of R suffices.

Ezample 8. Consider the system R; in Example 1. Since R; = Rs U {B — A},
its transformed version will be the same as the one in Example 4, except adding
one more rule, B — {A}. Remember that with the system R in Example 4
we have obtained that {A} —7, {B}. With the new rule we therefore get that
{A} —>7§ {A}, thus the transformed version is not terminating. However, the
original system is decreasing, so it is operationally terminating. a

Confluence or left linearity of R preserves termination:

Theorem 5. (Termination) If R operationally terminates on s and is either
ground confluent or left linear, then R terminates on {s}.

Finally, we prove that ground confluence yields computational equivalence:

Theorem 6. (Computational equivalence) If R is finite, ground confluent
and operationally terminates on s, then R is ground confluent and terminates
on terms reachable from s. That is, R is computationally equivalent to R.

Then one can simulate reduction in a confluent CTRS R by using the trans-
formed TRS R. Reducing a X-term ¢ to its normal form in R can be done as
follows: start reducing {¢} in R; if it does not terminate, there exists a way ¢
might have not terminated in R; if it terminates and fn({t}) is its normal form,

—

then fn({t}) is the normal form of ¢ in R .

If one wants computational equivalence by means of reduction, one has to
require confluence as a desired property of both the original and the transformed
system, because no search is involved in the process of reaching a normal form.
Instead, if one allows the underlying engine to search for normal forms, such as in
logic programming paradigms, then one can replace confluence by left linearity
(Theorems 3 and 5); this was also the approach taken in [2]. Note, however, that
search is potentially exponential in the size of the reduction.

6 Discussion and Future Work

We presented a technique to eliminate conditional rules by replacing them with
unconditional rules. The generated TRS is computationally equivalent with the

Computationally Equivalent Elimination of Conditions 33

original CTRS provided that the CTRS is ground confluent. Besides the theo-
retical results, we have also empirically shown that the proposed transformation
may lead to the development of faster conditional rewrite engines. In the case of
constructor-based CTRSs, the operation { } is not needed, so our transforma-
tion becomes the same as the one in [2]; thus, our theoretical results imply that
the transformation in [2] preserves ground confluence, a result not proved in [2]
but approached in [5].

We believe that the results presented here can be easily generalized to con-
ditional rewriting systems with extra variables in conditions (deterministic(D)
CTRSs). In this framework, operational termination is equivalent to quasi-de-
creasingness and left linearity translates to semilinearity [15] of DCTRSs. The
nontrivial proofs of the results in Section 5 (see [20]), were engineered to also
work for this case. We refer the interested reader to [20] for details.

Techniques to compact the generated TRS are worthwhile investigating. Also,
propagation rules for { } can destroy useful partial reductions; can one adapt our
transformation to restart only the conditions that are invalidated when a rewrite
step occurred? We believe that confluence is preserved even in the absence of
left linearity or termination but we have not been able to prove it. None of the
transformations mentioned in this paper can handle arbitrary rewriting modulo
azioms in the source CTRS. This seems to be a highly non-trivial problem in its
entire generality; however some restricted uses of operators modulo axioms can
be handled at no additional complexity (see [20]).

Acknowledgments. We warmly thank Andrei Popescu for several technical sug-
gestions, Claude Marché for referring us to Example 1, Salvator Lucas and José
Meseguer for encouraging remarks and suggestions on how to extend this work,
and the careful referees for insightful comments on the draft of this paper.

References

[1] H. Aida, J. A. Goguen, and J. Meseguer. Compiling concurrent rewriting onto the
rewrite rule machine. In CTRS’90, volume 516 of LNCS, pages 320-332, 1990.

[2] S. Antoy, B. Brassel, and M. Hanus. Conditional narrowing without conditions.
In PPDP’03, pages 20-31. ACM Press, 2003.

[3] J. A. Bergstra and J. W. Klop. Conditional rewrite rules: Confluence and termi-
nation. J. of Computer and System Sciences, 32(3):323-362, 1986.

[4] P. Borovansky, H. Cirstea, H. Dubois, C. Kirchner, H. Kirchner, P. Moreau,
C. Ringeissen, and M. Vittek. ELAN: User Manual, 2000. Loria, Nancy, France.

[5] B. Brassel. Bedingte narrowing-verfahren mit verzogerter auswertung. Master’s
thesis, RWTH Aachen, 1999. In German.

[6] M. Clavel, F. Durdn, S. Eker, P. Lincoln, N. Marti-Oliet, J. Meseguer, and C. Tal-
cott. Maude 2.0 Manual, 2003. http://maude.cs.uiuc.edu/manual.

[7] N. Dershowitz and D. A. Plaisted. Equational programming. In J. E. Hayes,
D. Michie, and J. Richards, editors, Machine Intelligence 11, pages 21-56. 1988.

[8] R.Diaconescu and K. Futatsugi. CafeOBJ Report. World Scientific, 1998. AMAST
Series in Computing, volume 6.

[9] E. Giovannetti and C. Moiso. Notes on the elimination of conditions. In CTRS’87,
volume 308 of LNCS, pages 91-97. Springer, 1987.

34

[10]
[11]
[12]
[13]
[14]
[15]

[16]

[17]

[18]
[19]

[20]
[21]

[22]

T.F. Serbanuta and G. Rosu

J. Goguen, T. Winkler, J. Meseguer, K. Futatsugi, and J.-P. Jouannaud. Intro-
ducing OBJ. In Software Engineering with OBJ, pages 3—167. Kluwer, 2000.

M. Hanus. The integration of functions into logic programming: From theory to
practice. The Journal of Logic Programming, 19 & 20:583-628, 1994.

C. Hintermeier. How to transform canonical decreasing CTRSs into equivalent
canonical TRSs. In CTRS’9/, volume 968 of LNCS, pages 186205, 1994.

S. Lucas, C. Marché, and J. Meseguer. Operational termination of conditional
term rewriting systems. Inf. Proc. Letters, 95(4):446-453, August 2005.

M. Marchiori. Unravelings and ultra-properties. In ALP’96, volume 1139 of LNCS,
pages 107-121. Springer, 1996.

M. Marchiori. On deterministic conditional rewriting. Computation Structures
Group, Memo 405, MIT Laboratory for Computer Science, 1997.

N. Nishida, M. Sakai, and T. Sakabe. On simulation-completeness of unraveling
for conditional term rewriting systems. In LA Symposium 2004 Summer, volume
2004-7 of LA Symposium, pages 1-6, 2004.

E. Ohlebusch. Transforming conditional rewrite systems with extra variables into
unconditional systems. In LPAR’99, volume 1705 of LNCS, pages 111-130, 1999.
E. Ohlebusch. Advanced Topics in Term Rewriting. Springer, 2002.

G. Rosu. From conditional to unconditional rewriting. In WADT 04, volume 3423
of LNCS, pages 218-233. Springer, 2004.

T. F. Serbanuta and G. Rosu. Computationally equivalent elimination of condi-
tions. Technical Report UTUCDCS-R-~2006-2693, UIUC, February 2006.

M. van den Brand, J. Heering, P. Klint, and P. A. Olivier. Compiling language
definitions: the ASF+SDF compiler. ACM TOPLAS, 24(4):334-368, 2002.

P. Viry. Elimination of conditions. J. of Symb. Comp., 28:381-401, Sept. 1999.

On the Correctness of Bubbling*

Sergio Antoy, Daniel W. Brown, and Su-Hui Chiang

Department of Computer Science
Portland State University
P.O. Box 751
Portland, OR 97207

Abstract. Bubbling, a recently introduced graph transformation for
functional logic computations, is well-suited for the reduction of redexes
with distinct replacements. Unlike backtracking, bubbling preserves op-
erational completeness; unlike copying, it avoids the up-front construc-
tion of large contexts of redexes, an expensive and frequently wasteful
operation. We recall the notion of bubbling and offer the first proof of
its completeness and soundness with respect to rewriting.

1 Introduction

Non-determinism is one of the most appealing features of functional logic pro-
graming. A program is non-deterministic when its execution may evaluate some
expression that has multiple results. To better understand this concept, consider
a program to color a map of the Pacific Northwest so that no pair of adjacent
states shares a color. The following declarations, in Curry [15], define the well-
known topology of the problem:

data State = WA | OR | ID | BC
states = [WA,OR,ID,BC] (1)
adjacent = [(WA,OR), (WA,ID), (WA,BC), (OR,ID), (ID,BC)]

The colors to be used for coloring the states and a non-deterministic operation,
paint, to pair its argument to a color are defined below. The library operation
“?” non-deterministically selects either of its arguments.

data Color = Red | Green | Blue)
paint x = (x, Red ? Green 7 Blue)

The rest of the program follows:

solve | all diffColor adjacent = theMap
where theMap = map paint states
diffColor (x,y) = colorOf x /= colorOf y
lookup ((s,c):t) x = if s==x then ¢
else lookup t x
color0f = lookup theMap

3)

The evaluation of solve solves the problem. In particular, theMap associates
a color to each state and so represents the map, diffColor tells whether the

* Partially supported by the NSF grant CCR-0218224.

F. Pfenning (Ed.): RTA 2006, LNCS 4098, pp. 35-49, 2006.
© Springer-Verlag Berlin Heidelberg 2006

36 S. Antoy, D.W. Brown, and S.-H. Chiang

colors associated to two states are different, 1ookup looks up the color associated
to a state in the map, all and map are well-known library functions for list
manipulation, and the condition of solve ensures that no adjacent states have
been assigned the same color.

Non-determinism reduces the effort of designing and implementing data struc-
tures and algorithms to encode this problem into a program. The simplicity of
the non-deterministic solution inspires confidence in the program’s correctness.
The implementation of non-deterministic functional logic programs has not been
studied as extensively as that of deterministic programs.

This paper addresses both theoretical and practical aspects of the implemen-
tation of non-determinism. Section 2 highlights some deficiencies of typical im-
plementations of non-determinism and sketches our proposed solution. Section 3
discusses the background of our work. Section 4 defines a relation on graphs that
is at the core of our approach. Section 5 proves the correctness of our approach.
Section 6 briefly addresses related work. Section 7 offers our conclusion.

2 DMotivation

We regard a functional logic program as a term rewriting system (TRS) [8,9,10,18]
or a graph rewriting system (GRS) [11,21] with the constructor discipline [20].
Source-level constructs such as data declarations, currying, higher-order and
anonymous functions, partial application, nested scopes, etc. can be transformed
by a compilation process into ordinary rewrite rules [15]. The execution of a pro-
gram is the repeated application of narrowing steps to a term until either a con-
structor term is reached, in which case the computation succeeds, or an unnarrow-
able term with some occurrence of a defined operation is reached, in which case
the computation fails. Examples of the latter are an attempt to divide by zero or
to return the first element of an empty list.

The instantiation of free variables in narrowing steps does not play any specific
role in our discussion as well as in the program we presented in the introduction.
In this paper, we are mostly concerned with rewriting. For many problems in
this area, extending results from rewriting to narrowing requires only a moderate
effort. We will sketch the extension of our work to narrowing in the final section.

Our focus is on the interaction of non-determinism and sharing. In a deter-
ministic system, evaluating a shared subexpression twice is merely inefficient;
in a non-deterministic system, it can lead to unsoundness. For instance, in the
map coloring example, the value of theMap is any possible association of a color
to a state. In the program, there are two occurrences of theMap, besides its de-
finition. One occurrence is returned as the output of the program; the other is
constrained to be a correct solution of the problem. Obviously, if the values of
these occurrences were not the same, the output of the program would likely be
wrong.

A TRS with non-deterministic operations is typically non-confluent. Opera-
tionally, there are two main approaches to computations in a non-confluent TRS:
backtracking and copying. While the former is standard terminology, we do not

On the Correctness of Bubbling 37

know any commonly accepted name for the latter. Copying is more powerful
since steps originating from distinct non-deterministic choices can be interleaved,
which is essential to ensure the completeness of the results. We informally de-
scribe a computation with each approach. Let t[u] be a term in which ¢[] is a
context and w is a subterm that non-deterministically evaluates to x or y.

With backtracking, the computation of ¢[u] first requires the evaluation of ¢[x].
If this evaluation fails to produce a constructor term, the computation continues
with the evaluation of ¢[y]. Otherwise, if and when the evaluation of ¢[x] succeeds,
the interpreter may give the user the option of evaluating t[y].

With copying, the computation of t[u] consists of the simultaneous (e.g., by
interleaving steps), independent evaluations of t[z] and ¢[y]. If either evaluation
produces a constructor term, this term is a result of the computation, and the
interpreter may give the user the option of continuing the evaluation of the
other term. If the evaluation of one term fails to produce a constructor term,
the evaluation of the other term continues unaffected.

Both backtracking and copying have been used in the implementation of FL
languages. For example, PAkcs [14] and TOY [19] are based on backtracking,
whereas the FLVM [7] and the interpreter of Tolmach et al. [22] are based on
copying. Unfortunately, both backtracking and copying as described above have
non-negligible drawbacks. Consider the following program, where div denotes
the usual integer division operator and n is some positive integer.

loop = loop (4)
fx=1+2+(. .. +(n ‘div‘ x)...))
We describe the evaluation of ¢ = £ (loop? 1) with backtracking. If the first
choice for the non-deterministic expression is 1oop, no value of ¢ is ever computed
even though ¢ has a value, since the evaluation of £ 1loop does not terminate. This
is a well-known problem of backtracking referred to as the loss of completeness.

We describe the evaluation of ¢ = £ (07 1) with copying. Both £ 0 and £ 1 are
evaluated. Of course, the evaluation of the first one fails. The problem in this
case is the construction of the term 1+(2+(...+(n ‘div‘ 0)...)). The effort
to construct this term, which becomes arbitrarily large as n grows, is wasted,
since the first step of the computation, which is needed, is a division by zero,
and consequently the computation fails.

Thus, copying may needlessly construct terms and backtracking may fail to
produce results. A recently proposed approach [5], called bubbling, avoids these
drawbacks. The idea is to slowly “move” a choice up its context and evaluate
both its arguments. Bubbling is a compromise between evaluating only one non-
deterministic choice, as in backtracking, and duplicating the entire context of
each non-deterministic choice, as in copying. Bubbling is free from the drawbacks
of backtracking and copying discussed earlier.

The evaluation of £ (loop?1) by bubbling produces (f loop) ? (£ 1). Con-
trary to backtracking, no unrecoverable choice is made in this step. Both argu-
ments of “?” can be evaluated concurrently, e.g., as in [5]. The evaluation of the
first argument does not terminate; however, this does not prevent obtaining the
value of the second argument.

38 S. Antoy, D.W. Brown, and S.-H. Chiang

Likewise, the evaluation of £ (07 1) goes (roughly) through the following in-
termediate terms, where fail is a distinguished symbol denoting any expression
that cannot be evaluated to a constructor term:

f (07 1)
— 1+(2+(...+(n ‘div‘ (0 7 1))...))
— 1+(2+(...+((n ‘div‘ 0) ? (n ‘div‘ 1))...)) (5)

— 1+(2+(...+(fail ? (n ‘div‘ 1))...))

— 1+(2+(...+(n ‘div¢ 1)...))
The fail alternative is dropped. Since fail occurs at a position where a cons-
tructor-rooted term is needed, it cannot lead to a successful computation.

In (5), the obvious advantages of bubbling are that no choice is left behind
and no unnecessarily large context is copied. In the second step, we have dis-
tributed the parent of an occurrence of the choice operation over its arguments.
Unfortunately, a “distributive property” of the kind f(z?y) = f(z)? f(y) is
unsound in the presence of sharing.

Consider the following operation:
f x = (not x, not x) (6)

and the term ¢t = £ (True ? False). The evaluation semantics of non-right linear
rewrite rules, such as (6), is called call-time choice [17]. Informally, the non-
deterministic choice for the argument of f is made at the time of £’s application.
Therefore, the instances of x in the right-hand side of (6) should all evaluate to
True or all to False. With an eager strategy, the call-time choice is automatic,
and the only available option. With a lazy strategy, the call-time choice is rel-
atively easy to implement by “sharing” the occurrences of x. That is, there is
only one occurrence of the term bound to x. All the occurrences of x refer to
this term. The term being evaluated is the graph depicted in the left-hand side
of the following figure:

AN PN

not not ? ?
? not not not not

N N/

True False True False

Fig. 1. The left-hand side depicts a term graph. The right-hand side is obtained from
the left-hand side by bubbling up to the parents the non-deterministic choice. The two
term graphs have a different set of constructor normal forms.

The right-hand side of the above figure shows the result of bubbling up the
non-deterministic choice in a way similar to (5). This term has 4 normal forms.
One is (True,False), which is not obtainable with either backtracking or copy-

On the Correctness of Bubbling 39

ing and is not intended by the call-time choice semantics. Therefore, although
advantageous in some situations, unrestricted bubbling can be unsound.

In the following sections we formalize a sound approach to non-deterministic
computations with shared terms based on the idea of bubbling introduced in this
section. This formalization is the foundation of a recently discovered strategy [5]
that computes both rewriting and bubbling steps.

3 Background

TRSs have been used extensively to model FL programs. This modeling has
been very successful for some problems, e.g., the discovery of efficient narrowing
strategies and the study of their properties; see [4] for a survey. However, a
TRS only approximates a FL program, because it does not adequately capture
the sharing of subexpressions in an expression. As we discussed in the previous
section, and our introductory example shows, sharing is an essential semantic
component of the execution of a program.

GRSs [11,21] model FL programs more accurately than do TRSs. Unfortu-
nately, they are also more complex than TRSs, and some variations exist in
their formalization. In this paper, we follow the systemization of Echahed and
Janodet [11] because the class of GRSs that they consider is a good fit for our
programs. The space alloted to this paper prevents us from recalling relevant
definitions and results of [11]. Luckily, this paper is easily accessible on-line at
http://citeseer.ist.psu.edu/echahed97constructorbased.html.

In this paper, we assume that programs are overlapping inductively sequen-
tial [4,2] term graph rewriting systems, abbreviated GRSs, and computations
are rewriting sequences of admissible term graphs. We recall that a graph is
admissible [11, Def. 18] if none of its defined operations belongs to a cycle.

Our choice of programs is motivated by the expressiveness of this class (e.g., as
shown by the introductory example), by the existence of a strategy that performs
only steps that are needed modulo a non-deterministic choice [2], and by the fact
that computations for the entire constructor based programs can be implemented
by this class via a transformation [3]. Non-deterministic computations in this
class are supported by the single operation defined below.

Definition 1 [Choice operation]. The choice operation, denoted by the infix
operator “?”, is defined by the following rules:

X?7y=x
xX?7y=y a

We assume that this is the only overlapping operation of a GRS. Any other
overlapping can be eliminated, without changing the meaning of a program,
using the choice operation, as discussed in [2] and shown in our introductory
example.

Definition 2 [Limited overlapping]. A limited overlapping inductively sequen-
tial GRS, abbreviated LOIS, is a constructor based GRS, S, such that the

40 S. Antoy, D.W. Brown, and S.-H. Chiang

signature of S contains the choice operation “?” presented in Def. 1 and every
other defined operation of S is inductively sequential. O

We need an additional definition, which is crucial to our approach.

Definition 3 [Dominance]. A node d dominates a node n in a rooted graph ¢
if every path from the root of ¢t to n contains d. If d and n are distinct, then d
properly dominates n in t. |

For example, in the left-hand side graph of Fig. 1, the occurrence of “?” is
properly dominated by the root only. Every other occurrence, except the root,
is properly dominated by its predecessor.

Echahed and Janodet [11] formalize rewriting, including an efficient strategy,
for the inductively sequential term graph rewriting systems. This class is similar
to ours, except for the presence of the choice operation. Following their lead,
we always use “fresh” rules in rewrite steps. This is justified by the following
example:

t = (ind, ind)

ind = coin (7)

coin =071
The intended semantics is that each occurrence of ind in t is evaluated inde-
pendently of the other (ind is not a variable) and therefore t has four values,
every pair in which each component is either 0 or 1. To compute all the intended
values of t, it is imperative that a rewrite step uses a variant [11, Def. 19] of
a rewrite rule, namely a clone of the rule with fresh nodes (and variables). A
consequence of using variants of rules is that the equality of graphs resulting
from rewrite steps can be assessed only modulo a renaming of their nodes [11,
Def. 15].

4 Bubbling

Computations that perform non-deterministic steps must preserve in some form
the context of a redex when the redex has distinct replacements. Typically, some
portions of the context are reconstructed, as in backtracking, or are duplicated,
as in copying. An overall goal of bubbling is to limit these activities. In the
following, we precisely define which portions of a context of a redex are cloned
in our approach.

Definition 4 [Partial renaming]. Let g = (N, L4, S,, Rootsy) be a term graph
over (¥, N, X), N, a subset of Nj and N, a set of nodes disjoint from N,. A
partial renaming of g with respect to N, and N is a bijection © : N' — N such

that:
n’ where n' € Ny, if n € Np;
n otherwise.

On) = { (8)

Similar to substitutions, we call N, and N, the domain and image of ©, respec-
tively. We overload © to graphs as follows: O(g) = ¢’ is a graph over (X, A/, X)
such that:

On the Correctness of Bubbling 41

- Ngl = 6(N9)7

— Ly (m) = Ly(n), iff m =06(n),

— mima...mp = Sg(mg) iff ning...np = Sy(no), where for ¢ = 0,1,...k,
k 2 07 m; = 6(77,1‘)7

— Rootsy = Roots,. O

In simpler words, ¢’ is equal to g in all aspects except that some nodes in N,
more precisely all and only those in NV, are consistently renamed, with a “fresh”
name, in ¢’. Obviously, the cardinalities of the domain and image of a partial
renaming are the same.

Lemma 1. If g is a graph and ¢’ is a partial renaming of g with respect to some
N, and Ny, then g and g’ are compatible.

Proof. Immediate from the notion of compatibility [11, Def. 6] and the construc-
tion of ¢’ in Definition 4. O

The evaluation of an admissible term graph ¢ in a GRS S is a sequence of graphs
to=st1=»ts - - - where for every natural number i, ¢;11 is obtained from ¢; either
with a rewrite step of S or with a bubbling step, which is defined below.

Definition 5 [Bubbling]. Let g be a graph and ¢ a node of g such that the
subgraph of g at ¢ is of the form z 7y, i.e., gl = z7y. Let d be a proper
dominator of ¢ in g and N, the set of nodes that are on some path from d to ¢ in g,
including d and ¢, i.e., N, = {n | nina...n, € Py(d,c) and n = n; for some i},
where Py(d, c) is the set of all paths from d to cin g. Let ©, and O, be partial
renamings of g with domain N, and disjoint images. Let g, = O4(glalc < ¢]),
for ¢ € {z,y}. The bubbling relation on graphs is denoted by “~” and defined by
g =~ gld — g7 gy, where the root node of the replacement of g at d is obviously
fresh. We call ¢ and d the origin and destination, respectively, of the bubbling
step, and we denote the step with “~.;” when this information is relevant. 0O

In simpler words, bubbling moves a choice in a graph up to a dominator node. In
executing this move, some portions of the graph, more precisely those between
the end points of the move, must be cloned. An example of bubbling is shown in
Figure 2. In this example, the dominator is the root of the graph, but in general
the destination node can be any proper dominator of the origin. In practice, it is
convenient to bubble a choice only to produce a redex. The strategy introduced
in [5] ensures this desirable property.

The bubbling relation entails 3 graph replacements. By Lemma 1, the graphs
involved in these replacements are all compatible with each other. Therefore, the
bubbling relation is well defined according to [11, Def. 9]. In particular, except
for the nodes being renamed, g, and g, can share nodes between themselves
and/or with g. Any sharing among these (sub)graphs is preserved by bubbling.

Two adjacent bubbling steps can be composed into a “bigger” step.

Theorem 1 (Transitivity of bubbling). Let S be a GRS. For all term graphs
t, u and v over the signature of S and for all ¢ and d nodes of t and d and e
nodes of u, modulo a renaming of nodes, if t ~.q u and u ~4c v then e is a node
of t and t >~ v.

42 S. Antoy, D.W. Brown, and S.-H. Chiang

AN PR

not not () G)

N ANVA

not not not not

N NSNS

True False True False

Fig. 2. The left-hand side depicts a term graph. The right-hand side is obtained from
the left-hand side by bubbling the non-deterministic choice up to a proper dominator.
The two term graphs have the same set of constructor normal forms.

Proof. If ¢ is a node labeled by a choice operation, ¢; and ¢, denotes the left and
right successors of ¢. Let w be defined by ¢ ~.. w and consider the expressions
defining u, v and w:

u = tld — (O, (tlalc — tle,]) ? O, (t]alc — t[c,]))]
v =ule — (Ocq, (ule[d — ulq,]) 7 Oca, (ule[d — ula,]))] 9)
w = tle « (Occ, (tlele tle]) ? Oce, (tle[c — tlc,]))]

where ©,, is a renaming whose domain is the set of the nodes in any path
between x and y. Also, we assume that the images of all renamings are disjoint.

We prove that v = w modulo a renaming of nodes. The portion of u at
and above e is the same as in t. Using this condition twice, we only have to
prove O, (tle[d — ulg]) = Oee(tlelc — tl,]) and the analogous equation
for the right-hand side argument. By construction, ulq, = Oqc, (tlalc — tl,])-
Thus, O, (tleld — ulg,]) = Oecq, (tle]ld — Oue, (tlac — t|¢,])]). Since no node
is duplicated by renamings, we have that O.q, (tle[d — Ouc, (tlalc — tle,])]) =
Oecd, © O, (tle]d «— t|a[c — t|.,]]). Since t|4 is modified only at ¢ and ¢ is below
d, tleld «— t|lalc — t|¢]] = tlelc < t|¢]. Thus, by equational reasoning, v = w
except for the renamings of nodes, and the claim holds. a

Bubbling creates a natural mapping between two graphs. If t ~ u, then every
node of u “comes” from a node of t. This mapping, which is instrumental in
proving some of our claim, is formalized below.

Definition 6 [Natural mapping]. Let S be a GRS, t a graph over the signature
of S and t ~.4 u, for some graph u and nodes ¢ and d of t. We call natural the
mapping p : N, — Ny defined as follows. By construction, u = ¢[d « '], for
some term graph t. Let d’ be the root node of . The construction of u involves
two renamings in the sense of Def. 4; let us call them @, and ©,. We define i
on n, a node of u, as follows:

if n=d’,
Y(n) if n is in the image of O,;
Y(n) if n is in the image of Oy;
otherwise.

(10)

On the Correctness of Bubbling 43

Observe that the images of @, and @, are disjoint, hence the second and third
cases of (10) are mutually exclusive. O

The next lemma shows that a rule of “?” applied before a bubbling step at the
origin or after a bubbling step at the destination produces the same outcome.

Lemma 2 (Same rule). Let S be a LOIS and t an admissible term graph over
the signature of S. If t ~cq u, t —¢r v and u —4 r w, then v = w modulo a
renaming of nodes.

Proof. R is a rule of “?”. Without loss of generality, we assume that it is the
rule that selects the left argument. By assumption the subgraph of ¢ at ¢ is of
the form z ?y. Hence ¢t = t[c — x?7y] and t —. g v = t[c < z|. By definition of
bubbling, v = t[d «— (O (t|a[c — z]) ? Oy(t|a[c < y]))], for some renamings O,
and O,. Therefore u —q r w = t[d — Oy (t|qlc — z])] = O (t[d «— t|a[c — z]]) =
O (t[c — z]). |

5 Correctness

In this section we state and prove the correctness of our approach. The notion of
a redex pattern defines the set of nodes below a node n labeled by an operation
f that determines that a rule of f can be applied at n. Recall that a matcher is
a function that maps the nodes of one graph to those of another, preserving the
labeling and successor functions.

Definition 7 [Redex pattern]. Let ¢ be a graph, | — r a rewrite rule, and n a
node of ¢ such that [matches t at n with matcher h. We call redex pattern of
[l — rin t at n the set of nodes of ¢ that are images according to h of a node of
[with a constructor label. a

We are convening that a node n is not in any redex pattern at n. This is just a
convenient convention.

The following example shows that some pairs of bubbling and rewriting steps
do not commute. This is a significant condition that prevents proof techniques
based on parallel moves [16]. Although our GRSs are not orthogonal, some form
of parallel moves is available for LOIS [2]. Consider the term ¢ = snd (1,27 3),
where snd is the function that returns the second component of a pair and,
obviously, there is no sharing. Bubbling the choice to its parent (see Figure 3)
produces u = snd ((1,2) ? (1,3)). The term u cannot be obtained from t by
rewriting. Furthermore, the redex at the root of ¢ has been destroyed by the
bubbling step. The following result offers a sufficient condition, namely an ap-
propriate choice of the destination of a bubbling step, for recovering the commu-
tativity of bubbling and rewriting. As customary, for any relation R, R~ denotes
the reflexive closure of R.

Lemma 3 (Parallel Bubbling Moves). Let S be a LOIS and t an admissible
term graph over the signature of S. If t ~.q t', for some graph t' and nodes c

44 S. Antoy, D.W. Brown, and S.-H. Chiang

snd (1,273) casnd ((1,2)?(1,3)) Fig. 3. Bubbling and rewriting do not
always commute. No parallel moves are
available for this diagram. Note that the

273 u term on the right cannot be reached from
the original term by rewriting.

and d of t, and t —, g u, for some node p of t and rule R of S, and d is not

in the redex pattern of R at p in t, then there exists u' such that t' = u' and

u~=; u' modulo a renaming of nodes.

Proof. Let P = p~!(p) be the set of nodes of ¢ that map to p in t. Observe that
P contains either 1 or 2 nodes. We show that R can be applied to any node in
P and we define u’ as the result of applying R to all the nodes of P. If p = ¢,
then by definition P = {d}. In this case, R is a rule of “?” and consequently
u =’ (modulo a renaming of nodes) and the claim immediately holds. If p # ¢
and P = {p}, then the reduction in ¢ is independent of the bubbling step. The
redex pattern of R at p in ¢ is either entirely below ¢, since the label of ¢ is an
operation, or entirely above d, since by hypothesis d is not in the redex pattern
of R at p in t. The redex pattern of R at p is the same in ¢ and ¢’ and the redex
is equally replaced in ¢ and . Hence u ~.q4 v If p # ¢ and P = {p1,p=2}, with
p1 # pa2, then the reduction in ¢ is in the portion of ¢ cloned by the bubbling
step. The redex pattern of R at p in ¢ is entirely contained in this portion. The
redex pattern is entirely below d by hypothesis, and cannot include ¢ since the
the label of ¢ is an operation. Thus the redex pattern is entirely cloned in two
disjoint occurrences in t’. By reducing both occurrences, in whatever order, ¢’

reduces to ¢’ in two steps and u ~.q u’. O
t cd t Fig. 4. Graphical representation of Lemma 3. If the des-
tination of the bubbling step of ¢ is not in the redex pat-
PRy v tern of the rewrite step of t, then, for a suitable graph
U e u u, the diagram commutes.

Definition 8 [Combined step]. We denote with “=”, called a combined step, the
union of the bubbling and rewriting relations in a LOIS, i.e., >~ =~ U —. O

We now address the completeness of the combined step relation. Since this rela-
tion is an extension of the rewrite relation, a traditional proof of completeness
would be trivial. Instead, we prove a more interesting claim, namely, no re-
sult of a computation is lost by the execution of bubbling steps. Therefore, an
implementation of rewriting is allowed to execute bubbling steps, if it is con-
venient. The completeness of bubbling is not in conflict with the example of
Figure 3. Although a bubbling step may destroy a redex, the redex is not ir-
revocably lost—there always exists a second bubbling step to recover the redex
lost by the first step. In the case of Figure 3, a second bubbling step results in
snd (1,2) ?snd (1,3).

On the Correctness of Bubbling 45

Theorem 2 (Completeness of bubbling). Let S be a LOIS, t an admissible

term graph and u a constructor graph such that t = w. If t ~.q v for some graph
v and nodes ¢ and d of t, then v < u modulo a renaming of nodes.

Proof. The proof is by induction on the length of ¢ = u. Base case: If t = u, then
v does not exist, and the claim vacuously holds. Ind. case: There exist some node
p, rule R and graph ¢; such that ¢ —, g 1 = u. We consider two exhaustive
cases on d. If d is not in the redex pattern of R at p in ¢, then, by Lemma 3,
there exists a graph v; such that v X vy and t; ~= v; modulo a renaming of
nodes. By the induction hypothesis, v; <+ u modulo a renaming of nodes. If d
is in the redex pattern of R at p in ¢, then d is neither the root of ¢ nor the
root of v. There exists a dominator e of d in v, witness the root of v, such that
v ~ge w; by Theorem 1 ¢ ~.. w, and e is not in the redex pattern of R at p in ¢.
By Lemma 3, there exists a graph w; such that w -5 w; and t; ~= w; modulo a
renaming of nodes. As in the previous case w < u modulo a renaming of nodes.
Since v ~ w implies vaw, v < u modulo a renaming of nodes. a

We now turn our attention to the soundness of combined steps. This is somewhat
the complement of the completeness. We prove that bubbling non-deterministic
choices does not produce results that would not be obtainable without bubbling.
Of course, a bubbling step of a term graph t creates a term u that is not reachable
from t by rewriting, but any result (constructor normal form) obtainable from
u via combined steps can be reached from t via pure rewriting. We begin by
proving that a single bubbling step with destination the root node is sound.

Lemma 4 (Single copying soundness). Let S be a LOIS and tg an admis-
sible term graph over the signature of S. If tg ~eq t1 — tn, where ¢ is a node
of to, d is the root of tg and t, is a constructor graph, then ty - t, modulo a
renaming of nodes.

Proof. A diagram of the graphs and steps in the following proof are shown in
Fig 5. Since in t; the label of the root node d is “?” and ¢, is a constructor
normal form, there must be an index j such that in the step t; — t;41 a rule R;
of “?” is applied at d. Without loss of generality, we assume that R; is the rule
of “?” that selects the left argument and we denote with d; the left successor of
dint; for i =1,2,...,j. In different graphs, d; may denote different nodes. We
prove the existence of a sequence tg — w1 — un, such that for all i = 1,2,...,n,
t; —= u; modulo a renaming of nodes. By induction on ¢, for all t =1,2,..., 7,
we define u; and we prove that ¢;|4, = u; modulo a renaming of nodes. The latter
implies ¢; —4 r; u;. Base case: ¢ = 1. The rule R; can be applied to g at ¢ and
we define u; as the result, i.e., tg —¢,R; U1- By Lemma 2, t1]q, = w1 modulo a
renaming of nodes. Ind. case: We assume the claim for ¢, where 0 < i < j, and
prove it for ¢ + 1. Let t; —, r, tit1. If p is a node of ¢;|4,, then since ¢;|q, = u;
modulo a renaming of nodes, there exists a node ¢ in u; that renames p. We
define u; —4 R, wi+1 and the claim holds for ¢4 1. If p is not a node of ¢;/4,, then
tivila, = tila,- We define u;11 = u; and the claim holds for ¢ + 1 in this case
too. Now, since t; —q r; j+1, we have {11 = tj\dl and therefore u;y1 = tj41

46 S. Antoy, D.W. Brown, and S.-H. Chiang

modulo a renaming of nodes. For every ¢ such that j < ¢ < n, if t; =, g tiy1, we
define u; —4 g ui+1, where as before ¢ renames p. Clearly, for every 7, j < ¢ < n,

. + . .
t; = u; modulo a renaming of nodes. Thus, ty — t,, exists as claimed. O
t -d 1t > .. >t >t > ... >t
’ \F 1 p1,R1 ’ d,R; " "
SR
N vhE; _ V&R
Ui > > Uj Uj+1 > > Un
q1, R

Fig. 5. Diagram of the main graphs and steps involved in the proof of Lemma 4. d is
the root node of to. R; is the rule of “?” that selects the left argument. ¢; renames p;.

We believe that the previous proof could be generalized to any bubbling step.
However, a simpler and more elegant proof is available by taking advantage of
the transitivity and the completeness of bubbling. We show this proof below.

Lemma 5 (Single bubbling soundness). Let S be a LOIS and ty an admis-
sible term graph over the signature of S. If tg ~cq t1 N tn, where ¢ and d are
nodes of ty and t, is a constructor graph, then to — t, modulo a renaming of
nodes.

Proof. Suppose that d is not the root of ¢g; otherwise the claim is already proved
by Lemma 4. Let e be the root node of ty and also of ¢;. Let u; be defined by
t1 ~ge u1. By the transitivity of bubbling, Th. 1, ¢ty ~.¢ u1. By the completeness
of bubbling, Th. 2, there exists a sequence u; — ¢, modulo a renaming of nodes.
Therefore, tg ~ce U1 — t,. Since e is the root node of ¢y, by Lemma 4, t, 5t
modulo a renaming of nodes. a

Theorem 3 (Soundness of bubbling). Let S be a LOIS and t an admissible

term graph over the signature of S. If t < u, for some constructor graph u, then
t 5 u modulo a renaming of nodes.

Proof. By induction on the number of bubbling steps in t = . O

6 Related Work

Bubbling is introduced in [5] with a rewriting strategy for the overlapping in-
ductively sequential GRSs. This strategy determines, in theory very efficiently,
when to execute ordinary rewrite steps and/or bubbling steps. A bubbling step
is computed only if it promotes a needed (modulo a non-deterministic choice)
rewrite step. Our work proves that the execution of the bubbling steps computed
by this strategy preserves all and only the constructor normal forms reachable
from a term by pure rewriting. The use of bubbling in the strategy eliminates
the incompleteness of backtracking and the inefficiency of copying.

Although strategies for functional logic computations [4] and term graph
rewriting [21] have been extensively investigated, the work on strategies for

On the Correctness of Bubbling 47

term graph rewriting systems as models of functional logic programs has been
relatively scarce. The line of work closest to ours is [11,12]. A substantial dif-
ference of our work with this line is the class of programs we consider, namely
non-deterministic ones. Non-determinism is a major element of functional logic
programming. Hence, our work fills a major conceptual and practical gap in this
area. The attempt to minimize the cost of non-deterministic steps by limiting
the copying of the context of a redex by bubbling is original.

Other efforts on handling non-determinism in functional and functional logic
computations with shared subexpressions include [17], which introduces the call-
time choice semantics to ensure that shared terms are evaluated to the same
result; [13], which defines a rewriting logic that among other properties provides
the call-time choice; and [1] and [22], which define operational semantics based on
heaps and stores specifically for the interaction of non-determinism and sharing.

These efforts, prompted by implementations, abstract the interactions be-
tween non-determinism and sharing. In practice, all these implementations adopt
strategies, summarized in [4], that have been designed and proved correct for
term rather than graph rewriting or narrowing. Although for a strategy this
difference is small, addressing sharing indirectly through computational data
structures such as heaps and stores rather than directly prevents graph opera-
tions, such as bubbling, which are potentially beneficial.

7 Conclusion and Future Work

Bubbling, with interleaving steps on the arguments of an occurrence of the choice
operation, ensures the soundness and completeness of computations without in-
curring the cost of copying the contexts of redexes with distinct replacements.
Programs in which don’t know non-determinism is appropriately used are likely
to produce some terms that fail to evaluate to constructor normal forms. Hence,
avoiding the construction of the contexts of these terms can improve the effi-
ciency of these programs.

For example, this situation can be seen in our program for coloring a map. In
finding the first solution of the problem, the operation paint is called 10 times.
Since only four calls are needed, six choices of some color for some state eventu-
ally fail. Saving the partial construction of six contexts of paint can potentially
improve the efficiency of execution. We are working on an implementation, within
the FLVM [7], to quantify the expected improvements. The results of this paper
ensure the theoretical correctness of a component of our implementation.

Bubbling steps can be executed any time a choice operation occurs at a non-
root node. The problem of determining when it is appropriate to execute a
bubbling step and the destination of this step is elegantly solved in [5]. A strat-
egy similar in intent to [11] and [2] determines when a bubbling step promotes a
needed (modulo a non-deterministic choice) rewrite step. Thus, bubbling steps
are executed only when they are necessary to keep a computation going. This re-
sult complements quite nicely several optimality properties known for strategies
for functional logic computations [4].

48 S. Antoy, D.W. Brown, and S.-H. Chiang

The focus of continued work on this topic is to extend the theory and the im-
plementation to cover narrowing. Narrowing steps are inherently non-
deterministic and therefore naturally expressed using the choice operation [6].
For example, to narrow not x, where x is a free variable, we bind x to
True ? False—the patterns in the definition of not—and continue the evalu-
ation of the instantiated term. In our framework, this would require a bubbling
step.

Variables are singletons in their contexts. This is a key reason to represent
expressions with graphs. However, in our framework, expressions with choice
operations represent sets of ordinary expressions. Therefore, a variable that has
an ancestor node labeled by a choice operation must be handled with care. For
example, consider the following contrived program:

fx=gx7?7hx
g0=20 (11)
h_=1

The expression f x, where x is free, evaluates to two different terms with two
different bindings. In evaluating the right-hand side of f, before instantiating
x in a narrowing step, x must be “standardized apart” as if evaluating (g u
? h v) where u and v are distinct and free. The situation exemplified in (11)
is characterized by a variable x that belongs to two terms encoded within a
single expression of our framework. The standardization apart of a variable is
accomplished by a graph transformation similar to a bubbling step.

References

1. M. Alpuente, M. Hanus, S. Lucas, and G. Vidal. Specialization of functional logic
programs based on needed narrowing. Theory and Practice of Logic Programming,
5(3):273-303, 2005.

2. S. Antoy. Optimal non-deterministic functional logic computations. In Proceed-
ings of the Sixth International Conference on Algebraic and Logic Programming
(ALP’97), pages 16-30, Southampton, UK, September 1997. Springer LNCS 1298.

3. S. Antoy. Constructor-based conditional narrowing. In Proceedings of the Third
ACM SIGPLAN International Conference on Principles and Practice of Declara-
tive Programming, pages 199-206. ACM Press, 2001.

4. S. Antoy. Evaluation strategies for functional logic programming. Journal of Sym-
bolic Computation, 40(1):875-903, 2005.

5. S. Antoy, D. Brown, and S. Chiang. Lazy context cloning for non-deterministic
graph rewriting. In Proc. of the 3rd International Workshop on Term Graph
Rewriting, Termgraph’06, pages 61-70, Vienna, Austria, April 2006.

6. S. Antoy and M. Hanus. Overlapping rules and logic variables in functional logic
programs. In Proceedings of the 22nd International Conference on Logic Program-
ming (ICLP’06), Seattle, WA, August 2006. To appear.

7. S. Antoy, M. Hanus, J. Liu, and A. Tolmach. A virtual machine for functional logic
computations. In Proc. of the 16th International Workshop on Implementation and
Application of Functional Languages (IFL 2004), pages 108-125, Lubeck, Germany,
Sept. 2005. Springer LNCS 3474.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

On the Correctness of Bubbling 49

. F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University

Press, 1998.

. M. Bezem, J. W. Klop, and R. de Vrijer (eds.). Term Rewriting Systems. Cambridge

University Press, 2003.

N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, Vol. B, pages 243-320. Elsevier, 1990.
R. Echahed and J.-C. Janodet. On constructor-based graph rewriting systems.
Research Report 985-1, IMAG, 1997.

R. Echahed and J.-C. Janodet. Admissible graph rewriting and narrowing. In
Proceedings of the Joint International Conference and Symposium on Logic Pro-
gramming, pages 325 — 340, Manchester, June 1998. MIT Press.

J. C. Gonzélez Moreno, F. J. Lépez Fraguas, M. T. Hortald Gonzdlez, and
M. Rodriguez Artalejo. An approach to declarative programming based on a rewrit-
ing logic. The Journal of Logic Programming, 40:47-87, 1999.

M. Hanus (ed.). PAKCS 1.7.1: The Portland Aachen Kiel Curry System. Available
at http://www.informatik.uni-kiel.de/~pakcs, March 27, 2006.

M. Hanus (ed.). Curry: An integrated functional logic language (vers. 0.8.2). Avail-
able at http://www.informatik.uni-kiel.de/~curry, March 28, 2006.

G. Huet and J.-J. Lévy. Computations in orthogonal term rewriting systems. In
J.-L. Lassez and G. Plotkin, editors, Computational logic: essays in honour of Alan
Robinson. MIT Press, Cambridge, MA, 1991.

H. Hussmann. Nondeterministic algebraic specifications and nonconfluent rewrit-
ing. Journal of Logic Programming, 12:237-255, 1992.

J.W. Klop. Term rewriting systems. In S. Abramsky, D. Gabbay, and T. Maibaum,
editors, Handbook of Logic in Computer Science, volume II. Oxford University
Press, 1992.

F. Lépez-Fraguas and J. Sdnchez-Hernandez. TOY: A multiparadigm declarative
system. In Proceedings of RTA ’99, pages 244-247. Springer LNCS 1631, 1999.
M. J. O’Donnell. Equational Logic as a Programming Language. MIT Press, 1985.
D. Plump. Term graph rewriting. In H.-J. Kreowski H. Ehrig, G. Engels and
G. Rozenberg, editors, Handbook of Graph Grammars, volume 2, pages 3—61. World
Scientific, 1999.

A. Tolmach, S. Antoy, and M. Nita. Implementing functional logic languages using
multiple threads and stores. In Proc. of the Ninth International Conference on
Functional Programming (ICFP 2004), pages 90-102, Snowbird, Utah, USA, Sept.
2004. ACM Press.

Propositional Tree Automata*

Joe Hendrix!, Hitoshi Ohsaki?, and Mahesh Viswanathan'

! University of Illinois at Urbana-Champaign
{jhendrix, vmahesh}@uiuc.edu
2 National Institute of Advanced Industrial Science and Technology
ohsaki@ni.aist.go.jp

Abstract. In the paper, we introduce a new tree automata framework,
called propositional tree automata, capturing the class of tree languages
that are closed under an equational theory and Boolean operations. This
framework originates in work on developing a sufficient completeness
checker for specifications with rewriting modulo an equational theory.
Propositional tree automata recognize regular equational tree languages.
However, unlike regular equational tree automata, the class of proposi-
tional tree automata is closed under Boolean operations. This extra ex-
pressiveness does not affect the decidability of the membership problem.
This paper also analyzes in detail the emptiness problem for proposi-
tional tree automata with associative theories. Though undecidable in
general, we present a semi-algorithm for checking emptiness based on
machine learning that we have found useful in practice.

1 Introduction

Tree automata techniques have been commonly used in checking consistency of
tree structures. Typical examples include checking sufficient completeness of al-
gebraic specifications [6] and the consistency of semi-structured documents [17].
These applications benefit from the good closure properties and positive decid-
ability results for tree automata. Recently, there are more advanced applications
including protocol verification [2,11], type inference [8,10], querying in data-
bases [27,28] and theorem proving [19].

One limitation of tree automata in these applications is that the regularity
of languages is not preserved when closed with respect to congruences. In other
words, when some algebraic laws such as associativity and commutativity are
taken into account, the congruence closure of a regular tree language may no
longer be regular. In applications, this lack of closure has required users of tree
automata techniques to use complicated and specialized ways of encoding proto-
cols [5]. Many extensions of tree automata have been suggested to address this
problem, including multitree automata by Lugiez [20], two-way alternating tree
automata by Verma [29], and equational tree automata by Ohsaki [25].

Equational tree automata are a natural mathematical extension of tree au-
tomata that recognize tree languages modulo an equational theory. Equational

* Research supported by ONR Grant N00014-02-1-0715, NSF CAREER CCF-0448178,
and NSF CCF-0429639.

F. Pfenning (Ed.): RTA 2006, LNCS 4098, pp. 50-65, 2006.
(© Springer-Verlag Berlin Heidelberg 2006

Propositional Tree Automata 51

tree automata enjoy several nice properties. In particular, they are weakest ex-
tensions to tree automata that are closed under congruences. More precisely,
when the equational theory is induced by only linear equations (i.e equations
whose left- and right-hand sides are linear terms), such automata recognize ex-
actly the congruence closure of regular languages [25, Lemma 2].

However, checking properties of tree structures often additionally requires that
the modeling language be closed under boolean operations and have efficient al-
gorithms to check emptiness and inclusion. For example, when checking sufficient
completeness, the main task is to check if the language of terms with defined func-
tions is contained in the language of reducible terms. Thus, a sufficient complete-
ness checker relies on a modeling language for trees for which checking inclusion
is decidable. Since inclusion tests are most often implemented by complementa-
tion, intersection and a test for emptiness, these properties also are relevant for
this problem. It is known that for regular equational tree automata with only as-
sociativity equations, the inclusion problem is undecidable. Moreover, this class
of languages is not closed under intersection and complementation [24].

Motivated by this inadequacy in equational tree automata, Hendrix et al
proposed in [13] a further extension of tree automata, called propositional tree
automata. These automata define a class of languages that is immediately closed
under all the boolean operations via a straightforward, effective procedure for
each operation. More importantly, they are the mathematically minimal exten-
sion in that the class of propositional tree automata accept the Boolean closure
of languages recognizable by equational tree automata. The conservativeness of
our extension leads to another desirable property: if the equational tree automata
membership problem is decidable for a theory &£, then the membership problem
for the propositional tree automata with £ is decidable as well.

In [13], Hendrix et al. showed that the sufficient completeness problem for
unconditional and left-linear membership rewrite systems modulo an eq